RU2525158C2 - Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в толуоле - Google Patents

Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в толуоле Download PDF

Info

Publication number
RU2525158C2
RU2525158C2 RU2012120735/15A RU2012120735A RU2525158C2 RU 2525158 C2 RU2525158 C2 RU 2525158C2 RU 2012120735/15 A RU2012120735/15 A RU 2012120735/15A RU 2012120735 A RU2012120735 A RU 2012120735A RU 2525158 C2 RU2525158 C2 RU 2525158C2
Authority
RU
Russia
Prior art keywords
microcapsules
toluene
konjac
solution
medications
Prior art date
Application number
RU2012120735/15A
Other languages
English (en)
Other versions
RU2012120735A (ru
Inventor
Екатерина Евгеньевна Быковская
Александр Александрович Кролевец
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Курская государственная сельскохозяйственная академия имени профессора И.И. Иванова Министерства сельского хозяйства Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Курская государственная сельскохозяйственная академия имени профессора И.И. Иванова Министерства сельского хозяйства Российской Федерации filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Курская государственная сельскохозяйственная академия имени профессора И.И. Иванова Министерства сельского хозяйства Российской Федерации
Priority to RU2012120735/15A priority Critical patent/RU2525158C2/ru
Publication of RU2012120735A publication Critical patent/RU2012120735A/ru
Application granted granted Critical
Publication of RU2525158C2 publication Critical patent/RU2525158C2/ru

Links

Landscapes

  • Cephalosporin Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

Изобретение относится к фармацевтической промышленности, в частности к способу получения микрокапсул лекарственных препаратов группы цефалоспоринов. Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов заключается в том, что к раствору конжака в толуоле добавляют поверхностно-активное вещество, затем порошок препарата группы цефалоспоринов растворяют в диметилформамиде и переносят его в раствор конжака в толуоле, после образования антибиотиком самостоятельной твердой фазы по каплям добавляют карбинол и дистиллированную воду, полученную суспензию микрокапсул отфильтровывают, промывают ацетоном и сушат, процесс получения микрокапсул осуществляют при определенных условиях. Вышеописанный способ обеспечивает упрощение и ускорение процесса получения микрокапсул водорастворимых лекарственных препаратов. 8 пр.

Description

Изобретение относится к области микрокапсулирования лекарственных препаратов группы цефалоспоринов, относящихся к β-лактамным антибиотикам, в конжаковой камеди физико-химическим методом.
Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат. 2092155 МПК, А61К 047/02, А61К 009/16 опубликован 10.10.1997 Российская Федерация, предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.
Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.
В пат. 2095055, МПК А61К 9/52, А61К 9/16, А61К 9/10, Российская Федерация, опубликован 10.11.1997, предложен способ получения твердых непористых микросфер, включающий расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от - 15 до - 50°С и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.
Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.
В пат. 2091071, МПК А61К 35/10, Российская Федерация, опубликован 27.09.1997, предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.
Недостатками способа являются применение шаровой мельницы и длительность процесса.
В пат. 2076765, МПК B01D 9/02, Российская Федерация, опубликован 10.04.1997, предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.
Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.
В пат. 2101010, МПК А61К 9/52, А61К 9/50, А61К 9/22, А61К 9/20, А61К 31/19, Российская Федерация, опубликован 10.01.1998, предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.
Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; получение микрокапсул методом суспензионной полимеризации; сложность исполнения; длительность процесса.
В пат. 2139046, МПК А61К 9/50, А61К 49/00, А61К 51/00, Российская Федерация, опубликован 10.10.1999, предложен способ получения микрокапсул следующим образом. Эмульсию масло-в-воде готовят из органического раствора, содержащего растворенный моно-, ди-, триглицерид, предпочтительно трипальмитин или тристеарин, и возможно, терапевтически активное вещество, и водного раствора, содержащего поверхностно-активное вещество, возможно выпаривают часть растворителя, добавляют редиспергирующий агент и смесь подвергают сушке вымораживанием. Подвергнутую сушке вымораживанием смесь затем снова диспергируют в водном носителе для отделения микрокапсул от остатков органических веществ и полусферические или сферические микрокапсулы высушивают.
Недостатками предложенного способа являются сложность и длительность процесса, использование высушивания вымораживанием, что занимает много времени и замедляет процесс получения микрокапсул.
В пат. 2159037, МПК A01N 25/28, A01N 25/30, Российская Федерация, опубликован 20.11.2000, предложен способ получения микрокапсул реакцией полимеризации на границе раздела фаз, содержащих твердый агрохимический материал 0,1-55 мас.%, суспендированный в перемешивающейся с водой органической жидкости, 0,01-10 мас. % неионного диспергатора, активного на границе раздела фаз и не действующего как эмульгатор.
Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя.
В пат. 2173140, МПК А61К 009/50, А61К 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-квитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.
В пат. 2359662, МПК А61К 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).
В пат. WO/2010/076360 ES, МПК B01J 13/00; А61К 9/14; А61К 9/10; А61К 9/12, опубликован 08.07.2010, предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастицы с существенно сфероидальной морфологией.
Недостатком предложенного способа является сложность процесса, что приводит к получению капсул с плавающим выходом.
В пат. WO/2010/119041 ЕР, МПК A23L 1/00, опубликован 21.10.2010, предложен способ получения микрошариков, сожержащих активный компонент, инкапсулированный в гель-матрице сывороточного протеина, включающего денатурированный белок, сыворотку и активные компоненты. Изобретение относится к способу получения микрошариков, которые содержат такие компоненты, как пробиотические бактерии. Способ получения микрошариков включает стадию производства микрошариков в соответствии с методом изобретения и последующее отверждение микрошариков в растворе анионный полисахарид с рН 4,6 и ниже в течение не менее 10, 30, 60, 90, 120, 180 минут. Примеры подходящих анионных полисахаридов: пектины, альгинаты, каррагинаны. В идеале сывороточный протеин является тепло-денатурирующим, хотя и другие методы денатурации также применимы, например денатурация индуцированным давлением. В предпочтительном варианте сывороточный белок денатурирует при температуре от 75°С до 80°С, надлежащим образом в течение от 30 минут до 50 минут. Как правило, сывороточный протеин перемешивают при тепловой денатурации. Соответственно, концентрация сывороточного белка составляет от 5 до 15%, предпочтительно от 7 до 12%, а в идеале от 9 до 11% (вес / объем). Как правило, осуществление процесса осуществляется путем фильтрации через множество фильтров с постепенным снижением размера пор. В идеале фильтр тонкой очистки имеет субмикронные размеры пор, например от 0,1 до 0,9 микрон. Предпочтительным способом получения микрошариков является способ с применением вибрационных инкапсуляторов (Inotech, Швейцария) и машин производства Nisco Engineering AG. Как правило, форсунки имеют отверстия 100 и 600 мкм, а в идеале около 150 микрон.
Недостатком данного способа является применение специального оборудования (вибрационных инкапсуляторов (Inotech, Швейцария)), получение микрокапсул посредством денатурации белка, сложность выделения полученных данным способом микрокапсул - фильтрация с применением множества фильтров, что делает процесс длительным.
В пат. WO/2011/003805 ЕР, МПК B01J 13/18; B65D 83/14; C08G 18/00, описан способ получения микрокапсул, которые подходят для использования в композициях, образующих герметики, пены, покрытия или клеи.
Недостатком предложенного способа является применение центрифугирования для отделения от технологической жидкости, длительность процесса, а также применение данного способа не в фармацевтической промышленности.
В пат. 20110223314, МПК B05D 7/00; 20060101, B05D 007/00, В05С 3/02; 20060101, В05С 003/02, В05С 11/00; 20060101, В05С 011/00, B05D 1/18; 20060101, B05D 001/18, B05D 3/02; 20060101, B05D 003/02, B05D 3/06; 20060101, B05D 003/06 от 10.03. 2011 US, описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.
Недостатком данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.
В пат. WO/2011/150138 US, МПК C11D 3/37; B01J 13/08; C11D 17/00, опубликован 01.12.2011, описан способ получения микрокапсул твердых растворимых в воде агентов методом полимеризации.
Недостатками данного способа являются сложность исполнения и длительность процесса.
В пат. WO/2011/127030 US МПК А61К 8/11; B01J 2/00; B01J 13/06; C11D 3/37; C11D 3/39; C11D 17/00 опубликован 13.10.2011 предложено несколько способов получения микрокапсул: межфазной полимеризацией, термоиндуцированным разделением фаз, распылительной сушкой, выпариванием растворителя и др. Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия)), распылительная сушилка для сбора частиц (Spray-4M8 Сушилка от ProСерТ, Бельгия)).
Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4M8 Сушилка от ProСерТ, Бельгия)).
В пат. WO/2011/104526 GB, МПК B01J 13/00; B01J 13/14; С09В 67/00; C09D 11/02, опубликован 01.09.2011, предложен способ получения дисперсии инкапсулированных твердых частиц в жидкой среде, включающий: а) измельчение композиции, включающей твердые, жидкие среды и полиуретановые диспергаторы с кислотным числом от 0,55 до 3,5 ммоль на грамм диспергатора, указанная композиция включает от 5 до 40 частей полиуретанового диспергатора на 100 частей твердых изделий по весу; и б) сшивание полиуретанового диспергатора при наличии твердой и жидкой среды, так как для инкапсуляции твердых частиц, которую полиуретановый диспергатор содержит менее 10% от веса повторяющихся элементов из полимерных спиртов.
Недостатками предложенного способа являются сложность и длительность процесса получения микрокапсул, а также то, что инкапсулированные частицы предложенным способом полезны в качестве красителей в чернилах, особенно чернилах струйной печати, для фармацевтической промышленности данная методика неприменима.
В пат. WO/2011/056935 US, МПК C11D 17/00; А61К 8/11; B01J 13/02; C11D 3/50, опубликован 12.05.2011, описан способ получения микрокапсул размером от 15 микрон. В качестве материала оболочки предложены полимеры группы, состоящей из полиэтилена, полиамидов, полистиролов, полиизопренов, поликарбонатов, полиэфиров, полиакрилатов, полимочевины, полиуретанов, полиолефинов, полисахаридов, эпоксидных смол, виниловых полимеров и их смеси. Предложенные полимерные оболочки являются достаточно непроницаемыми для материала сердечника и материалов в окружающей среде, в которой инкапсулируется агент, выгода будет использоваться, чтобы обеспечивать выгоды, которые будут получены. Ядро инкапсулированных агентов может включать в себя духи, силиконовые масла, воска, углеводороды, высшие жирные кислоты, эфирные масла, липиды, охлаждающие кожу жидкости, витамины, солнцезащитные средства, антиоксиданты, глицерин, катализаторы, отбеливающие частицы, частицы диоксида кремния и др.
Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.
Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28 опубликован 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения микрокапсул водораствормых лекарственных препаратов группы цефалоспоринов в конжаковой камеди, уменьшение потерь при получении микрокапсул (увеличение выхода по массе).
Решение технической задачи достигается тем, что в качестве оболочки микрокапсул используют конжаковую камедь, при этом к 6 г 5% раствора конжака в толуоле добавляют 0,01 г Е472 с в качестве поверхностно-активного вещества, а 0,1 г порошка антибиотика группы цефалоспоринов растворяют в 1 мл диметилформамида и переносят его в раствор конжака в толуоле, после образования антибиотиком самостоятельной твердой фазы очень медленно по каплям добавляют 3 мл карбинола и 1 мл дистиллированной воды, полученную суспензию микрокапсул отфильтровывают, промывают ацетоном и сушат, процесс получения микрокапсул осуществляется при температуре 25°С без специального оборудования.
Результатом предлагаемого метода являются получение микрокапсул лекарственных препаратов группы цефалоспоринов, относящихся к β-лактамным антибиотикам в конжаковой камеди при 25°С в течение 15 минут. Выход микрокапсул составляет более 90%.
Необходимая для микрокапсулирования конжаковая камедь была промышленного производства под торговым названием конжак cercon и конжак гум 3600.
ПРИМЕР 1 Получение микрокапсул цефотаксима в конжаке cerocon в толуоле, соотношение 1:3
К 6 г 5% раствора конжака cerocon в толуоле добавляют 0,01 г Е472 с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 0,1 г порошка цефотаксима растворяют в 1 мл диметилформамида и переносят в раствор конжака cerocon в толуоле. После образования цефотаксимом самостоятельной твердой фазы очень медленно по каплям добавляют 3 мл карбинола, а затем 1 мл дистиллированной воды. Полученную суспензию микрокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают ацетоном, сушат в эксикаторе над хлористым кальцием.
Получено 0,38 г белого порошка. Выход составил 94%.
ПРИМЕР 2 Получение микрокапсул цефотаксима в конжаке гум 3600 в толуоле, соотношение 1:3
К 6 г 5% раствора конжака гум 3600 в толуоле добавляют 0,01 г Е472 с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 0,1 г порошка цефотаксима растворяют в 1 мл диметилформамида и переносят в раствор конжака гум 3600 в толуоле. После образования цефотаксимом самостоятельной твердой фазы очень медленно по каплям добавляют 3 мл карбинола, а затем 1 мл дистиллированной воды. Полученную суспензию микрокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают ацетоном, сушат в эксикаторе над хлористым кальцием.
Получено 0,36 г белого с кремовым оттенком порошка. Выход составил 91%.
ПРИМЕР 3 Получение микрокапсул цефтриаксона в конжаке cerocon в толуоле, соотношение 1:3
К 6 г 5% раствора конжака cerocon в толуоле добавляют 0,01 г Е472 с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 0,1 г порошка цефтриаксона растворяют в 1 мл диметилформамида и переносят в раствор конжака cerocon в толуоле. После образования цефтриаксоном самостоятельной твердой фазы очень медленно по каплям добавляют 3 мл карбинола, а затем 1 мл дистиллированной воды. Полученную суспензию микрокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают ацетоном, сушат в эксикаторе над хлористым кальцием.
Получено 0,38 г белого порошка. Выход составил 95%.
ПРИМЕР 4 Получение микрокапсул цефтриаксона в конжаке гум 3600 в толуоле, соотношение 1:3
К 6 г 5% раствора конжака гум 3600 в толуоле добавляют 0,01 г Е472 с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 0,1 г порошка цефтриаксона растворяют в 1 мл диметилформамида и переносят в раствор конжака гум 3600 в толуоле. После образования цефтриаксоном самостоятельной твердой фазы очень медленно по каплям добавляют 3 мл карбинола, а затем 1 мл дистиллированной воды. Полученную суспензию микрокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают ацетоном, сушат в эксикаторе над хлористым кальцием.
Получено 0,38 г белого с кремовым оттенком порошка. Выход составил 96%.
ПРИМЕР 5 Получение микрокапсул цефазолина в конжаке cerocon в толуоле, соотношение 1:3
К 6 г 5% раствора конжака cerocon в толуоле добавляют 0,01 г Е472 с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 0,1 г порошка цефазолина растворяют в 1 мл диметилформамида и переносят в раствор конжака cerocon в толуоле. После образования цефазолина самостоятельной твердой фазы очень медленно по каплям добавляют 3 мл карбинола, а затем 1 мл дистиллированной воды. Полученную суспензию микрокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают ацетоном, сушат в эксикаторе над хлористым кальцием.
Получено 0,35 г белого порошка. Выход составил 88%.
ПРИМЕР 6 Получение микрокапсул цефазолина в конжаке гум 3600 в толуоле, соотношение 1:3
К 6 г 5% раствора конжака гум 3600 в толуоле добавляют 0,01 г Е472 с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 0,1 г порошка цефазолина растворяют в 1 мл диметилформамида и переносят в раствор конжака гум 3600 в толуоле. После образования цефазолином самостоятельной твердой фазы очень медленно по каплям добавляют 3 мл карбинола, а затем 1 мл дистиллированной воды. Полученную суспензию микрокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают ацетоном, сушат в эксикаторе над хлористым кальцием.
Получено 0,35 г белого с кремовым оттенком порошка. Выход составил 87%.
ПРИМЕР 7 Получение микрокапсул цефепима в конжаке cerocon в толуоле, соотношение 1:3
К 6 г 5% раствора конжака cerocon в толуоле добавляют 0,01 г Е472 с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 0,1 г порошка цефепима растворяют в 1 мл диметилформамида и переносят в раствор конжака cerocon в толуоле. После образования цефазолина самостоятельной твердой фазы очень медленно по каплям добавляют 3 мл карбинола, а затем 1 мл дистиллированной воды. Полученную суспензию микрокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают ацетоном, сушат в эксикаторе над хлористым кальцием.
Получено 0,39 г белого порошка. Выход составил 98%.
ПРИМЕР 8 Получение микрокапсул цефепима в конжаке гум 3600 в толуоле, соотношение 1:3
К 6 г 5% раствора конжака гум 3600 в толуоле добавляют 0,01 г Е472 с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 0,1 г порошка цефепима растворяют в 1 мл диметилформамида и переносят в раствор конжака гум 3600 в толуоле. После образования цефазолином самостоятельной твердой фазы очень медленно по каплям добавляют 3 мл карбинола, а затем 1 мл дистиллированной воды. Полученную суспензию микрокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают ацетоном, сушат в эксикаторе над хлористым кальцием.
Получено 0,39 г белого с кремовым оттенком порошка. Выход составил 97%.
Получены микрокапсулы лекарственных препаратов группы цефалос-поринов, относящихся к β-лактамным антибиотикам, в конжаковой камеди физико-химическим методом осаждения нерастворителем с использованием карбинола и толуола в качестве нерастворилелей. Процесс прост в исполнении и длится в течение 15 минут, не требует специального оборудования.
Конжаковая камедь широко применяется в фармацевтической промышленности в препаратах для похудания и регулирования стула, в качестве связующего в таблетках.
Предложенная методика пригодна для фармацевтической промышленности вследствие минимальных потерь, быстроты, простоты получения и выделения микрокапсул цефалоспоринов, относящихся к β-лактамным антибиотикам, в конжаковой камеди.

Claims (1)

  1. Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в толуоле, характеризующийся тем, что в качестве оболочки микрокапсул используют конжаковую камедь, при этом к 6 г 5% раствора конжака в толуоле добавляют 0,01 г Е472 с в качестве поверхностно-активного вещества, а 0,1 г порошока антибиотика группы цефалоспоринов растворяют в 1 мл диметилформамида и переносят его в раствор конжака в толуоле, после образования антибиотиком самостоятельной твердой фазы очень медленно по каплям добавляют 3 мл карбинола и 1 мл дистиллированной воды, полученную суспензию микрокапсул отфильтровывают, промывают ацетоном и сушат, процесс получения микрокапсул осуществляется при температуре 25°С без специального оборудования.
RU2012120735/15A 2012-05-18 2012-05-18 Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в толуоле RU2525158C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012120735/15A RU2525158C2 (ru) 2012-05-18 2012-05-18 Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в толуоле

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012120735/15A RU2525158C2 (ru) 2012-05-18 2012-05-18 Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в толуоле

Publications (2)

Publication Number Publication Date
RU2012120735A RU2012120735A (ru) 2013-11-27
RU2525158C2 true RU2525158C2 (ru) 2014-08-10

Family

ID=49624928

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012120735/15A RU2525158C2 (ru) 2012-05-18 2012-05-18 Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в толуоле

Country Status (1)

Country Link
RU (1) RU2525158C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2630609C1 (ru) * 2016-02-24 2017-09-11 Александр Александрович Кролевец Способ получения нанокапсул унаби в агар-агаре

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU676316A1 (ru) * 1978-03-24 1979-07-30 Киевский Ордена Ленина Государственный Университет Им.Т.Г.Шевченко Способ получени микрокапсул
RU2098121C1 (ru) * 1990-02-13 1997-12-10 Такеда Кемикал Индастриз, Лтд. Микрокапсула для длительного высвобождения физиологически активного пептида
RU2134967C1 (ru) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды
RU2139046C1 (ru) * 1994-11-22 1999-10-10 Бракко Рисерч С.А. Микрокапсулы, способ изготовления и их применение

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU676316A1 (ru) * 1978-03-24 1979-07-30 Киевский Ордена Ленина Государственный Университет Им.Т.Г.Шевченко Способ получени микрокапсул
RU2098121C1 (ru) * 1990-02-13 1997-12-10 Такеда Кемикал Индастриз, Лтд. Микрокапсула для длительного высвобождения физиологически активного пептида
RU2139046C1 (ru) * 1994-11-22 1999-10-10 Бракко Рисерч С.А. Микрокапсулы, способ изготовления и их применение
RU2134967C1 (ru) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Е472с-Эфиры лимонной кислоты моно- и диглицеридов жирных кислот. Перечень данных [он-лайн] 07.08.2010 [Найдено 28.11.2013] " найдено из Интернет: URL:http://edobavki.info/?q=node/266 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2630609C1 (ru) * 2016-02-24 2017-09-11 Александр Александрович Кролевец Способ получения нанокапсул унаби в агар-агаре

Also Published As

Publication number Publication date
RU2012120735A (ru) 2013-11-27

Similar Documents

Publication Publication Date Title
RU2491939C1 (ru) Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в хлороформе
RU2550918C1 (ru) Способ получения нанокапсул антибиотиков в геллановой камеди
RU2561586C1 (ru) Способ получения микрокапсул биопага-д в пектине
RU2550950C1 (ru) Способ получения нанокапсул биопага-д
RU2555824C1 (ru) Способ получения микрокапсул сухого экстракта топинамбура в пектине
RU2500404C2 (ru) Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в интерфероне
RU2502510C1 (ru) Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в четыреххлористом углероде
RU2563618C2 (ru) Способ получения микрокапсул биопага-д в пектине
RU2550932C1 (ru) Способ получения нанокапсул цефалоспориновых антибиотиков в ксантановой камеди
RU2550919C1 (ru) Способ получения нанокапсул антибиотиков в каррагинане
RU2605614C1 (ru) Способ получения нанокапсул сухого экстракта топинамбура
RU2525158C2 (ru) Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в толуоле
RU2517214C2 (ru) Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в бутиловом спирте
RU2634256C2 (ru) Способ получения нанокапсул сухого экстракта топинамбура
RU2514113C2 (ru) Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди
RU2640490C2 (ru) Способ получения нанокапсул сухого экстракта топинамбура в геллановой камеди
RU2555466C2 (ru) Способ биоинкапсуляции
RU2555472C2 (ru) Способ получения микрокапсул антиоксидантов в пектине
RU2595825C1 (ru) Способ получения нанокапсул иодида калия в пектине
RU2564890C1 (ru) Способ получения нанокапсул антибиотиков в конжаковой камеди
RU2580613C1 (ru) Способ получения нанокапсул антибиотиков в агар-агаре
RU2564898C1 (ru) Способ получения нанокапсул антибиотиков
RU2573979C1 (ru) Способ получения нанокапсул антибиотиков в агар-агаре
RU2547560C2 (ru) Способ получения микрокапсул лекарственных препаратов группы пенициллинов в альгинате натрия, обладающих супрамолекулярными свойствами
RU2561683C1 (ru) Способ получения нанокапсул цефалоспориновых антибиотиков в альгинате натрия

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140823