RU2524674C2 - Технология управления мощностью исходящего соединения - Google Patents

Технология управления мощностью исходящего соединения Download PDF

Info

Publication number
RU2524674C2
RU2524674C2 RU2012123991/07A RU2012123991A RU2524674C2 RU 2524674 C2 RU2524674 C2 RU 2524674C2 RU 2012123991/07 A RU2012123991/07 A RU 2012123991/07A RU 2012123991 A RU2012123991 A RU 2012123991A RU 2524674 C2 RU2524674 C2 RU 2524674C2
Authority
RU
Russia
Prior art keywords
base station
sinr
determining
mobile station
power
Prior art date
Application number
RU2012123991/07A
Other languages
English (en)
Other versions
RU2012123991A (ru
Inventor
Жунчжэнь ЯН
Хуцзюнь ИНЬ
Апостолос ПАПАТАНАССИУ
Ян-Сок ЦОЙ
Вэй ГУАНЬ
Original Assignee
Интел Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Интел Корпорейшн filed Critical Интел Корпорейшн
Publication of RU2012123991A publication Critical patent/RU2012123991A/ru
Application granted granted Critical
Publication of RU2524674C2 publication Critical patent/RU2524674C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/246TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter calculated in said terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/247TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter sent by another terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Abstract

Изобретение относится к технике беспроводной связи и может быть использовано для определения мощности передачи. Способ управления мощностью исходящего соединения заключается в том, что на обслуживающей базовой станции получают информацию (NI) об уровне взаимных помех и шума от, по меньшей мере, одной соседней базовой станции, получают запрос от мобильной станции на определение формулы вычисления для определения расчетного значения соотношения уровня сигнала к уровню взаимных помех и шума (SINRTarget), определяют и передают на мобильную станцию коэффициент регулирования, включающий, в том числе, определение формулы вычисления для определения SINRTarget, получают сигнал от, по меньшей мере, одной антенны мобильной станции, мощности передачи сигнала исходящего соединения от, по меньшей мере, одной антенны, вычисленной мобильной станцией с использованием коэффициента регулирования. Технический результат - уменьшение взаимных помех, оказываемых на другие базовые станции. 3 н. и 9 з.п. ф-лы, 8 ил., 2 табл.

Description

Область техники
Объект настоящего изобретения, раскрытый в данном документе, относится, в целом, к технологии определения мощности передачи беспроводного сигнала.
Уровень техники
В случае беспроводных сетей, OFDM/OFDMA с множественным вводом/выводом (MIMO) является ключевой технологий для широкополосных мобильных сетей следующего поколения. Управление мощностью исходящего соединения является исключительно важной составной частью MIMO OFDM/OFDMA. Управление мощностью исходящего соединения касается балансировки производительности соединения с мощностью аккумулятора терминала, и уменьшения внутриканальной помехи в исходящем соединении между базовыми станциями. Увеличение мощности передачи одной из мобильных станций увеличивает производительность ее соединения, но и увеличивает взаимные помехи с другими мобильными станциями, связанными с соседними базовыми станциями, поскольку они используют один и тот же канал, что, в результате, уменьшает производительность соединения у других мобильных станций. Таким образом, выбор уровня мощности исходящего соединения является важным для балансировки конкретного соединения и взаимных помех, оказываемых на другие базовые станции.
Существующие схемы управления мощностью основаны на управлении мощностью исходящего соединения для единственной антенны в мобильной станции и не учитывают работу исходящего соединения MIMO. Работа исходящего соединения MIMO может быть реализована как однопользовательский MIMO (SU-MIMO) с использованием более чем одной передающей антенны мобильной станции. Работа исходящего соединения MIMO также может быть реализована как MU-MIMO (известная как магистральная многопользовательская технология MIMO), позволяющая одновременную передачу по исходящему соединению для двух или более мобильных станций, использующих одинаковую частоту и временные ресурсы, и каждая мобильная станция может использовать одну или более передающих антенн.
Краткое описание чертежей
Варианты осуществления настоящего изобретения, проиллюстрированные на сопроводительных чертежах, являются примером и не ограничивают настоящее изобретение. Одинаковые ссылочные позиции на чертежах относятся к сходным или одинаковым элементам.
Фиг.1 является блок-схемой обмена информацией между базовой станцией и мобильной станцией в режиме управления мощностью без обратной связи (OLPC) согласно варианту осуществления настоящего изобретения.
Фиг.2 является блок-схемой обмена информацией между базовой станцией и мобильной станцией в режиме управления мощностью с обратной связью (CLPC) согласно варианту осуществления настоящего изобретения.
Фиг.3 является блок-схемой примерного процесса, который может быть использован мобильной станцией для определения мощности передачи в режиме управления мощностью без обратной связи (OLPC) согласно варианту осуществления настоящего изобретения.
Фиг.4 является блок-схемой примерного процесса, который может быть использован мобильной станцией для определения мощности передачи в режиме управления мощностью с обратной связью (CLPC) согласно варианту осуществления настоящего изобретения.
Фиг.5 является примером модели виртуальной соты согласно варианту осуществления настоящего изобретения.
Фиг.6 является графиком функции совокупной плотности (CDF) пропускной способности для пользователя.
Фиг.7A является графиком, на котором показаны кривые для некоторых результатов моделирования.
Фиг.7B является графиком, на котором показаны взаимные помехи при терморегулировании для некоторых результатов моделирования.
Подробное описание
В данном документе ссылки на "вариант осуществления" или "один вариант осуществления" означают, что конкретный признак, конструкция или особенность, описанная для варианта осуществления, могут быть использованы, в, по меньшей мере, одном варианте осуществления настоящего изобретения. Таким образом, фразы "в одном варианте осуществления" или "в варианте осуществления", которые могут встретиться в разных местах при описании изобретения, не означают, что они относятся к одному и тому же варианту осуществления. Кроме того, конкретные признаки, конструктивные особенности или характеристики могут быть объединены в одном или более вариантах осуществления.
Варианты осуществления настоящего изобретения могут быть использованы для различных применений. Некоторые варианты осуществления настоящего изобретения могут быть использованы в связке с различными устройствами и системами, например, передатчиком, приемником, трансивером, приемопередатчиком, станцией беспроводной связи, устройством беспроводной связи, точкой беспроводного доступа (АР), беспроводным модемом, персональным компьютером (PC), мобильным компьютером, переносным компьютером, планшетным компьютером, сервером, миниатюрным компьютером или устройством, персональным цифровым секретарем (PDA), сетью, беспроводной сетью, локальной сетью (LAN), беспроводной локальной сетью (WLAN), городской сетью (MAN), глобальной сетью (WAN), беспроводной глобальной сетью (WWAN), устройствами или сетями, работающими в соответствии с уже существующими протоколами IEEE 802.11, 802.11а, 802.11b, 802.11е, 802.11g, 802.11h, 802.11i, 802.11n, 802.16d, 802.16e, 802.16m, или стандартами 3GPP и/или будущими версиями и/или их производными и/или версиями LTE для вышеописанных стандартов, персональной сетью (PAN), беспроводной персональной сетью (WPAN), модулями или устройствами, являющимися частью вышеприведенных WLAN и/или PAN и/или WPAN, однонаправленными или двунаправленными системами связи, системами сотовой радиотелефонии, сотовым телефоном, беспроводным телефоном, устройством для комплекта персональной связи (PCS), устройством PDA со встроенным устройством беспроводной связи, устройством или трансивером с множественным вводом/выводом (MIMO), устройством или трансивером с единственным вводом и множественным выводом (SIMO), устройством или трансивером с множественным вводом и единственным выводом (MISO), устройством или трансивером со множественной цепью приема (MRC), устройством или трансивером, использующим технологию "адаптивной антенной решетки" или технологию использования множества антенн и т.п. Некоторые варианты осуществления настоящего изобретения могут быть использованы в связке с одним или более типов устройств и/или систем беспроводной связи, например, радиочастотной (RF), инфракрасной (IR), с частотным уплотнением каналов (FDM), с мультиплексированием с ортогональным частотным разделением каналов (OFDM), со множественным доступом с ортогональным частотным разделением каналов (OFDMA), с мультиплексной передачей с временным разделением (TDM), с многостанционным доступом с временным разделением каналов (TDMA), с усовершенствованным многостанционным доступом с временным разделением каналов (E-TDMA), службой пакетной передачи данных (GPRS), усовершенствованной службой пакетной передачи данных (E-GPRS), коллективный доступ с кодовым разделением каналов (CDMA), широкополосный коллективный доступ с кодовым разделением каналов (WCDMA), CDMA 2000, модуляцию множества несущих (MDM), дискретную многотональную модуляцию (DMT), Bluetooth (RTM), ZigBee (ТМ) и т.п. Варианты осуществления настоящего изобретения могут быть использованы и в других различных устройствах системах и/или сетях. IEEE 802.11х может относится к уже существующим стандартам IEEE 802.11, включающим с себя, но этим не ограниченным, IEEE 802.11а, 802.11b, 802.11e, 802.g, 802.11h, 802.11i и 802.11n, а также к любой из планируемых версий IEEE 802.16е и IEEE 802.16m.
В некоторых вариантах осуществления предложены технологии управления мощностью исходящего соединения (ULPC), которые могут поддерживать разные схемы передачи с множественным вводом/выводом (MIMO) как для управления мощностью без обратной связи, так и с обратной связью. В некоторых вариантах изобретения предложены технологии ULPC, основанные на принципе максимальной спектральной эффективности (SE) исходящего соединения. В некоторых вариантах осуществления поддерживается работа разных мобильных станций, использующих разные схемы передачи для исходящего соединения с множественным вводом/выводом (MIMO) и разными передающими (Tx) антеннами. Варианты осуществления настоящего изобретения могут быть применены к технологиям и продуктам, основанным на OFDMA следующего поколения, например, но они этим не ограничены, IEEE 802.16e, IEEE 802.16m, 3GPP LTE, а также 3GPP2 UMB, для существенного увеличения спектральной эффективности исходящего соединения посредством управления взаимным влиянием и согласованием между спектральной эффективностью исходящего соединения для пользователя, находящегося на границе соты, и средней спектральной эффективностью исходящего соединения.
В различных вариантах осуществления изобретения при использовании MU-SIMO, для вычисления соотношения (SINR) сигнал/шум с учетом взаимного влияния уровня сигнала и уровня помех может быть использована следующая формула:
SINRTarget=γ×SIRDL
Переменную у используют для управления взаимными помехами. Если соседние сектора имеют больший процент при выборе MU-MIMO, значение γ может быть уменьшено для снижения взаимных помех в сети и максимизации общей спектральной эффективности. β является значением коррекции для достижения максимальной спектральной эффективности и может быть выражено как:
β = 1 N r
Figure 00000001
, где Nr является количеством приемных антенн базовой станции.
Однако β может иметь и другие значения. В различных вариантах осуществления настоящего изобретения, когда мобильная станция переключается между SU-MIMO и MU-MIMO, может быть использована одна и та же мощность Тх (передачи).
В различных вариантах осуществления можно управлять взаимными помехами в сети, что обеспечивает хорошее согласование между общей спектральной эффективностью системы и пользователем, находящимся на границе соты, а также поддержку разных исходящих соединений для SU-MIMO и MU-MIMO в рамках одной схемы управления.
На фиг.1 изображена блок-схема обмена информацией между базовой станцией и мобильной станцией в режиме управления мощностью без обратной связи (OLPC) согласно варианту осуществления настоящего изобретения. Базовая станция 102 может принять информацию, такую как уровень взаимных помех и шума (NI) от соседней базовой станции (не показана) с использованием сети (не показана), как обратную транзитную информацию в сети, но изобретение этим не ограничено. Базовая станция 102 может осуществлять широковещательную передачу или однонаправленную передачу на мобильную станцию 104 коэффициента γ регулирования, SINRMIN, а также информации NI частотного разделения, присвоенного мобильной станции. Коэффициент γ регулирования представляет собой коэффициент регулирования равнодоступности и взаимных помех от термального шума (IoT). Коэффициент γ регулирования может быть определен базовой станцией с использованием методологии поставщика оборудования. Например, если соседние сектора имеют больший процент при выборе MU-MIMO, коэффициент γ регулирования может быть уменьшен для сокращения взаимных помех в сети и максимизации общей спектральной эффективности. Например, когда базовая станция получила информацию о том, что соседние базовые станции испытывают большие взаимные помехи, коэффициент γ регулирования может быть уменьшен. В противном случае, может быть использован тот же самый уровень или он может быть увеличен.
SINRMIN представляет требования к соотношению уровня сигнала к уровню помех (SINR) для минимальной скорости передачи данных, ожидаемой базовой станцией, и описан в уравнении (b), приведенном далее.
Базовая станция 102 принимает решение о широковещательной или однонаправленной передаче коэффициента урегулирования, SINRMIN и NI на мобильную станцию так, как это описано в предварительном проекте стандарта IEEE 802.16m Draft Standard (Dl) (2009). Принятие решения о широковещательной или однонаправленной передаче может быть сделано базовой станцией 102 с использованием методологии поставщика оборудования. Базовая станция 102 может выбрать период широковещательной или однонаправленной передачи.
После того как мобильная станция 104 примет коэффициент γ регулирования, SINRMIN и NI от базовой станции 102, мобильная станция 104 может использовать формулу вычисления регулирования мощности передачи OLPC, приведенную в уравнении (a), для определения мощности передачи каждой поднесущей для каждой антенны:
P ( d B m ) = L + S I N R T arg e t + N I ( a )
Figure 00000002
где:
Р является уровнем ТХ мощности (дБм) каждой поднесущей от каждой передающей (Тх) антенны. Коэффициент усиления антенны Тх мобильной станции может быть разложен на определения P. Для мобильных станций, совместимых с предварительным проектом стандарта IEEE 802.16m Draft Standard (D1) (2009), уровень мощности Р определяют для каждого потока.
L является оценкой текущей средней потери на распространение для исходящего соединения, которая учитывает коэффициент усиления антенны Тх мобильной станции и потери в тракте передачи, но может не включать в себя коэффициент усиления антенны Rx базовой станции. L может быть определена мобильной станцией на основе сигнализации входящего соединения. Ввиду обратимости канала, измеренные средние потери в тракте передачи для входящего соединения могут быть использованы для оценки средних потерь в тракте передачи для исходящего соединения.
SINRTarget вычисляют на основе уравнения (b), приведенного ниже.
NI является оцененным средним уровнем мощности (дБм) помех и взаимного влияния для каждой поднесущей в базовой станции и может не учитывать коэффициент усиления антенны Rx базовой станции. Технологии для определения уровня помех и взаимного влияния хорошо известны и описаны, например, в разделах 8.3.7.4.2, 8.4.10.3.2., 8.4.11.3, 8.4.3.19 и 8.3.9.3. стандарта IEEE 802.16 Rev2/D7 (Октябрь 2008 г.). В различных вариантах осуществления целевое соотношение уровня сигнала к уровню помех (SINR) может быть реализовано по стандартам IEEE 802.16e и IEEE 802.16m с использованием следующего уравнения:
S I N R T arg e t = 10 log 10 ( max ( 10 ( S I N R M I N 10 ) , γ × S I N R D L 1 N r ) ) ( b )
Figure 00000003
где:
SINRMIN является требованием к SINR для минимальной скорости передачи данных, ожидаемой базовой станцией. В различных вариантах осуществления SINRMIN определяет базовая станция, используя технологии поставщика оборудования.
Nr является количеством принимающих антенн базовой станции.
SINRdL является соотношением полезного сигнала входящего соединения к мощности взаимных помех входящего соединения, измеренного мобильной станцией. SINRdL может быть выбран базовой станцией, используя технологии поставщика оборудования. В различных вариантах осуществления поддерживается многорежимная работа сети связи по стандарту IEEE 802.16m и связь по стандарту IEEE 802.16e предыдущего поколения. При использовании управления мощностью без обратной связи для управления мощностью передачи мобильной станции, мощность каждой поднесущей каждой передающей (Тх) антенны для передачи по исходящему соединению пакетов исходящего соединения может быть установлена в соответствии с уравнением (c):
P ( d B m ) = L + S I N R T arg e t + N I + O f f s e t _ A M S p e r A M S + O f f s e t _ A B S p e r A M S ( c )
Figure 00000004
где:
P является уровнем ТХ мощности (дБм) каждой поднесущей от одной передающей антенны для текущей передачи. Для мобильных станций, совместимых с предварительным проектом стандарта IEEE 802.16m Draft Standard (D1) (2009), уровень мощности P определяют для каждого потока.
L является оценкой текущей средней потери на распространение и включает в себя коэффициент усиления антенны Тх AMS и потери в тракте передачи. Термин AMS относится к Усовершенствованной Мобильной Станции, описанной в предварительном проекте стандарта IEEE 802.16m Draft Standard (Dl) (2009), но, несмотря на это, значение L может быть определено для любой мобильной станции так, как это описано в стандарте IEEE 802.16e. Значение L может быть определено на основе общей мощности активных поднесущих заголовка кадра со ссылкой на параметр BS_EIRP, отправляемый усовершенствованной базовой станцией. При управлении мощностью без обратной связи, значение L может быть определено мобильной станцией. Например, значение L может быть определено мобильной станцией для управления мощностью без обратной связи измерением общей мощности входящего соединения, полученной для заголовка, и использованием параметра BS_EIRP, отправленного базовой станцией. Например, значение L может быть оценено посредством симметрии канала: L=BS_EIRP-RSS, где RSS является Уровнем Принятого Сигнала для принятого заголовка.
SINRTarget является расчетным значением SINR для исходящего соединения, принятого усовершенствованной базовой станцией (ABS) и которое описано в уравнении (d), приведенном далее. ABS, например, описана в предварительном проекте стандарта IEEE 802.16m Draft Standard (D1) (2009). Однако расчетное значение SINR может соответствовать таковому, принимаемому базовыми станциями, совместимыми со стандартом IEEE 802.16e.
NI является оцененным средним уровнем мощности (дБм) помех и взаимного влияния для каждой поднесущей в ABS и не включает в себя коэффициент усиления антенны Rx ABS.
Offset_AMSperAMS является поправочным членом для коррекции мощности, определенным для конкретной AMS. Данное значение может быть отрегулировано AMS и его начальная величина может быть равна нулю. В предварительном проекте стандарта IEEE 802.16m Draft Standard (D1) (2009) определение значения Offset_AMSperAMS описано в отношении "Offset_SSperSS", а также в Разделе 8.4.10.3.2, "пассивное управление мощностью UL без обратной связи" и "активное управление мощностью UL без обратной связи ".
Offset_ABSperAMS также является поправочным членом для коррекции мощности, определенным для конкретной AMS. Данное значение может быть отрегулировано ABS посредством сообщений управления мощностью. Определение Offset_ABSperAMS может быть сделано ABS. ABS имеет определенную гибкость для выбора значения с использованием технологий поставщика оборудования. Когда мобильная станция осуществляет соединение с сетью, мобильная станция 104 может согласовать, какую использовать формулу для вычисления SINRTarget. Выбранная формула вычисления SINRTarget может быть сигнализирована посредством сообщения управления мощностью. В различных вариантах осуществления могут быть выбраны два режима. Для режимов 1 и 2 SINRTarget определяют как:
S I N R T arg e t = { C / N 10 log 10 ( R ) , mod e 1 S I N R O P T , mod e 2 ( d )
Figure 00000005
где
C/N является нормализованным соотношением сигнал/шум для интенсивности модуляции/FEC текущей передачи. Определение C/N может быть сделано в соответствии с таблицей 514 из раздела 8.4.10.3 документа IEEE 802.16-2009.
R является числом повторений интенсивности модуляции/FEC. Определение C/N может быть сделано в соответствии с таблицей 514 из раздела 8.4.10.3 документа IEEE 802.16-2009.
SINROPT является расчетным значением SINR для управления IoT и обеспечивает компромисс между общей пропускной способностью системы и производительностью на границе соты. Значение SINROPT может быть определено с использованием следующей формулы:
S I N R O P T = 10 log 10 ( max ( 10 ( S I N R M I N 10 ) , γ × S I N R D L 1 N r ) )
Figure 00000006
где
SINRMIN является требованием к SINR для минимальной скорости передачи данных, ожидаемой ABS и может быть установлено посредством сообщения управления мощностью. В различных вариантах осуществления SINRMIN является 4-битным полем и представляет собой значение, измеряемое в дБ, из следующего списка {-3, -2.5, -2, -1.5, -1, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}. Выбор SINRMIN может быть сделан с использованием технологии поставщика оборудования.
γ представляет собой равнодоступность и коэффициент регулирования IoT, который может быть выбран ABS и устанавливается посредством сообщения управления мощностью. В различных вариантах осуществления γ является 4-х битным полем и представляет собой значение из следующего списка {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5}. Выбор γ может быть сделан с использованием технологии поставщика оборудования.
SINRDL представляет соотношение уровня сигнала к уровню помех для сигнала входящего соединения и измеренного AMS. Определение SINRDL может быть сделано посредством технологии, описанной в разделе 8.4.11.1 документа IEEE 802.16-2009.
Nr является количеством принимающих антенн ABS.
На фиг.2 показана блок-схема обмена информацией между базовой станций и мобильной станцией для режима управления мощностью с обратной связью в соответствии с вариантом осуществления. Базовая станция 202 может не осуществлять широковещательную передачу γ, SINRMIN и NI на мобильную станцию 204. Вместо этого, мобильная станция 204 сообщает базовой станции 202 соотношение полезного сигнала входящего соединения и мощности взаимных помех входящего соединения (SIRDL), измеренного мобильной станцией 204, и базовая станция 202 может определить мощность передачи исходящего соединения для мобильной станции 204. В различных вариантах осуществления мобильная станция 204 измеряет SIRDL на основе мощности заголовка сигнала входящего соединения и сообщает SIRDL базовой станции 202. После приема базовой станцией 202 от мобильной станции 204 информации о потерях в тракте передачи базовая станция 202 определяет уровень мощности исходящего соединения для мобильной станции 204 посредством нижеописанной процедуры.
(1) Измерение потерь в тракте передачи, основанное на ранее переданных мобильной станцией значений SIRDL на базовую станцию. Определение потерь в тракте передачи из значения SIRDL может быть сделано базовой станцией на основе мощности принятого сигнала сообщения и мощности AMS Тх. Например, потери в тракте передачи могут быть определены с использованием следующей формулы: P_dB(AMS Тх Power)-P_dB(received power). В противоположность этому, определение оцененной средней потери (L) на распространение для текущего исходящего соединения может быть сделано измерением значения потерь в тракте передачи для входящего соединения.
(2) Вычисление, на основе SIRDL и информации о потерях в тракте передачи, мощности передачи мобильной станции в соответствии с уравнениями (a) или (c). Информацию о потерях в тракте передачи подставляют в качестве значения L в уравнениях (a) и (c).
(3) Однонаправленная передача уровня мощности на мобильную станцию 204. В различных вариантах осуществления, сообщения, описанные в разделе 8.4.11.1 документа IEEE 802.16-2009, могут быть использованы для передачи SIRdL и уровня мощности.
На фиг.3 показана блок-схема обмена информацией между базовой станций и мобильной станцией для режима управления мощностью без обратной связи (OLPC) в соответствии с вариантом осуществления.
Блок 302 включает в себя обмен информацией между соседними базовыми станциями об уровне помех и взаимного влияния. В различных вариантах осуществления оператор службы беспроводного доступа может выбрать, какая базовая станция является соседней на основе плана и расположенных на нем базовых станций. Например, сеть, такая как обратная сеть, может быть использована для обмена информацией.
Блок 304 включает в себя передачу базовой станцией коэффициента γ регулирования и значения SINRMIN на мобильную станцию, а также значения помех и взаимного влияния частотного разбиения, присвоенных мобильной станции. Например, базовая станция может передать коэффициент γ регулирования, SINRMIN, и значения помех и взаимного влияния посредством широковещательной или однонаправленной передачи. Базовая станция может выбрать период широковещательной или однонаправленной передачи. Базовая станция может определить коэффициент γ регулирования, SINRMIN, используя технологии, определенные поставщиком оборудования.
Блок 306 включает в себя определение мобильной станцией уровня мощности передачи. Например, технологии определения уровня мощности передачи описаны в уравнениях (a) или (c).
Блок 308 включает в себя передачу мобильной станцией на базовую станцию сигнала по исходящему соединению с определенным уровнем мощности передачи.
На фиг.4 показана блок-схема процесса, который использует мобильная станция для определения мощности передатчика с использованием режима управления мощностью с обратной связью (CLPC) в соответствии с вариантом осуществления.
Блок 402 включает в себя измерение мобильной станцией значения SIRDL на основе мощности заголовка сигнала во входящем соединении и передачу информации базовой станции о значении SIRDL, связанного с мобильной станцией.
Блок 404 включает в себя измерение базовой станцией потерь в тракте передачи на основе ранее переданных мобильной станцией значений SIRDL. Определение потерь в тракте передачи на основе SIRDL может быть осуществлено базовой станцией на основе принятого сообщения о мощности сигнала и мощности AMS Тх.
Блок 406 включает в себя определение базовой станцией мощности передачи мобильной станции в соответствии с уравнениями (a) или (c) на основе значения SIRDL и информации о потерях в тракте передачи. Информацию о потерях в тракте передачи подставляют в качестве значения L в уравнениях (a) и (c).
Блок 408 включает в себя передачу базовой станцией на мобильную станцию уровня мощности. В последствии мобильная станция может передавать сигналы с установленным уровнем мощности.
Различные варианты осуществления могут включать в себя увеличение Тх PSD с шагом ΔPSD и определение спектральной плотности мощности Тх, PSDTX, до тех пор, пока изменение спектральной эффективности (SE) не станет отрицательным. Например, изменение SE может быть определено как разница коэффициента SE усиления в базовом (или обслуживаемом) секторе и потерях SE в соседних секторах.
Для прогнозирования потерь в соседнем секторе i может быть получена следующая первичная информация: (a) потери в канале CLi от мобильной станции до соседней базовой станции i, (b) уровень помех и взаимного влияния NIi для соседнего сектора i, и (c) плотностью мощности PSDTX,i передачи мобильной станции, использующую тот же самый канал, что и соседний сектор i.
Когда мобильная станция входит в сеть, потери в канале CLH и Cli, от мобильной станции до основной базовой станции и соседней базовой станции i, где i=1, 2, …, N, могут быть оценены посредством переданного заголовка для входящего соединения (синхронизации канала). Среди этих параметров, значение может Cli быть оценено мобильной станцией с использованием переданного заголовка для входящего соединения, отправленного базовой станцией i, a NIi должно быть значением, которым сначала обмениваются базовые станции, а затем осуществляется широкополосная передача его значения. Однако получение такой информации требует высоких накладных расходов и сложной аппаратной реализации.
Уровень (NI) помех и взаимного влияния является суммой плотности мощности и взаимного влияния, которая может быть оценена каждой базовой станцией. Значения для соседних NI (NI1, NI2, …, NIN) могут быть получены посредством обмена информацией между базовыми станциями через сеть ретрансляции или каким-либо другим образом. Начальное значение NI (NIH) может быть массово разослано базовой станцией. Взаимоотношение между NI и IoT может быть выражено как:
NI=IoT*PNoise+PNoise,
где PNoise является плотностью мощности термического шума.
Модель виртуальной соты может быть использована для прогнозирования потерь SE во всех соседних секторах. На фиг.5 показан пример модели виртуальной соты согласно варианту осуществления настоящего изобретения. Предположим, что существует виртуальная соседняя базовая станция, которая испытывает комбинированные взаимные помехи, вызываемые текущей мобильной станцией и соседними секторами 1~N. Потери в канале между мобильной станцией и данной виртуальной станцией определены величиной CLi. В этом случае может быть использовано следующее уравнение:
P S D T X , A n t C L I = i = 1 N P S D T X C L i C L I = ( i = 1 N 1 C L i ) 1 ( 2 )
Figure 00000007
Использование этих вычисленных эквивалентных потерь в канале позволяет оценить SINR заголовка входящего соединения для управления мощностью исходящего соединения, но не для каждой индивидуальной CLi.
В целом, каждая сота может использовать однопользовательский режим MIMO (SU-MIMO) или MU-MIMO. Соответственно, минимальное значение SINR (SINRMIN) определяют для четырех комбинаций: (1) основная сота использует SU-MIMO и виртуальная сота использует SU-MIMO, (2) основная сота использует MU-MIMO и виртуальная сота использует SU-MIMO, (3) основная сота использует SU-MIMO и виртуальная сота использует MU-MIMO, и (4) основная сота использует MU_MIMO и виртуальная сота использует MU_MIMO. Можно показать, что формула управления мощностью, основанная на вышеприведенной концепции, может быть унифицирована для соотношения сигнал/шум (SINR) по уравнению (b).
В случае, когда основная сота использует SU-MIMO и виртуальная сота использует SU-MIMO, коэффициент усиления SE в основном секторе для каждой мобильной станции может быть смоделирован нижеследующим образом. Предположим, что текущую спектральную плотность PSDTX,Ant мощности и плотность мощности Тх увеличивают на небольшую величину ΔPSD. Тогда новым значением плотности мощности будет являться PSDNew,Ant=PSDTX,Ant+ΔPSD и результирующим улучшенным значением SE будет:
S E G a i n = log ( 1 + N r * S I N R N e w , A n t H ) log ( 1 + N r * S I N R O r i g , A n t H ) = log ( ( 1 + N r * S I N R N e w , A n t H ) ( 1 + N r * S I N R O r i g , A n t H ) )
Figure 00000008
где
SINR является соотношением уровня сигнала к уровню шума,
S I N R N e w , A n t H
Figure 00000009
является новым значением SINR для каждой принимающей антенны после увеличения плотности спектральной мощности на величину ΔPSD,
S I N R O r i g , A n t H
Figure 00000010
является начальным значением SINR для каждой принимающей антенны, и
Nr является количеством принимающих антенн.
В целом, мгновенную оценку канала производят заранее для вычисления точного значения SINR. Однако это требует больших дополнительных расчетов, что приводит к длительной задержке. Использование медленной оценки для вычисления SINR и получаемого в результате SE усиления является важным для получения среднего по коэффициента вероятности значения. В соответствии с данными допущениями, могут быть сделаны следующие вычисления:
S I N R O r i g , A n t H = P S D T X , A n t / C L H N I H , A n t
Figure 00000011
S I N R N e w , A n t H = ( P S D T X , A n t + Δ P S D ) / C L H N I H , A n t
Figure 00000012
Коэффициент SE усиления после увеличения плотности спектральной мощности данной мобильной станции становится следующим:
S E G a i n = log ( 1 + N r * ( P S D T X + Δ P S D ) C L H * N I H , A n t 1 + N r * P S D T X , A n r C L H * N I H , A n t ) = log ( 1 + N r * Δ P S D C L H N I H , A n t + N r * P S D T X , A n r C L H )
Figure 00000013
Потери SE в виртуальном секторе могут быть выражены как:
S E L o s s I = log ( 1 + N r * S I N R O r i g , A n t I 1 + N r * S I N R N e w , A n t I ) = log ( 1 + N r * S N R I , A n t * P N o i s e , A n t N I I , A n t 1 + N r * S N R I , A n t * P N o i s e , A n t N I I , A n t + Δ P S D / C L I ) = log ( 1 + Δ P S D C L I * N I I , A n t 1 + N r * S N R I , A n t * P N o i s e , A n t N I I , A n t + Δ P S D / C L I N r * S N R I , A n t * P N o i s e , A n t N I I , A n t + Δ P S D / C L I )
Figure 00000014
Как уже было упомянуто, изменение значения SE определяют как исправление коэффициента усиления SE в основном секторе по сравнению с потерями SE для всех соседних секторов, которые могут быть приближенно выражены значением S E L o s s I
Figure 00000015
. Если увеличение плотности спектральной мощности Тх приводит к положительному изменению SE, то это должно привести к увеличению пропускной способности во всех секторах, а также к поиску большего значения плотности спектральной мощности Тх. С другой стороны, если при вычислении получено отрицательное изменение SE, то увеличение значения плотности спектральной мощности Тх не будет выгодно, и уровень начальной плотности мощности будет являться наилучшим значением. В этом отношении, наилучшей плотностью спектральной мощности будет являться уровень, когда изменение SE равно нулю при ΔPSD→0, что приводит к соотношению уровня сигнала к уровню шума по уравнению (b):
Δ S E = S E G a i n S E L o s s I = 0 ( Δ P S D 0 ) N r * Δ P S D C L H N I H , A n t + N r * P S D T X , A n t C L H = Δ P S D C L I * N I I , A n t 1 + N r * S N R I , A n t * P N o i s e , A n t N I I , A n t + Δ P S D / C L I N r * S N R I , A n t * P N o i s e , A n t N I I , A n t + Δ P S D / C L I 1 N I H , A n t + N r * P S D T X , A n t C L H = C L H / C L I 1 + N r * S I N R I , A n t S I N R I , A n t N I I , A n t N I H , A n t + N r * P S D T X , A n t C L H = ( 1 + N r * S I N R I , A n t ) * C L I C L H * N I I , A n t S I N R I , A n t P S D T X , A n t = { ( 1 + N r * S I N R I , A n t ) * C L I C L H * N I I , A n t S I N R I , A n t N I H , A n t } * C L H N r P S D T X , A n t = 1 N * { C L I * N I I , A n t * ( 1 + N r * S I N R I , A n t ) S I N R I , A n t N I H , A n t * C L H } S I N R I , A n t = P S D T X , A n t C L H * N I H , A n t = 1 N r * { C L I * N I I , A n t * ( 1 + N r * S I N R I , A n t ) S I N R I , A n t * C L H * N I H , A n t 1 } = N I I , A n t N I H , A n t * ( 1 + 1 N r * S I N R I , A n t ) * C L I C L H S I R D L 1 N r γ = γ * S I R D L 1 N r
Figure 00000016
Для гарантирования нормальной пропускной способности для пользователей, находящихся на границе соты, во всех случаях является предпочтительным ограничение минимального значения SINR (SINRMIN), что приводит к соотношению уровня сигнала и уровня помех по уравнению (b).
В случае, когда основная сота работает в режиме MU, а виртуальная сота в режиме SU, то коэффициент усиления SE соответствует коэффициенту усиления для двух пользователей и может быть выражен как:
S E G a i n = 2 * log ( 1 + N r * ( P S D T X + Δ P S D ) C L H * N I H , A n t 1 + N r * P S D T X , A n r C L H * N I H , A n t ) = log ( 1 + N r * Δ P S D C L H N I H , A n t + N r * P S D T X , A n r C L H ) 2 log ( 1 + 2 * N r * Δ P S D C L H N I H , A n t + N r * P S D T X , A n r C L H )
Figure 00000017
Поскольку режим MU-MIMO используется в основной соте, то мощность взаимных помех с виртуальной сотой также удваивают:
S E L o s s I = log ( + 1 + N r * S N R I , A n t * P N o i s e , A n t N I I , A n t 1 + N r * S N R I , A n t * P N o i s e , A n t N I I , A n t + 2 * Δ P S D / C L I ) = log ( 1 + 2 * Δ P S D C L I * N I I , A n t 1 + N r * S N R I , A n t * P N o i s e , A n t N I I , A n t + 2 * Δ P S D / C L I N r * S N R I , A n t * P N o i s e , A n t N I I , A n t + 2 * Δ P S D / C L I )
Figure 00000018
После этого, полученная оптимальная плотность спектральной мощности Тх приведет к соотношению уровня сигнала к уровню помех по уравнению (b).
Δ S E = S E G a i n S E L o s s I = 0 ( Δ P S D 0 ) 2 * N r * Δ P S D C L H N I H , A n t + N r * P S D T X , A n t C L H = 2 * Δ P S D C L I * N I I , A n t 1 + N r * S N R I , A n t * P N o i s e , A n t N I I , A n t + 2 * Δ P S D / C L I N r * S N R I , A n t * P N o i s e , A n t N I I , A n t + 2 * Δ P S D / C L I 1 N I H , A n t + N r * P S D T X , A n t C L H = C L H / C L I 1 + N r * S I N R I , A n t S I N R I , A n t N I I , A n t P S D T X , A n t = 1 N * { C L I * N I I , A n t * ( 1 + N r * S I N R I , A n t ) S I N R I , A n t N I H , A n t * C L H } S I N R H , A n t = N I I , A n t N I H , A n t * ( 1 + 1 N r * S I N R I , A n t ) * C L I C L H S I R D L 1 N r γ = γ * S I R D L 1 N r
Figure 00000019
В случае, когда основная сота работает в режиме SU, а виртуальная сота работает в режиме MU, коэффициент усиления SE является таким же, как и для случая, когда основная сота работает в режиме SU-MIMO и виртуальная сота работает в режиме SU-MIMO. Однако потери SE должны быть удвоены:
S E L o s s I = 2 * log ( + 1 + N r * S N R I , A n t * P N o i s e , A n t N I I , A n t 1 + N r * S N R I , A n t * P N o i s e , A n t N I I , A n t + Δ P S D / C L I ) = log ( 1 + N r * S N R I , A n t * P N o i s e , A n t N I I , A n t 1 + N r * S N R I , A n t * P N o i s e , A n t N I I , A n t + Δ P S D / C L I ) 2 = log ( 1 + 2 * Δ P S D C L I * N I I , A n t 1 + N r * S N R I , A n t * P N o i s e , A n t N I I , A n t + 2 * Δ P S D / C L I N r * S N R I , A n t * P N o i s e , A n t N I I , A n t + 2 * Δ P S D / C L I )
Figure 00000020
В этом случае, оптимальная плотность спектральной мощности Тх приведет к соотношению уровня сигнала к уровню помех по уравнению (b):
Δ S E = S E G a i n S E L o s s I = 0 ( Δ P S D 0 ) N r * Δ P S D C L H N I H , A n t + N r * P S D T X , A n t C L H = 2 * Δ P S D C L I * N I I , A n t 1 + N r * S N R I , A n t * P N o i s e , A n t N I I , A n t + Δ P S D / C L I N r * S N R I , A n t * P N o i s e , A n t N I I , A n t + Δ P S D / C L I 1 N I H , A n t + N r * P S D T X , A n t C L H = 2 * C L H / C L I 1 + N r * S I N R I , A n t S I N R I , A n t N I I , A n t P S D T X , A n t = 1 N * { C L I * N I I , A n t * ( 1 + N r * S I N R I , A n t ) 2 * S I N R I , A n t N I H , A n t * C L H } S I N R H , A n t = 1 2 * N I I , A n t N I H , A n t * ( 1 + 1 N r * S I N R I , A n t ) * C L I C L H S I R D L 1 N r γ = γ * S I R D L 1 N r
Figure 00000021
В случае, когда основная сота работает в режиме MU и виртуальная сота работает в режиме MU, коэффициент усиления SE одновременно соответствует двум пользователям и может быть выражен как:
S E G a i n = 2 * log ( 1 + N r * ( P S D T X + Δ P S D ) C L H * N I H , A n t 1 + N r * P S D T X , A n r C L H * N I H , A n t ) = log ( 1 + N r * Δ P S D C L H N I H , A n t + N r * P S D T X , A n r C L H ) 2 log ( 1 + 2 * N r * Δ P S D C L H N I H , A n t + N r * P S D T X , A n r C L H )
Figure 00000022
Поскольку в основной соте использован режим MU-MIMO, мощность взаимного влияния на виртуальную соту удваивается. Соответственно, потери SE также удваиваются:
S E L o s s I = 2 * log ( + 1 + N r * S N R I , A n t * P N o i s e , A n t N I I , A n t 1 + N r * S N R I , A n t * P N o i s e , A n t N I I , A n t + 2 * Δ P S D / C L I ) = log ( + 1 + N r * S N R I , A n t * P N o i s e , A n t N I I , A n t 1 + N r * S N R I , A n t * P N o i s e , A n t N I I , A n t + 2 * Δ P S D / C L I ) 2 log ( 2 * 2 * Δ P S D C L I * N I I , A n t 1 + N r * S N R I , A n t * P N o i s e , A n t N I I , A n t + 2 * Δ P S D / C L I N r * S N R I , A n t * P N o i s e , A n t N I I , A n t + 2 * Δ P S D / C L I )
Figure 00000023
Таким образом, оптимальная плотность спектральной мощности Тх приведет к соотношению уровня сигнала к уровню помех по уравнению (b):
Δ S E = S E G a i n S E L o s s I = 0 ( Δ P S D 0 ) 2 * N r * Δ P S D C L H N I H , A n t + N r * P S D T X , A n t C L H = 2 * 2 * Δ P S D C L I * N I I , A n t 1 + N r * S N R I , A n t * P N o i s e , A n t N I I , A n t + 2 * Δ P S D / C L I N r * S N R I , A n t * P N o i s e , A n t N I I , A n t + 2 * Δ P S D / C L I 1 N I H , A n t + N r * P S D T X , A n t C L H = 2 * C L H / C L I 1 + N r * S I N R I , A n t S I N R I , A n t N I I , A n t P S D T X , A n t = 1 N * { C L I * N I I , A n t * ( 1 + N r * S I N R I , A n t ) 2 * S I N R I , A n t N I H , A n t * C L H } S I N R H , A n t = 1 2 * N I I , A n t N I H , A n t * ( 1 + 1 N r * S I N R I , A n t ) * C L I C L H S I R D L 1 N r γ = γ * S I R D L 1 N r
Figure 00000024
Далее будет описана оценка различных вариантов осуществления технологий
управления мощностью с использованием результатов моделирования. Настройки для моделирования приведены в таблице 1.
Таблица 1
Настройки для моделирования на уровне системы (SLS) исходящей соединения
Параметр Значение Параметр Значение
Частота несущей (ГГц) 2.5 ГГц Расстояние БС-БС 500 м
Полоса пропускания системы 10 МГц Модель канала eITU-Ped В, 3 км/ч
Коэффициент повторного использования 1 Максимальная мощность МС (дБм) 23 дБм
Длительность кадра (заголовок+DL+UL) 5 мс Конфигурация антенны 1×2 SIMO
Количество символов OFDMA в подцикле UL 6 HARQ (Гибридная система автоматического запроса повторной передачи) Синхронная неадаптивная HARQ, с максимальным числом повторных передач, равным 4
Размер FFT (тональный сигнал) 1024 Расчетный PER 20%
Полезные тона 864 Ссылка на картографию системы RBIR
Количество логических блоков ресурсов (LRU) 48 Тип планировщика Пропорциональный равновесный планировщик
Тип LRU CRU Размер выделяемого блока ресурсов 4 LRU
Количество пользователей на сектор 10 Потери проникновения (ДБ) 20 дБ
Поддержка MU-MIMO нет Управляемые накладные издержки 25%
В Таблице 2 обобщены результаты моделирования для настроек, приведенных в таблице 1.
Таблица 2
Результаты моделирования
Значение гамма-распределения Пропускная способность сектора (Мбит/с) Пропускная способность пограничного пользователя Кбит/с) SE сектора SE пограничного пользователя
0.2 1.3865 104 0.8146 0.0611
0.4 1.5655 95.6 0.9198 0.0562
0.6 1.7056 77.2 1.002 0.0454
0.8 1.7895 58.8 1.0514 0.0345
1.0 1.8619 41.2 1.0939 0.0242
На фиг.6 показан график функции совокупной плотности (CDF) пропускной способности пользователя. На фиг.7А и 7B показаны графики кривых производительности и взаимных помех при терморегулировании для некоторых результатов моделирования в соответствии с таблицей 2.
На основе представленных результатов моделирования, различные варианты осуществления настоящего изобретения обеспечивают следующие преимущества для исходящего соединения: (1) управление взаимными помехами, и (2) компромисс между общей пропускной способностью системы и производительностью на границе соты.
Необходимо заметить, что схема управления мощностью согласно различным вариантам осуществления может удовлетворять требованиям стандарта 802.16m для пользователей, находящихся на границе соты, без существенного уменьшения средней спектральной эффективности.
Варианты осуществления настоящего изобретения могут быть реализованы любым из изложенных далее способов или их комбинацией: одним или более микрочипов или интегральными схемами, связанными между собой посредством материнской платы, аппаратной логикой, программным обеспечением, хранящимся в памяти устройства и выполняемым микропроцессором, встроенным программным обеспечением, специализированной интегральной схемой (ASIC) и/или программируемой вентильной матрицей (FPGA). Термин "логика" может включать в себя, в качестве примера, программное обеспечение или аппаратное обеспечение и/или комбинацию программного обеспечения и аппаратного обеспечения.
Варианты осуществления настоящего изобретения могут быть реализованы, например, как компьютерный программный продукт, который может включать в себя один или более считываемых компьютером носителей информации, на которых сохранены машинные команды, которые, при их выполнении машинами, такими как компьютер, сеть компьютеров или другими электронными устройствами, приведут к тому, что одна или более машин выполнит действия в соответствии с вариантами осуществления настоящего изобретения. Носитель информации включает в себя, но изобретение этим не ограничено, гибкие дискеты, оптические диски, диски CD-ROM (Компакт-Диск без возможности перезаписи) и магнитооптические диски, ROM (Постоянное Запоминающее Устройство), RAM (Оперативное Запоминающее Устройство), EPROM (Стираемое Программируемое Постоянное Запоминающее Устройство), EEPROM (Электрически Программируемая Постоянная Память), флэш-память, магнитные и оптические карты или другие типы носителей, которые могут быть считаны компьютером и могут быть использованы для хранения машинных команд.
На чертежах и в вышеизложенном описании были приведены примеры вариантов осуществления настоящего изобретения. Несмотря на то, что было показано избыточное количество функциональных элементов, специалисты в данной области техники должны оценить по достоинству, что один или более таких элементов могут быть объединены в единый функциональный элемент. И наоборот, некоторые элементы могут быть разбиты на множество функциональных элементов. Элементы из одного варианта осуществления могут быть добавлены в другой вариант осуществления. Например, порядок обработки, описанный в данном документе, может быть изменен и не ограничен приведенным в данном документе. Более того, действия в соответствии с блок-схемами не обязательно должны выполняться в показанном порядке и не все действия обязательны для выполнения. А также те действия, которые не зависят от других действий, могут быть выполнены параллельно с другими действиями. Однако объем настоящего изобретения никак не ограничен приведенными конкретными примерами. Возможны многочисленные изменения, приведенные или не приведенные в данном документе, соответствующие отличиям в конструкции, размерах или используемых материалах. Объем настоящего изобретения, по меньшей мере, полностью описан в прилагаемой формуле изобретения.

Claims (12)

1. Способ управления мощностью исходящего соединения, содержащий:
получение на обслуживающей базовой станции информации (NI) об уровне взаимных помех и шума от, по меньшей мере, одной соседней базовой станции;
получение на обслуживающей базовой станции запроса от мобильной станции на определение формулы вычисления для определения расчетного значения (SINRTarget) соотношения уровня сигнала к уровню взаимных помех и шума;
определение обслуживающей базовой станцией коэффициента регулирования, при этом коэффициент регулирования включает в себя определение формулы вычисления для определения SINRTarget, требование соотношения (SINR) уровня сигнала к уровню взаимных помех и шума для минимальной скорости передачи данных, ожидаемой базовой станцией (SINRMIN), и NI;
передачу обслуживающей базовой станцией коэффициента регулирования на мобильную станцию; и
получение на обслуживающей базовой станции сигнала от, по меньшей мере, одной антенны мобильной станции, мощности передачи сигнала исходящего соединения от, по меньшей мере, одной антенны, вычисленной мобильной станцией с использованием определенной формулы вычисления для определения SINRTarget, SINRMIN и NI, предоставленной коэффициентом регулирования, отправленным на мобильную станцию обслуживающей базовой станцией.
2. Способ по п.1, в котором мощность передачи исходящего соединения для каждой антенны определяют посредством нижеследующего уравнения:
P(dBm)=L+SINRTarget+NI,
где L является оцененными средними потерями на распространение для исходящего соединения.
3. Способ по п.2, в котором SINRTarget по меньшей мере частично определяют посредством нижеследующего уравнения:
Figure 00000025
,
где γ является коэффициентом регулирования равнодоступности и усредненного соотношения взаимного влияния к мощности теплового шума (IoT),
SINRDL является соотношением полезного сигнала входящего соединения к мощности взаимных помех для входящего соединения, измеренного мобильной станций, и
Nr является количеством принимающих антенн базовой станции, используемых для связи с мобильной станцией.
4. Способ по п.3, в котором коэффициент регулирования частично основан на уровне взаимных помех исходящего соединения соседних базовых станций.
5. Способ по п.1, в котором мощность передачи исходящего соединения для каждой антенны определяют посредством нижеследующего уравнения;
P(dBm)=L+SINRTarget+NI+Offset_AMSperAMS+Offset_ABSperAMS,
где L является оцененными средними потерями на распространение для исходящего соединения,
Offset_AMSperAMS является поправочным членом для коррекции мощности, зависящей от адаптивного переключения MIMO (AMS),
Offset_ABSperAMS является поправочным членом для коррекции мощности, зависящей от AMS.
6. Способ по п.5, в котором SINRTarget по меньшей мере частично определяют посредством нижеследующего уравнения:
S I N R T arg e t = { C / N 10 log 10 ( R ) , mod e 1 S I N R O P T , mod e 2 ,
Figure 00000026

где С/N является нормализованным соотношением сигнал/шум для интенсивности модуляции/FEC текущей передачи,
R является числом повторений интенсивности модуляции/FEC, и
SINROPT является расчетным значением SINR для управления взаимным влиянием теплового шума;
коэффициент регулирования определяет mode 1 или mode 2 для использования при вычислении SINRTarget.
7. Базовая станция, содержащая:
логическую схему для приема информации (NI) об уровне взаимных помех и шума от, по меньшей мере, одной соседней базовой станции;
логическую схему для получения запроса от мобильной станции на определение формулы вычисления для определения расчетного значения (SINRTarget) соотношения уровня сигнала к уровню взаимных помех и шума;
логическую схему для определения коэффициента регулирования, при этом коэффициент регулирования включает в себя определение формулы вычисления для определения SINRTarget, требование соотношения (SINR) уровня сигнала к уровню взаимных помех и шума для минимальной скорости передачи данных, ожидаемой базовой станцией (SINRMIN), и NI;
логическую схему для передачи коэффициента регулирования на мобильную станцию; и
логическую схему для получения сигнала, по меньшей мере, от одной антенны мобильной станции, мощности передачи сигнала исходящего соединения, по меньшей мере, от одной антенны, вычисленной мобильной станцией с использованием определенной формулы вычисления для определения SINRTarget, SINRMIN, и NI, предоставленной коэффициентом регулирования, отправленным на мобильную станцию.
8. Базовая станция по п.8, в которой уровень мощности передачи исходящего соединения определяют посредством нижеследующего уравнения:
P(dBm)=L+SINRTarget+NI, где
L является оцененными средними потерями на распространение для исходящего соединения.
9. Базовая станция по п.7, в которой мощность передачи исходящего соединения для каждой антенны определяют посредством нижеследующего уравнения:
P(dBm)=L+SINRTarget+NI+Offset_AMSperAMS+Offset_ABSperAMS, где
L является оцененными средними потерями на распространение для исходящего соединения,
Offset_AMSperAMS является поправочным членом для коррекции мощности, зависящей от адаптивного переключения MIMO (AMS), и
Offset_ABSperAMS является поправочным членом для коррекции мощности, зависящей от AMS.
10. Система управления мощностью исходящего соединения, содержащая:
по меньшей мере, одну антенну,
компьютерную систему, подключенную к, по меньшей мере, одной антенне, и компьютерная система содержит:
логическую схему для определения мощности передачи, по меньшей мере, одной антенны, при этом логическая схема для определения мощности передачи содержит логическую схему для отправления запроса на обслуживающую базовую станцию на определение формулы вычисления расчетного значения (SINRTarget) соотношения уровня сигнала к уровню взаимных помех и шума и логическую схему для получения коэффициента регулирования от обслуживающей базовой станции, причем коэффициент регулирования включает в себя определение формулы вычисления для определения SINRTarget, требование соотношения (SINR) уровня сигнала к уровню взаимных помех и шума для минимальной скорости передачи данных, ожидаемой базовой станцией (SINRTarget), и информацию (NI) об уровне взаимных помех и шума, полученную от, по меньшей мере, одной соседней базовой станции, и
логическую схему для передачи сигнала, по меньшей мере, одной антенной на основе определенной мощности передачи, в которой логическая схема для определения мощности передачи дополнительно включает в себя логическую схему для вычисления мощности передачи исходящего соединения, по меньшей мере, от одной антенны с использованием определенной формулы вычисления для определения SINRTarget, SINRTarget и NI, предоставленной коэффициентом регулирования.
11. Система по п.10, в которой логическая схема для определения мощности передачи определяет мощность передачи для каждой антенны посредством нижеследующего уравнения:
P(dBm)=L+SINRTarget+NI, где
L является потерями в тракте передачи.
12. Система по п.10, в которой логическая схема для определения мощности передачи определяет мощность передачи для каждой антенны посредством нижеследующего уравнения:
P(dBm)=L+SINRTarget+NI+Offset_AMSperAMS+Offset_ABSperAMS, где
L является потерями в тракте передачи,
Offset_AMSperAMS является поправочным членом для коррекции мощности, зависящей от адаптивного переключения MIMO (AMS), и
Offset_ABSperAMS является поправочным членом для коррекции мощности, определенным для конкретной AMS.
RU2012123991/07A 2009-11-10 2010-09-20 Технология управления мощностью исходящего соединения RU2524674C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/590,546 US8340593B2 (en) 2009-11-10 2009-11-10 Techniques to control uplink power
US12/590,546 2009-11-10
PCT/US2010/049509 WO2011059568A2 (en) 2009-11-10 2010-09-20 Techniques to control uplink power

Publications (2)

Publication Number Publication Date
RU2012123991A RU2012123991A (ru) 2013-12-20
RU2524674C2 true RU2524674C2 (ru) 2014-08-10

Family

ID=43974530

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012123991/07A RU2524674C2 (ru) 2009-11-10 2010-09-20 Технология управления мощностью исходящего соединения

Country Status (8)

Country Link
US (2) US8340593B2 (ru)
EP (1) EP2499750A4 (ru)
JP (1) JP5704468B2 (ru)
KR (2) KR101447429B1 (ru)
CN (1) CN102687415B (ru)
RU (1) RU2524674C2 (ru)
TW (1) TWI420941B (ru)
WO (1) WO2011059568A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2695797C2 (ru) * 2015-03-06 2019-07-29 Сони Корпорейшн Устройство управления связью, устройство связи, способ управления связью, способ связи и программа

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100048844A (ko) * 2008-10-31 2010-05-11 삼성전자주식회사 무선통신시스템에서 상향링크 전력 제어 장치 및 방법
US8340593B2 (en) 2009-11-10 2012-12-25 Intel Corporation Techniques to control uplink power
KR101716494B1 (ko) * 2009-11-14 2017-03-14 삼성전자주식회사 통신 시스템에서 업링크 송신 전력 제어 장치 및 방법
US9031599B2 (en) * 2009-12-08 2015-05-12 Futurewei Technologies, Inc. System and method for power control
US8515474B2 (en) * 2010-01-20 2013-08-20 Futurewei Technologies, Inc. System and method for scheduling users on a wireless network
US8918135B2 (en) * 2010-03-08 2014-12-23 Lg Electronics Inc. Method and apparatus for controlling uplink transmission power
EP2549791B1 (en) * 2010-03-17 2017-11-22 Fujitsu Limited Wireless communication system, communication control method, and base station
JP5352513B2 (ja) * 2010-03-31 2013-11-27 株式会社日立製作所 無線通信システム及びハンドオーバー制御方法
WO2012048098A1 (en) 2010-10-06 2012-04-12 Blackbird Technology Holdings, Inc. Method and apparatus for low-power, long-range networking
WO2012048118A2 (en) 2010-10-06 2012-04-12 Blackbird Technology Holdings, Inc. Method and apparatus for adaptive searching of distributed datasets
KR101713338B1 (ko) * 2010-12-23 2017-03-07 한국전자통신연구원 폐쇄형 기지국과 비가입자 단말의 운영 방법
US8774096B2 (en) 2011-03-02 2014-07-08 Blackbird Technology Holdings, Inc. Method and apparatus for rapid group synchronization
US9414327B2 (en) * 2011-06-06 2016-08-09 Alcatel Lucent Method and apparatus of fractional power control in wireless communication networks
US8929961B2 (en) 2011-07-15 2015-01-06 Blackbird Technology Holdings, Inc. Protective case for adding wireless functionality to a handheld electronic device
CN103959868B (zh) * 2011-11-12 2018-04-06 Lg电子株式会社 用于在无线通信系统中允许终端确定上行链路传输功率的方法及其装置
US8995388B2 (en) 2012-01-19 2015-03-31 Futurewei Technologies, Inc. Systems and methods for uplink resource allocation
JP5947878B2 (ja) * 2012-02-29 2016-07-06 京セラ株式会社 移動通信システム、移動通信方法、無線基地局及び無線端末
US9237529B2 (en) * 2012-03-30 2016-01-12 Blinq Wireless Inc. Method and apparatus for managing interference in wireless backhaul networks through power control with a one-power-zone constraint
US8977313B2 (en) * 2012-05-18 2015-03-10 Futurewei Technologies, Inc. Method for optimizing uplink power-control parameters in LTE
US8861443B2 (en) 2012-09-20 2014-10-14 Intel Corporation Method and apparatus for power control in full-duplex wireless systems with simultaneous transmission reception
CN103313367B (zh) * 2013-07-08 2016-08-31 东南大学 一种适用于无线局域网的上行多用户方法
FR3021825B1 (fr) * 2014-06-03 2017-09-01 Sagemcom Energy & Telecom Sas Procede de selection de dispositif nœud parent dans un reseau de communication sous forme d'arbre
FR3020532A1 (fr) * 2014-06-03 2015-10-30 Sagemcom Energy & Telecom Sas Procede de configuration d'un dispositif nœud dans un reseau de communication sous forme d'arbre implemente sur un reseau d'alimentation electrique
WO2016013889A1 (ko) * 2014-07-25 2016-01-28 엘지전자 주식회사 무선 통신 시스템에서 셀 간 간섭 제거를 위한 방법 및 장치
KR20160019867A (ko) * 2014-08-12 2016-02-22 뉴라컴 인코포레이티드 고효율 무선랜 디바이스 전송 전력 제어
EP3192302B1 (en) * 2014-09-10 2018-12-26 Telefonaktiebolaget LM Ericsson (publ) Method and network node for obtaining nominal power and pathloss compensation factor of a power control process
US9992746B2 (en) * 2014-10-28 2018-06-05 Qualcomm Incorporated Uplink power control in multi-user unlicensed wireless networks
CN104486828B (zh) * 2014-12-11 2018-05-01 福建星网锐捷网络有限公司 上行功率控制方法、基站及终端
US9876659B2 (en) * 2015-06-25 2018-01-23 Intel Corporation Interference estimation
EP3348098B1 (en) * 2015-09-10 2024-01-03 InterDigital Patent Holdings, Inc. Multi-user power control methods and procedures
US9980233B2 (en) * 2015-12-17 2018-05-22 Qualcomm Incorporated Power control for uplink transmissions
US10367677B2 (en) 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
US10630410B2 (en) 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
CN108401282A (zh) * 2017-02-04 2018-08-14 中兴通讯股份有限公司 一种自适应调整上行功率参数的方法及装置
JP6994304B2 (ja) * 2017-03-02 2022-01-14 株式会社Nttドコモ 無線端末、送信電力制御方法、および無線基地局
CN109792694A (zh) 2017-04-21 2019-05-21 深圳市大疆创新科技有限公司 用于无线通信系统的传输功率控制
US9949277B1 (en) * 2017-07-27 2018-04-17 Saankhya Labs Pvt. Ltd. System and method for mitigating co-channel interference in white space modems using interference aware techniques
US10530394B2 (en) * 2017-10-13 2020-01-07 Hughes Network Systems, Llc System and method for optimizing forward error correction according to number of simultaneous users
CN109819455B (zh) * 2017-11-20 2021-02-26 中国移动通信集团公司 一种上行选阶方法、用户终端和基站
CN111466140B (zh) * 2017-12-25 2021-12-03 华为技术有限公司 一种参数调整方法及相关设备
KR102361439B1 (ko) * 2020-01-30 2022-02-10 숙명여자대학교산학협력단 차세대 통신 네트워크에서 단말의 통신 모드 및 전송 전력 결정 방법 및 이를 위한 장치
US11849402B2 (en) * 2020-10-27 2023-12-19 Viettel Group Method for mobile closed loop power control adapting to user demand of data services
CN112738827B (zh) * 2020-12-29 2022-06-21 杭州电子科技大学 H-cran中基于谱效最大化的子载波与功率联合优化方法
CN117641546A (zh) * 2024-01-25 2024-03-01 深圳国人无线通信有限公司 控制小区边缘ue的上行功率的方法和基站

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2349033C2 (ru) * 2004-06-18 2009-03-10 Квэлкомм Инкорпорейтед Регулирование мощности в системе беспроводной связи, использующей ортогональное мультиплексирование

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7570968B2 (en) * 2003-12-29 2009-08-04 Samsung Electronics Co., Ltd Method and apparatus for adaptive open-loop power control in mobile communication system using TDD
KR20070059666A (ko) * 2005-12-07 2007-06-12 삼성전자주식회사 시분할 듀플렉스 통신 시스템의 전력 제어 방법 및 장치
US9572179B2 (en) * 2005-12-22 2017-02-14 Qualcomm Incorporated Methods and apparatus for communicating transmission backlog information
KR100842648B1 (ko) * 2006-01-19 2008-06-30 삼성전자주식회사 무선 통신 시스템에서 전력 제어 장치 및 방법
KR100869922B1 (ko) * 2006-05-12 2008-11-21 삼성전자주식회사 광대역 무선 통신시스템에서 상향링크 전력 제어 장치 및방법
KR100964546B1 (ko) * 2006-07-04 2010-06-21 삼성전자주식회사 통신 시스템에서 제어 방법 및 시스템
US7917164B2 (en) * 2007-01-09 2011-03-29 Alcatel-Lucent Usa Inc. Reverse link power control
KR101584466B1 (ko) * 2007-03-07 2016-01-13 인터디지탈 테크날러지 코포레이션 이동국의 업링크 전력 스펙트럼 밀도를 제어하고 셀간 간섭을 완화하기 위한 결합형 개방 루프/폐쇄 루프 방법
US9084205B2 (en) * 2007-11-09 2015-07-14 Rpx Clearinghouse Llc Uplink power control scheme for a wireless communication system
KR101507176B1 (ko) * 2008-07-08 2015-03-31 엘지전자 주식회사 무선통신 시스템에서 상향링크 전력제어 방법
WO2010024536A2 (ko) * 2008-08-27 2010-03-04 엘지전자 주식회사 무선 통신 시스템에서의 신호를 전송하기 위한 장치 및 그 방법
KR20110082157A (ko) * 2008-09-30 2011-07-18 스파이더클라우드 와이어리스, 인크. 간섭 제거 정보를 생성하고, 보고하고 및/또는 이용하는 방법 및 장치
US8340593B2 (en) 2009-11-10 2012-12-25 Intel Corporation Techniques to control uplink power

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2349033C2 (ru) * 2004-06-18 2009-03-10 Квэлкомм Инкорпорейтед Регулирование мощности в системе беспроводной связи, использующей ортогональное мультиплексирование

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2695797C2 (ru) * 2015-03-06 2019-07-29 Сони Корпорейшн Устройство управления связью, устройство связи, способ управления связью, способ связи и программа

Also Published As

Publication number Publication date
US9113421B2 (en) 2015-08-18
KR101524445B1 (ko) 2015-06-02
TW201125401A (en) 2011-07-16
WO2011059568A3 (en) 2011-07-21
US20110111766A1 (en) 2011-05-12
KR20140084289A (ko) 2014-07-04
EP2499750A2 (en) 2012-09-19
RU2012123991A (ru) 2013-12-20
KR20120081201A (ko) 2012-07-18
KR101447429B1 (ko) 2014-10-08
JP2013511170A (ja) 2013-03-28
US8340593B2 (en) 2012-12-25
EP2499750A4 (en) 2017-07-05
WO2011059568A2 (en) 2011-05-19
US20130109432A1 (en) 2013-05-02
TWI420941B (zh) 2013-12-21
JP5704468B2 (ja) 2015-04-22
CN102687415A (zh) 2012-09-19
CN102687415B (zh) 2017-06-23

Similar Documents

Publication Publication Date Title
RU2524674C2 (ru) Технология управления мощностью исходящего соединения
US9960881B2 (en) System and method for modulation and coding scheme adaptation and power control in a relay network
US8285216B2 (en) Inter-cell power control for interference management
CN105191445B (zh) 一种干扰测量方法、装置及基站
US9210713B2 (en) System and method for intra-cell frequency reuse in a relay network
Mahmood et al. Reliability oriented dual connectivity for URLLC services in 5G New Radio
KR100964546B1 (ko) 통신 시스템에서 제어 방법 및 시스템
CN102687444B (zh) 用于选择小区的调制和编码方案的方法
US8964664B2 (en) System and method for association and uplink adaptation in a relay network
US8335168B2 (en) Mobile communication system, base station apparatus, user equipment, and method
EP2534764B1 (en) System and method for intra-cell frequency reuse in a relay network
US10743261B2 (en) Arrangement for choosing transceiver nodes in a mobile telecommunications network
US8219136B2 (en) Techniques to determine transmitter power
TW201134260A (en) An uplink power control scheme
Kwak et al. Performance evaluation of D2D discovery with eNB based power control in LTE-advanced
Mühleisen et al. Evaluation and improvement of VoIP capacity for LTE
Wang et al. Uplink inter-site carrier aggregation between macro and small cells in heterogeneous networks
Soni et al. Sidelink-assisted URLLC built on cooperative retransmissions with optimum power control
KR20220115465A (ko) 무선 통신 시스템에서 상향링크 전력 제어를 위한 장치 및 방법
Feng et al. Performance of HARQ in device-to-device communication

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170921