RU2523730C2 - Способ обнаружения витковых замыканий в обмотке вращающегося якоря коллекторной электрической машины с уравнительными соединениями - Google Patents

Способ обнаружения витковых замыканий в обмотке вращающегося якоря коллекторной электрической машины с уравнительными соединениями Download PDF

Info

Publication number
RU2523730C2
RU2523730C2 RU2012141818/28A RU2012141818A RU2523730C2 RU 2523730 C2 RU2523730 C2 RU 2523730C2 RU 2012141818/28 A RU2012141818/28 A RU 2012141818/28A RU 2012141818 A RU2012141818 A RU 2012141818A RU 2523730 C2 RU2523730 C2 RU 2523730C2
Authority
RU
Russia
Prior art keywords
winding
turn
collector
armature
rotating armature
Prior art date
Application number
RU2012141818/28A
Other languages
English (en)
Other versions
RU2012141818A (ru
Inventor
Евгений Петрович Бессуднов
Евгения Евгеньевна Бессуднова
Original Assignee
Евгений Петрович Бессуднов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Евгений Петрович Бессуднов filed Critical Евгений Петрович Бессуднов
Priority to RU2012141818/28A priority Critical patent/RU2523730C2/ru
Publication of RU2012141818A publication Critical patent/RU2012141818A/ru
Application granted granted Critical
Publication of RU2523730C2 publication Critical patent/RU2523730C2/ru

Links

Images

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

Изобретение относится к области испытаний обмоток якорей коллекторных электрических машин постоянного тока. Сущность: создают режим ударного импульсного возбуждения одновременно всех параллельных ветвей обмотки вращающегося якоря путем посылки импульсов напряжения возбуждения от генератора импульсных напряжений ГИН с частотой следования, например, 50 импульсов в секунду на коллектор относительно корпуса. Фиксируют наличие дефекта витковой изоляции с помощью индукционного датчика астатической конструкции с ферромагнитным сердечником, имеющим воздушный зазор-щель, ориентированный вдоль выводов витков у петушков коллектора секций с максимальными испытательными междувитковыми напряжениями в середине каждой параллельной ветви в силу симметрии обмоток якорей относительно места возбуждения, и измерителя импульсных магнитных полей с электронной ячейкой памяти по максимальным уровням импульсного магнитного поля, которые измеряют бесконтактным способом индукционным датчиком ИД с измерителем импульсных магнитных полей и фиксируют при срабатывании его электронной ячейки памяти в автоматическом режиме испытаний при каждом прохождении под датчиком ИД выводов витков дефектной секции и секций, непосредственно соединенных с ней уравнителями, и которые создаются только током в короткозамкнутом витке, возникающем под действием центробежных сил на обмотку и коллектор и вибрации только на вращающемся якоре. Технический результат: фиксация наличия дефекта витковой изоляции, приводящего к образованию короткозамкнутого витка, возникающего под действием центробежных сил на обмотку и коллектор и вибрации

Description

Изобретение относится к области испытаний обмоток якорей коллекторных электрических машин постоянного тока с уравнительными соединениями.
Известен способ точного обнаружения места виткового замыкания в обмотках якорей коллекторных электрических машин с уравнительными соединениями Патент на изобретение №2308730, МПК G01R 31/06, и способ точного обнаружения замыкания между уравнителями первого рода простой петлевой обмотки якоря, Патент на изобретение №2456626, МПК G01R 31/06, которые применяют на неподвижном фиксированном якоре после обнаружения указанных дефектов при высоковольтных импульсных испытаниях изоляции способами по авторским свидетельствам на изобретения: №205941, МПК H02d G01r, №297008, МПК G01r 31/06, №291170, МПК G01r 31/06. Однако, естественно, на неподвижном фиксированном якоре не все скрытые дефекты изоляции могут быть выявлены при таких импульсных испытаниях. Кроме того, указанные испытания проводят при ограниченной величине допустимых для межламельной изоляции коллектора испытательных импульсных междувитковых напряжений: 0,4-0,5 кВ на виток на всех стадиях изготовления якоря при величине испытательного импульсного напряжения, подаваемого на коллектор относительно корпуса якоря, равной 10 кВ. Поэтому именно высоковольтные импульсные испытания междувитковой изоляции проводят в автоматическом режиме с помощью электропривода и специального редуктора с частотой вращения якоря 1 оборот в 3 минуты на специальной автоматической испытательной станции якорей способом по авторскому свидетельству №205941 (см. кн.: Бессуднов Е.П. Обнаружение мест дефектов изоляции обмоток электрических машин постоянного тока. М.: Энергия, 1977, стр.43-48, 67-71 и Приложение 3; ГОСТ 2582-81. Машины электрические вращающиеся тяговые. Общие технические условия. ИПК Издательство стандартов, 1998. Переиздание с Изменениями, п.2.6.2.). Указанные известные импульсные способы испытания витковой изоляции якоря изначально не предназначались для обнаружения витковых замыканий в обмотке вращающегося якоря при допустимой частоте вращения, например, тягового электродвигателя электровоза.
По этой причине скрытые дефекты изоляции вынужденно выявляют только на вращающемся якоре при приемосдаточных испытаниях на испытательной станции электрических машин ИСЭМ собранной электрической машины постоянного тока в соответствии с ГОСТ 2582-81 (Машины электрические вращающиеся тяговые. 4. Правила приемки, п.4.1 и 4.3), что приводит к значительным убыткам, особенно, при применении изоляции типа Монолит и вакуум-нагнетательной пропитки якорей в автоклавах в эпоксидном компаунде и при импульсно-дуговой сварке петушков коллектора с обмотками якоря в инертном газе неплавящимся вольфрамовым электродом с присадкой медной проволоки при температуре плавления меди и классе нагревостойкости изоляции F или H, так как при этом, естественно, вся обмотка якоря уходит в брак с последующими трудностями ее удаления из пазов с целью сохранения и дальнейшего использования сердечника и коллектора якоря.
Указанные выше недостатки известных изобретений обусловлены отсутствием способа обнаружения скрытых дефектов изоляции обмоток якорей коллекторных электрических машин постоянного тока, которые обнаруживаются только на вращающемся якоре под действием центробежных сил на коллектор и обмотку и вибрации как вне неподвижной части электрической машины на ранней стадии изготовления якоря (до сварки и пропитки по указанной выше технологии) при частоте вращения якоря, допустимой на ранней стадии изготовления якоря, так и при испытании машин при повышенной частоте вращения, и, как следствие, отсутствие надежного объективного контроля качества состояния изоляции на вращающемся якоре, отсутствие стандарта предприятия, например, СТП ТН 42.05/72, СТП ТН 4105-91 завода изготовителя Новочеркасского электровозостроительного завода НЭВЗ и ГОСТ на указанный способ испытаний (см.: ГОСТ 11828-86. Машины электрические вращающиеся. Общие методы испытаний. 4. Испытания машин при повышенной частоте вращения, и п.п.7.5, 7.6, и 8. Испытания междувитковой изоляции обмоток на электрическую прочность; и ГОСТ 2582-81, указанный выше).
Задачей изобретения является: сокращение брака в процессе производства якорей, сокращение значительных потерь от неисправимого брака, выявляемого только на окончательной стадии - при приемосдаточных испытаниях собранной электрической машины по ГОСТ 2582-81, а также после сварки, пропитки и многократной механической обработки коллектора якоря, надежный объективный контроль качества изоляции, приближающийся к условиям эксплуатации, особенно, например, тяговых электродвигателей и генераторов электровозов и тепловозов на железных дорогах, с учетом механических действий на коллектор и обмотку центробежных сил и вибрации, как на ранних стадиях изготовления якоря - до пропитки, так и окончательно готового якоря, не требующий дополнительных материальных затрат, повышение качества выпускаемых электрических машин и оборудования, в котором они используются, и повышение надежности работы электрических машин и соответствующих систем в процессе их эксплуатации.
Технический результат, достигаемый изобретением, - фиксация наличия дефекта витковой изоляции, выявляемого только на вращающемся якоре под действием центробежных сил на коллектор и обмотку и вибрации (как на ранней стадии изготовления якоря: после крепления обмотки в пазах клиньями толщиной 4-5 мм из стеклопластика и закрепления лобовых частей технологическим бандажом из стеклобандажной ленты, являющимся частью основного бандажа окончательно готового якоря, до механической обработки коллектора, до сварки и до пропитки якоря в эпоксидном компаунде в автоклаве, так и в окончательно готовом якоре, но до полной сборки электрической машины, например, в специально собранной для этой цели машине в корпусе (остове) без главных и добавочных полюсов - как дополнение к ИСЭМ для приемосдаточных испытаний).
Сущность изобретения: создают режим ударного импульсного возбуждения одновременно всех параллельных ветвей обмотки вращающегося якоря путем посылки импульсов напряжения возбуждения от генератора импульсных напряжений ГИН с частотой их следования, например, 50 импульсов в секунду на коллектор относительно корпуса, фиксируют наличие дефекта витковой изоляции с помощью индукционного датчика ИД астатической конструкции с ферромагнитным сердечником, имеющим воздушный зазор-щель, ориентированный вдоль выводов витков у петушков коллектора секций с максимальными испытательными междувитковыми напряжениями в середине каждой параллельной ветви в силу симметрии обмоток якорей относительно места возбуждения, и измерителя импульсных магнитных полей с электронной ячейкой памяти по максимальным уровням импульсного магнитного поля, которые измеряют бесконтактным способом индукционным датчиком ИД с измерителем импульсных магнитных полей и фиксируют при срабатывании его электронной ячейки памяти в автоматическом режиме испытаний при каждом прохождении под датчиком ИД выводов витков дефектной секции и секций, непосредственно соединенных с ней уравнителями, и которые создаются только током в короткозамкнутом витке, возникающем под действием центробежных сил на обмотку и коллектор и вибрации только на вращающемся якоре.
На фигуре 1 изображена принципиальная схема устройства, с помощью которой осуществляют способ обнаружения витковых замыканий в обмотке вращающегося якоря коллекторной электрической машины с уравнительными соединениями вне ее неподвижной части - остова с полюсами (статора) - по предлагаемому способу применительно к различным типам обмоток якорей электрических постоянного тока на конкретном примере - якорь шестиполюсного тягового электродвигателя ТЭД типа НБ-514Б (см. фотографию на фиг.5) серийного грузового магистрального электровоза переменного тока серии 2ЭС5К и 3ЭС5К: 1 - вращающийся якорь с частотой вращения n оборотов в минуту; 2 - генератор импульсных напряжений ГИН - источник импульсов напряжения UГИН возбуждения обмотки якоря и тока IГИН в общей токоподводящей цепи; 3 - рабочая поверхность коллектора якоря 1; 4 - электрографитированная щетка в специальном щеткодержателе с пружиной или в щеткодержателе ТЭД, изолированном от корпуса, например, суппорта станка для механической обработки коллектора, двумя изолирующими прокладками; 5 - идукционный датчик ИД измерителя импульсных магнитных полей ИИП6; тип обмотки якоря - двухслойная простая петлевая правоходовая неперекрещивающаяся с укороченным шагом по пазам по условиям коммутации, равным 1-15; число пазов 87; число уравнителей на паз - два; число элементарных витков в секции - четыре; такой же тип обмотки якоря и его обмоточные данные имеет якорь ТЭД типа НБ-418К серийного грузового магистрального электровоза переменного тока серии ВЛ-80К, эксплуатируемого на железных дорогах.
С1, С2, С3 - равнопотенциальные точки (коллекторные пластины, секции) одновременного возбуждения всех параллельных ветвей обмотки вращающегося якоря в данный момент его вращения; С1-С2, С2-С3, С3-С1 - уравнители (потенциальный шаг, измеряемый числом секций или коллекторных пластин, соответствующий одной паре ветвей); С4, С5, С6 - секции, непосредственно соединенные между собой и одной из них дефектной уравнителями С4-С5, С5-С6, С6-С4 (для упрощения - показаны только по одному уравнителю на паз), над выводами витков у петушков коллектора которых измеряют бесконтактным способом максимальные уровни разностного импульсного магнитного поля прямого IПР и обратного IОБР тока короткого замыкания IКЗ в короткозамкнутых витках (см. фиг.2) с помощью индукционного датчика ИД 5 и измерителя импульсных магнитных полей ИИП 6 (см. фиг.3) и фиксируют при срабатывании его электронной ячейки памяти (см. фиг.4).
На фигуре 2 приведена схема (справа) и разрез по шлицу петушка коллекторной пластины 3 К2 (слева), иллюстрирующие измерение уровней разностного импульсного магнитного поля двух параллельных встречно направленных токов: прямого IПР и обратного IОБР тока короткого замыкания IКЗ в верхнем 7 и нижнем 8 слое выводов витков В2 и В1, соответственно, короткозамкнутого контура с общей коллекторной пластиной 3 К2, в шлиц петушка которой вставлены выводы замкнувших между собой витков с точкой виткового замыкания ВЗ в пазовой части этих витков и током короткого замыкания IКЗ, с помощью индукционного датчика ИД 5 и измерителя импульсных магнитных полей ИИП 6 (см. фиг.3 и фиг.4). IВ - импульсный ток в неповрежденных витках секций, лежащих в одном общем пазу с короткозамкнутым контуром с током короткого замыкания IКЗ: токи - имеющие взаимно-встречное направление; К1 - коллекторная пластина, соединенная с частью верхнего слоя витка В1, не входящей в короткозамкнутый контур; К3 - коллекторная пластина с частью нижнего слоя витка В2, не входящей в короткозамкнутый контур; 9 - вывод верхнего слоя, 10 - вывод нижнего слоя уравнителей, лежащие в одном шлице с выводами замкнувших между собой витками В1 и В2.
На фигуре 3 приведена принципиальная электрическая схема измерителя импульсных магнитных полей ИИП 6 с индукционным датчиком ИД 5 и микроамперметром µА, например, на 100 мкА магнитоэлектрической системы, например, типа М 906, с автономным питанием (см. фиг.1 и фиг.2): Т - транзистор p-n-p типа, например, типа МП 41А; C - электролитический конденсатор; R1 - резистор - шунт к датчику ИД5 для грубого регулирования чувствительности ИИП 6; R2 - шунт к микроамперметру для плавного регулирования чувствительности ИИП 6. В основу принципа измерения ИИП 6 положено Авторское свидетельство на изобретение №444139, М. Кл. G01r 33/00.
На фигуре 4 приведена принципиальная электрическая схема электронной ячейки памяти на тиристорном оптроне VD1 и светодиоде VD2 с нагрузочным резистором R: для наглядности изображено отдельно от общей схемы измерителя импульсных магнитных полей ИИП 6 (см. фиг.3), в которой стрелочный измерительный прибор - микроамперметр µА магнитоэлектрической системы - заменен на тиристорный оптрон и светодиод. Шунты R1 и R2 в схеме ИИП 6 (см. фиг.3) подключают при измерении импульсного магнитного поля над пазами сердечника на неподвижном якоре при проведении предварительных подготовительных измерений и операций по настройке всего испытательного и измерительного комплекса (см. фиг.1-5).
На фигуре 5 представлена фотография якоря шестиполюсного тягового электродвигателя ТЭД типа НБ-514Б магистрального грузового электровоза переменного тока серии 2ЭС5К и 3ЭС5К на той стадии изготовления, начиная с которой следует и необходимо применять предлагаемое изобретение: обмотка якоря закреплена в пазах клиньями из стеклопластика толщиной 4-5 мм и лобовые части - технологическим стеклобандажом, который представляет собой часть постоянного бандажа, укладываемого непосредственно перед пропиткой якоря в автоклаве в эпоксидном компаунде. Фигура 5 иллюстрирует исходное состояние и взаимное положение неподвижного якоря, одного токоподводящего контакта, соединенного с выходом ГИН Высокое и расположенного на рабочей поверхности коллектора якоря, и индукционного датчика ИД индикатора ИИП, расположенного над пазом ферромагнитного сердечника якоря, ближайшим в осевом направлении от токоподводящего от ГИН контакта (второй токоподводящий контакт, соединенный с выходом ГИН Земля, при данной операции удаляется: этот контакт применяют на неподвижном якоре при точном обнаружении места виткового замыкания - Патент на изобретение №2308730, и при точном обнаружении замыкания между уравнителями - Патент №2456626), для выполнения предварительных измерений и операций на неподвижном якоре, описываемых далее.
На фигурах 6 и 7 приведены характерные типичные для исследованных обмоток якорей ТЭД электровозов осциллограммы импульсных испытательных напряжений вдоль каждой параллельной ветви обмотки якоря ТЭД типа НБ-418К, в качестве конкретного примера, иллюстрирующие режим ударного импульсного возбуждения всей обмотки якоря, как последовательного колебательного контура, состоящего из индуктивности всех параллельных ветвей и их емкости относительно корпуса якоря, на ее первой резонансной частоте, равной 53 кГц (осциллограммы UК напряжений секций относительно корпуса, UМС межсекционных напряжений секций, лежащих в общих пазах 1-15, 5-19, 8-22 и т.д., - для одной параллельной ветви и напряжений между первой 1 и последующими секциями от первой 1 до 15 U1-N (см. фиг.6), и, одновременно, каждой секции всех параллельных ветвей, состоящих из последовательно соединенных секций, уложенных в пазы ферромагнитного сердечника якоря, также как последовательных колебательных контуров на их второй, более высокой, резонансной частоте, равной 85 кГц (см. осциллограммы междувитковых напряжений UМВ секций 1, 3, 5, 8, 11, 14 и 15 на фиг.7, снятые при трех масштабах времени в микросекундах и при двух величинах фронтовых сопротивлений RФ на выходе ГИН RФ=1 Ом и RФ=100 Ом с целью анализа и демонстрации формирования первых двух пиков этих напряжений, совпадающие по времени и по фазе, в середине каждой параллельной ветви и создающие максимальные испытательные междувитковые напряжения в секции 8 для обмоток якорей, которые приводятся в качестве конкретного примера - НБ-514Б и НБ-418К - и у которых шаг по пазам 1-15 соответствует одной из шести параллельных ветвей). При двухслойном исполнении обмоток неповрежденная секция, лежащая в одном пазу с короткозамкнутым витком дефектной секции в середине параллельной ветви, выполняет роль индуктора и создает максимально возможный ток короткого замыкания IКЗ в этом короткозамкнутом витке по сравнению с секцией 1 или 15 в начале и конце параллельной ветви (см. фиг.7) с минимальными или равными нулю испытательными междувитковыми напряжениями UМВ. Кроме того, витки секции С1 коммутируются токоподводящей от ГИН 2 щеткой 4 на вращающемся якоре 1 (см. фиг.1). Более детально физические процессы, происходящие при ударном импульсном возбуждении обмотки якоря, изложены в: Бессуднов Е.П. Фазовые и частотные характеристики обмоток якорей машин постоянного тока. Новочеркасск, ИВУЗ, 1978, №4, стр.386-391; Бессуднов Е.П. Способ испытания витковой изоляции обмоток якорей коллекторных электрических машин постоянного тока. Авторское свидетельство на изобретение №744376, МПК G01R 31/02; Бессуднов Е.П. Обнаружение мест дефектов изоляции обмоток электрических машин постоянного тока. М.: Энергия, 1977, 120 с.; Бессуднов Е.П. Способ измерения импульсных магнитных полей. Авторское свидетельство на изобретение №444139, М. Кл. G01r 33/00).
На фигуре 8 представлены две осциллограммы Э.Д.С. в индукционном датчике ИД, расположенном над выводами витков у петушков коллектора секции с максимальными междувитковыми напряжениями UМВ (см. осциллограмму для секции 8 на фиг.7). Осциллограмма с малой амплитудой колебаний, почти совпадающей с осью времени и с первым отрицательным пиком, созданная током IВ в неповрежденных витках (см. фиг.2 и 8) - при отсутствии виткового замыкания ВЗ. Осциллограмма с большой амплитудой колебаний и с первым положительным пиком, созданная током короткого замыкания IКЗ - при витковом замыкании ВЗ (см. фиг.2 и 8). Эти две осциллограммы (без виткового замыкания и при витковом замыкании ВЗ) иллюстрируют практическую возможность абсолютного объективного обнаружения (выявления) и фиксации наличия дефекта витковой изоляции, приводящего к образованию короткозамкнутого витка с током короткого замыкания IКЗ, по максимальному уровню импульсного поля, который создается только током короткого замыкания в короткозамкнутом витке, возникающем под действием центробежных сил на обмотку и коллектор и вибрации только на вращающемся якоре.
Более точно, измеряют бесконтактным способом максимальные уровни разностного импульсного магнитного поля прямого IПР и обратного IОБР тока короткого замыкания IКЗ над выводами витков 7 и 8 при коротком замыкании в точке ВЗ между витками В1 и В2 (см. фиг.2), но при расположении индукционного датчика ИД не симметрично относительно выводов 7 и 8 короткозамкнутых витков, а над ближайшими соседними выводами витков, присоединенными к коллекторным пластинам К3 или К1, то есть несколько асимметрично относительно выводов 7 и 8 короткозамкнутых витков В1 и В2. Однако преобладает поле верхнего слоя выводов витков 7, ближе расположенного к датчику ИД, которое измеряют с помощью ИИП и фиксируют его электронной ячейкой памяти на вращающемся якоре. Это утверждение наглядно подтверждается двумя осциллограммами Э.Д.С., приведенными на фигуре 8: первый пик Э.Д.С. при витковом замыкании становится положительным по сравнению с отрицательным первым пиком - при отсутствии виткового замыкания, что соответствует встречным направлениям токов IКЗ и IВ (см. фиг.2). Изложенное выше относится и к случаю короткого замыкания между коллекторными пластинами, например, К2 и К3 и между уравнителями 9 и смежным с ним или 10 и смежным с ним, особенно при полном числе уравнителей на паз: как в разновидностях витковых коротких замыканий.
Осциллограммы, представленные на фигурах 9 и 10, иллюстрируют принцип работы измерителя импульсных магнитных полей ИИП с электронной ячейкой памяти (см. фиг.3 и 4). Сдвоенные осциллограммы Э.Д.С. в индукционном датчике ИД и входного напряжения UВХ на переходе эмиттер-база транзистора Т в схеме ИИП 6 (см. фиг.3) при подключении ИД к ИИП иллюстрируют амплитудно-временное преобразование Э.Д.С. колебательной формы (см. фиг.9 и нижняя осциллограмма входного напряжения UВХ на фиг.10), при котором транзистор Т входит в режим насыщения (см. верхнюю осциллограмму на фиг.10 выходного напряжения UВЫХ на коллекторной нагрузке транзистора Т в схеме ИИП при отключенных конденсаторе C и резисторе R2). Измеряют среднее значение выходных импульсов напряжения UВЫХ за период следования импульсов напряжения возбуждения 50 импульсов в секунду ГИН с помощью стрелочного микроамперметра µА магнитоэлектрической системы. Электролитический конденсатор C подключают для уменьшения колебаний стрелки микроамперметра при большой скважности импульсов: соотношение длительности измеряемых импульсов (см. верхняя осциллограмма UВЫХ на фиг.11) и периода их следования, исходя из частоты следования 50 импульсов в секунду импульсов напряжения возбуждения UГИН ГИН (см. фиг.1).
На фигуре 11 приведены три осциллограммы Э.Д.С., UВХ и UВЫХ в индукционном датчике ИД вне схемы ИИП и в схеме измерителя импульсных магнитных полей ИИП с подключенным датчиком ИД, снятые при одном масштабе времени и одном масштабе напряжения и при более высоком уровне импульсного магнитного поля по сравнению с осциллограммами на фигурах 8 и 9 в 2,5 раза (при большей величине импульсных междувитковых напряжений UМВ секции 8 на фиг.7) и при тех же условиях, что и осциллограммы на фигуре 10, то есть в схеме ИИП (фиг.3) отключен конденсатор C и резистор R2. Указанные осциллограммы иллюстрируют принцип амплитудно-временного преобразования исходной Э.Д.С. в датчике ИД во входное напряжение UВХ на переходе эмиттер-база транзистора Т (см. две сдвоенные нижние осциллограммы на фиг.11, на которых первые положительные пики Э.Д.С. и UВХ полностью совпадают, и, для сравнения, нижнюю осциллограмму UВХ на фиг.10). Микроамперметр µА измерителя импульсных магнитных полей ИИП (см. фиг.3) измеряет импульсы выходного напряжения UВЫХ, длительность которых многократно расширена по сравнению с первым положительным пиком Э.Д.С. и входного напряжения UВХ (см. фиг.8-11). Первые положительные пики Э.Д.С. и UВХ в измерителе импульсных магнитных полей ИИП создаются первым положительным пиком максимальных импульсных испытательных междувитковых напряжений UМВ секции 8 на фигуре 7.
Таким образом, все осциллограммы, приведенные на фигурах 6-11, иллюстрируют необходимое и достаточное единство режимов возбуждения импульсных испытательных напряжений в обмотке якоря (см. фиг.6 и 7) и режима измерения создаваемого максимального уровня импульсного магнитного поля только током короткого замыкания в короткозамкнутом витке (см. фиг.8-11) для достижения технического результата изобретения: фиксация наличия дефекта витковой изоляции, приводящего к образованию короткозамкнутого витка, возникающего под действием центробежных сил на обмотку и коллектор и вибрации только на вращающемся якоре.
Для достижения технического результата изобретения создают на вращающемся якоре 1 при любой допустимой частоте его вращения n в автоматическом режиме испытаний одновременно взаимосвязанные режимы испытаний и измерений, указанные выше в сущности изобретения, при фиксированном положении индукционного датчика ИД 5 относительно одной токоподводящей к коллектору 3 от ГИН 2 щетки 4 в щеткодержателе над выводами витков у петушков коллектора секции с максимальными испытательными междувитковыми напряжениями (см. фиг.1-11).
Фиксируют наличие дефекта витковой изоляции по максимальным уровням импульсного магнитного поля, которые измеряют бесконтактным способом индукционным датчиком ИД 5 (см. фиг.1 и 2) с измерителем импульсных магнитных полей ИИП 6 (см. фиг.3) и фиксируют при срабатывании его электронной ячейки памяти (см. фиг.4) в автоматическом режиме испытаний при каждом прохождении под датчиком ИД дефектной секции с максимальными испытательными междувитковыми напряжениями в середине каждой параллельной ветви в силу симметрии обмоток якорей и секций, непосредственно соединенных с ней уравнителями (см. секции С4, С5 и С6 на фиг.1 и максимальные междувитковые напряжения UМВ секции 8 на фиг.7, соответственно), и которые создаются только током IКЗ в короткозамкнутом витке (см. фиг.2 и осциллограммы на фиг.8), возникающем под действием центробежных сил на обмотку и коллектор и вибрации только на вращающемся якоре.
Коммутация токоподводящей щеткой 4 на вращающемся якоре 1 смежных коллекторных пластин на рабочей поверхности коллектора 3 секции С1 не влияет на показания индикатора ИИП 6, так как индукционный датчик ИД 5 устанавливают над выводами витков секции 4, не имеющей непосредственной электрической и магнитной связи с коммутируемой секцией С1 (см. фиг.1). Аналогично - для других секций С2 и С3, непосредственно соединенных уравнителями с секцией С1.
Настоящее изобретение применяют только после предварительных импульсных испытаний главной изоляции - относительно корпуса - обмотки вращающегося якоря, убедившись в отсутствии дефекта главной изоляции. Для проведения импульсных испытаний корпусной изоляции обмотки вращающегося якоря можно применять известное и широко применяемое на практике изобретение 291170, МПК G01r 31/06, только в части, достаточной для фиксации наличия дефекта корпусной изоляции обмотки вращающегося якоря по максимальному уровню импульсного магнитного поля только одной дефектной секции. Для этого, согласно указанному изобретению, предварительно на неподвижном якоре закорачивают между собой все коллекторные пластины 3 якоря 1 гибким шунтом (на фиг.1 шунт отсутствует), и, таким образом, ток IГИН по шунту и одной коллекторной пластине протекает по витку с дефектом корпусной изоляции, импульсное магнитное поле которого фиксируют с помощью индукционного датчика ИД 5 и измерителя ИИП 6 с его электронной ячейкой памяти (см. фиг.1, 3 и 4).
При возникновении дефекта главной изоляции обмотки вращающегося якоря (электрический пробой изоляции через дугу или металлическое короткое замыкание на корпус) невозможно обнаружить (фиксировать) наличие дефекта витковой изоляции, так как это - совершенно другой режим. Поэтому указанные выше предварительные импульсные испытания главной (корпусной) изоляции являются обязательными, так же как сначала проводят высоковольтные испытания переменным напряжением промышленной частоты главной изоляции неподвижного якоря и только после этого проводят импульсные испытания витковой изоляции.
Следует указать, что импульсные испытания главной (корпусной) изоляции согласно изобретению 291170 на вращающемся якоре универсальны применительно к любым типам обмоток якорей коллекторных электрических машин постоянного тока: петлевым обмоткам с уравнительными соединениями, волновым и смешанным (лягушечьим обмоткам) и при любых переходных сопротивлениях в месте дефекта корпусной изоляции (электрический дуговой пробой изоляции или короткое металлическое замыкание обмотки на корпус): подробно см. стр.84-90 в книге: Бессуднов Е.П. Обнаружение мест дефектов изоляции обмоток электрических машин постоянного тока. М., Энергия, 1977, 120 с.

Claims (1)

  1. Способ обнаружения витковых замыканий в обмотке вращающегося якоря коллекторной электрической машины с уравнительными соединениями, отличающийся тем, что создают режим ударного импульсного возбуждения одновременно всех параллельных ветвей обмотки вращающегося якоря путем посылки импульсов напряжения возбуждения от генератора импульсных напряжений ГИН с частотой следования, например, 50 импульсов в секунду на коллектор относительно корпуса, фиксируют наличие дефекта витковой изоляции с помощью индукционного датчика ИД астатической конструкции с ферромагнитным сердечником, имеющим воздушный зазор-щель, ориентированный вдоль выводов витков у петушков коллектора секций с максимальными испытательными междувитковыми напряжениями в середине каждой параллельной ветви в силу симметрии обмоток якорей относительно места возбуждения, и измерителя импульсных магнитных полей с электронной ячейкой памяти по максимальным уровням импульсного магнитного поля, которые измеряют бесконтактным способом индукционным датчиком ИД с измерителем импульсных магнитных полей и фиксируют при срабатывании его электронной ячейки памяти в автоматическом режиме испытаний при каждом прохождении под датчиком ИД выводов витков дефектной секции и секций, непосредственно соединенных с ней уравнителями, и которые создаются только током в короткозамкнутом витке, возникающем под действием центробежных сил на обмотку и коллектор и вибрации только на вращающемся якоре.
RU2012141818/28A 2012-10-01 2012-10-01 Способ обнаружения витковых замыканий в обмотке вращающегося якоря коллекторной электрической машины с уравнительными соединениями RU2523730C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012141818/28A RU2523730C2 (ru) 2012-10-01 2012-10-01 Способ обнаружения витковых замыканий в обмотке вращающегося якоря коллекторной электрической машины с уравнительными соединениями

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012141818/28A RU2523730C2 (ru) 2012-10-01 2012-10-01 Способ обнаружения витковых замыканий в обмотке вращающегося якоря коллекторной электрической машины с уравнительными соединениями

Publications (2)

Publication Number Publication Date
RU2012141818A RU2012141818A (ru) 2014-04-10
RU2523730C2 true RU2523730C2 (ru) 2014-07-20

Family

ID=50435801

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012141818/28A RU2523730C2 (ru) 2012-10-01 2012-10-01 Способ обнаружения витковых замыканий в обмотке вращающегося якоря коллекторной электрической машины с уравнительными соединениями

Country Status (1)

Country Link
RU (1) RU2523730C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105527537A (zh) * 2014-09-28 2016-04-27 苏州热工研究院有限公司 发电机转子绕组匝间绝缘故障诊断装置及方法
RU2649650C1 (ru) * 2016-10-18 2018-04-04 Юрий Ильич Задорожный Указатель тока короткого замыкания с самовозвратом

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116247618A (zh) * 2023-03-20 2023-06-09 南京国电南自电网自动化有限公司 一种防止并联电抗器低频振荡匝间保护误动的方法和系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075500A (ja) * 2001-09-05 2003-03-12 Denso Corp 巻線異常検査方法
RU2308730C2 (ru) * 2005-12-05 2007-10-20 Евгений Петрович Бессуднов Способ точного обнаружения места виткового замыкания в обмотках якорей коллекторных электрических машин с уравнительными соединениями

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075500A (ja) * 2001-09-05 2003-03-12 Denso Corp 巻線異常検査方法
RU2308730C2 (ru) * 2005-12-05 2007-10-20 Евгений Петрович Бессуднов Способ точного обнаружения места виткового замыкания в обмотках якорей коллекторных электрических машин с уравнительными соединениями

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105527537A (zh) * 2014-09-28 2016-04-27 苏州热工研究院有限公司 发电机转子绕组匝间绝缘故障诊断装置及方法
RU2649650C1 (ru) * 2016-10-18 2018-04-04 Юрий Ильич Задорожный Указатель тока короткого замыкания с самовозвратом

Also Published As

Publication number Publication date
RU2012141818A (ru) 2014-04-10

Similar Documents

Publication Publication Date Title
Werynski et al. Proposition of a new method for in-service monitoring of the aging of stator winding insulation in AC motors
Cira et al. Analysis of stator inter-turn short-circuit fault signatures for inverter-fed permanent magnet synchronous motors
Blánquez et al. Evaluation of the applicability of FRA for inter-turn fault detection in stator windings
Mugarra et al. Validity of frequency response analysis (FRA) for diagnosing large salient poles of synchronouos machines
RU2523730C2 (ru) Способ обнаружения витковых замыканий в обмотке вращающегося якоря коллекторной электрической машины с уравнительными соединениями
CN105137275A (zh) 基于定子电流注入的同步电机转子绕组短路故障诊断方法
Goktas et al. Broken rotor bar fault monitoring based on fluxgate sensor measurement of leakage flux
Grubic et al. Online surge testing applied to an induction machine with emulated insulation breakdown
Karmaker Broken damper bar detection studies using flux probe measurements and time-stepping finite element analysis for salient-pole synchronous machines
Refaat et al. Discrimination of stator winding turn fault and unbalanced supply voltage in permanent magnet synchronous motor using ANN
Brandt et al. Failure identification of induction motor using SFRA method
Ahsanullah et al. Detection and analysis of winding and demagnetization faults in PMSM based marine propulsion motors
Huang et al. Using a surge tester to detect rotor eccentricity faults in induction motors
Irhoumah et al. Diagnosis of induction machines using external magnetic field and correlation coefficient
Amara et al. Modeling and diagnostic of stator faults in induction machines using permeance network method
Djerdir et al. Faults in permanent magnet traction motors: State of the art and modelling approaches
Flach et al. A new approach to diagnostics for permanent-magnet motors in automotive powertrain systems
de la Barrera et al. Stator core faults detection on induction motor drives using signal injection
Brandt et al. Diagnostic of induction motor using SFRA method
Duvvuri Modeling and simulation of slip-ring induction motors with stator and rotor inter-turn faults for diagnostics
Drif et al. The use of the stator instantaneous complex apparent impedance signature analysis for discriminating stator winding faults and supply voltage unbalance in three-phase induction motors
Iamamura et al. Study of interturn short circuit in rotor windings of a synchronous generator using FEM
US1373383A (en) Device for testing armatures
JP2022063202A (ja) ステータコイルの検査方法
JP5525768B2 (ja) 回転電機の試験方法及び製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151002