RU2518773C2 - Многоотражательный многослойный комплекс для охлаждения стенки и способ изготовления такого многоотражательного многослойного комплекса (варианты) - Google Patents

Многоотражательный многослойный комплекс для охлаждения стенки и способ изготовления такого многоотражательного многослойного комплекса (варианты) Download PDF

Info

Publication number
RU2518773C2
RU2518773C2 RU2009146588/06A RU2009146588A RU2518773C2 RU 2518773 C2 RU2518773 C2 RU 2518773C2 RU 2009146588/06 A RU2009146588/06 A RU 2009146588/06A RU 2009146588 A RU2009146588 A RU 2009146588A RU 2518773 C2 RU2518773 C2 RU 2518773C2
Authority
RU
Russia
Prior art keywords
multilayer complex
jumpers
reflective multilayer
layers
perforated screen
Prior art date
Application number
RU2009146588/06A
Other languages
English (en)
Other versions
RU2009146588A (ru
Inventor
Андреас ХЕЗЕЛЬХАУС
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2009146588A publication Critical patent/RU2009146588A/ru
Application granted granted Critical
Publication of RU2518773C2 publication Critical patent/RU2518773C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F7/064Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using an intermediate powder layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/182Transpiration cooling
    • F01D5/183Blade walls being porous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/182Transpiration cooling
    • F01D5/184Blade walls being made of perforated sheet laminae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4646Cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/185Two-dimensional patterned serpentine-like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0077Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for tempering, e.g. with cooling or heating circuits for temperature control of elements
    • F28D2021/0078Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for tempering, e.g. with cooling or heating circuits for temperature control of elements in the form of cooling walls

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

Изобретение относится к охлаждению двигателя внутреннего сгорания. Многоотражательный многослойный комплекс выполнен для контактирования с поверхностью подлежащей охлаждению стенки плоско и с обеспечением теплопроводности и имеет множество перфорированных экранных слоев с множеством выполненных в качестве перфорированных экранов, расположенных с распределением по поверхности перфорированных экранных слоев сквозных отверстий и множество слоев перемычек, которые расположены попеременно друг над другом с перфорированными экранными слоями и имеют каждый множество перемычек, которые расположены с распределением по поверхности перфорированных экранных слоев и перемыкают их, при этом каждая перемычка одного слоя перемычек расположена на одной линии с одной из перемычек других слоев перемычек, и каждое сквозное отверстие одного перфорированного экранного слоя расположено со смещением относительно сквозных отверстий соседних перфорированных экранных слоев так, что когда многоотражательный многослойный комплекс на одной своей плоской стороне нагружается охлаждающей текучей средой, то охлаждающая текучая среда проходит через сквозные отверстия и затопляет расположенные между перемычками и перфорированными экранными слоями промежуточные пространства, за счет чего обеспечивается возможность отвода переносимого из стенки в перемычки теплового потока с помощью охлаждающей текучей среды. Изобретение обеспечивает повышение эффективности охлаждения стенки. 5 н. и 19 з.п. ф-лы, 4 ил.

Description

Изобретение относится к многоотражательному многослойному комплексу для охлаждения стенки, стенке с многоотражательным многослойным комплексом и способу изготовления многоотражательного многослойного комплекса.
В двигателе внутреннего сгорания, в частности в газовой турбине, имеются высокие рабочие температуры, так что направляющие горячий газ части подвергаются высокой тепловой нагрузке. Если горячий газ при работе газовой турбины достигает температуры, которая лежит выше максимально допустимой рабочей температуры направляющей горячий газ части, то направляющие горячий газ части необходимо охлаждать, чтобы предотвращать их повреждение. Обычно, в газовой турбине направляющие горячий воздух части охлаждаются охлаждающим воздухом, который ответвляется от компрессора газовой турбины. Это приводит к уменьшению коэффициента полезного действия газовой турбины, так что стремятся к возможно меньшему расходу охлаждающего воздуха, за счет чего охлаждающий воздух должен использоваться возможно эффективнее. В настоящее время для достижения возможно высокого коэффициента полезного действия газовой турбины стремятся к снижению наполовину обычного расхода охлаждающего воздуха.
Направляющая горячий газ часть имеет стенку, на которой она на одной своей стороне находится в соприкосновении с горячим газом, а на своей другой стороне охлаждается охлаждающим воздухом. С помощью охлаждающего воздуха со стенки отводится тепловой поток, так что стенка на своей обращенной к горячему газу стороне имеет контактную температуру, которая лежит ниже температуры горячего газа. Известно предусмотрение на противоположной горячему газу стороне стенки пористой структуры, через которую проходит поток охлаждающего воздуха. Пористая структура прилегает к стенке, так что за счет теплопроводности тепло переносится со стенки в пористую структуру. Пористая структура отдает в свою очередь по всему своему объему тепло в охлаждающий воздух, с помощью которого тепло может переноситься из пористой структуры. Такая пористая структура известна, например, из ЕР 1533113.
С помощью пористых структур можно охлаждать, например, концевые стенки лопаток, кольцевые сегменты над рабочими лопатками, переходные стенки и стенки горелок, при этом эти стенки проходят по существу плоско. Поэтому на этих стенках структура должна иметь лишь относительно небольшой объем для обеспечения возможности переноса желаемого потока тепла из стенки в охлаждающий воздух. Кроме того, известно, что стенка может иметь множество отверстий пленочного охлаждения, через которые охлаждающий воздух направляется через стенку в поток горячего газа, за счет чего на лежащей на стороне горячего газа поверхности образуется пленка из охлаждающего воздуха. За счет предусмотрения множества отверстий пленочного охлаждения поток охлаждающего воздуха выходит из пористой структуры в поток горячего газа, так что достигается равномерное прохождение потока через пористую структуру перпендикулярно стенке. Кроме того, за счет предусмотрения отверстий для охлаждающего воздуха может достигаться, что на стороне горячего газа пленочное охлаждение может приближаться к своему идеальному пограничному случаю, а именно к эффузивному охлаждению. За счет этого одновременно образуется оптимально изолирующая тепло пленка из холодного воздуха на расположенной на стороне горячего газа поверхности стенки.
Пористая структура может быть изготовлена, например, из металлической пены, которая на основании обычного процесса ее изготовления имеет лишь случайную структуру с стохастически распределенной шириной пор. Металлическая пена экономична в изготовлении, однако имеет значительные недостатки. Так, в металлической пене поры могут быть частично закрытыми, которые за счет этого имеют слишком малую ширину, так что существует опасность закупоривания этих пор. Кроме того, металлическая пена имеет внутри острые кромки, за счет чего может возникать повышенная потеря давления при прохождении холодного воздуха через металлическую пену. Кроме того, металлическая пена имеет внутри множество примыкающих к порам перемычек, стохастически постоянный диаметр которых является неблагоприятным для переноса тепла. Кроме того, невозможно образование закруглений на стенке в пористой структуре.
Кроме того, известна сконструированная пористая структура, которая, в принципе, может иметь любую оптимальную геометрию. Сконструированная пористая структура может быть изготовлена, например, с помощью процесса изготовления с селективным плавлением или селективным спеканием лазером. Однако эти процессы изготовления имеют тот недостаток, что с их помощью можно изготавливать сконструированную пористую структуру лишь максимально с 6 порами на дюйм и с минимальной толщиной перемычек от 0,6 до 1 мм. Однако эти так изготовленные сконструированные структуры не пригодны для указанных выше плоских, подлежащих охлаждению стенок, поскольку для этого требуются показатели от 40 до 50 пор на дюйм. Кроме того, селективное плавление лазером требует много времени и затрат. Поэтому сконструированная пористая структура для охлаждения, например, концевых стенок лопаток, кольцевых сегментов над рабочими лопатками, переходных стенок и стенок горелок, в том виде, в котором их можно изготавливать в настоящее время, имеет еще значительные недостатки.
На фиг.4 показана сконструированная пористая структура 101. Сконструированная пористая структура 101 имеет поры 102, которые образованы перемычками 103, которые сходятся в узлах 104. Высокий перенос тепла сконструированной пористой структурой 101 основывается на множестве повторяющихся течений у критической точки при прохождении через сконструированную пористую структуру 101 потока охлаждающего воздуха. При этом за счет одних пор 102, которые имеют показанную на фиг.4 форму пирамиды, ускоряется поток охлаждающего воздуха, который ударяется в одну из перемычек 103 или в один из узлов 104, при этом возникает высокий локальный перенос тепла. Оттуда поток охлаждающего воздуха снова ускоряется с помощью следующего отверстия, чтобы ударяться в следующие узлы 104 или перемычки 103. Однако в сконструированной пористой структуре 101 с 6 порами на дюйм имеется слишком небольшое количество течений у критической точки на единицу объема, чтобы обеспечивать в имеющемся ограниченном объеме плоского конструктивного элемента перенос требуемого тепла в охлаждающий воздух. Теплообменную способность пористой структуры 101 можно повысить с увеличением числа ситуаций охлаждения за счет соударения, соответственно, количества пор на дюйм вплоть до экстремального случая, когда весь объем сконструированной пористой структуры 101 состоит лишь из крошечных течений охлаждения за счет столкновений. Проблемой является то, что обычным образом нельзя изготавливать пористую структуру достаточно тонкой.
Задачей изобретения является создание многоотражательного многослойного комплекса для охлаждения стенки, стенки с многоотражательным многослойным комплексом и способа изготовления многоотражательного многослойного комплекса, при этом при прохождении потока через многоотражательный многослойный комплекс создается большое количество потоков охлаждения за счет столкновений, за счет чего с помощью многоотражательного многослойного комплекса обеспечивается возможность эффективного охлаждения стенки.
Многоотражательный многослойный комплекс, согласно изобретению, предназначен для контактирования с поверхностью подлежащей охлаждению стенки плоско и с возможностью теплопроводности и имеет множество перфорированных экранных слоев с множеством выполненных в качестве перфорированных экранов, расположенных с распределением по поверхности перфорированных экранных слоев сквозных отверстий и множество слоев перемычек, которые расположены попеременно друг над другом с перфорированными экранными слоями и имеют каждый множество перемычек, которые расположены с распределением по поверхности перфорированных экранных слоев и перемыкают их, при этом каждая перемычка одного слоя перемычек расположена на одной линии с одной из перемычек других слоев перемычек, и каждое сквозное отверстие одного перфорированного экранного слоя расположено со смещением относительно сквозных отверстий соседних перфорированных экранных слоев так, что когда многоотражательный многослойный комплекс на одной своей плоской стороне нагружается охлаждающей текучей средой, то охлаждающая текучая среда проходит через сквозные отверстия и затем затопляет расположенные между перемычками и перфорированными экранными слоями промежуточные пространства, за счет чего обеспечивается возможность отвода переносимого из стенки в перемычки теплового потока с помощью охлаждающей текучей среды.
Многоотражательный многослойный комплекс имеет также много перфорированных экранных слоев, которые расположены друг над другом и имеют расположенные со смещением относительно друг друга сквозные отверстия. За счет сквозных отверстий обеспечивается возможность перевода охлаждающей текучей среды каскадообразно в течение охлаждения за счет столкновений с соответствующей лежащей ниже плоскостью. Последняя (горячая) или первая (холодная) плоскость представляет стенку, которая может быть значительно толще, чем плоскости охлаждения за счет столкновений. Плоскости соединены друг с другом перемычками, которые выполнены в виде соединительных элементов перфорированных экранных слоев. Через перемычки тепло от подлежащей охлаждению стенки проводится к другим плоскостям, так что течения охлаждения за счет столкновений могут там также отдавать тепло. Для этого перемычки лежат на одной линии друг над другом. Перемычки имеют каждая возможно большую площадь поперечного сечения для того, чтобы коэффициент теплопроводности вдоль перемычек был большим. Однако площади поперечного сечения перемычек выбираются лишь настолько большими, чтобы вызываемые перемычками потери давления в потоке текучей среды и сопровождаемые этим переносы тепла в течениях охлаждения за счет столкновений не были бы слишком большими. Порядок величины площадей поперечного сечения перемычек следует из расстояния между сквозными отверстиями.
С увеличением расстояния до горячей, подлежащей охлаждению стенки уменьшается доля теплового потока, который принимается охлаждающей средой. Тем самым в далеко удаленных от стенки слоях охлаждения за счет столкновений доля теплового потока, который принимается охлаждающей средой, является небольшой. За счет этого достаточно ограничивать толщину многоотражательного многослойного комплекса максимально необходимым размером, так что многоотражательный многослойный комплекс имеет достаточное для заданной теплопроводности и для определенной потери давления количество перфорированных экранных слоев и слоев перемычек. Геометрию многоотражательного многослойного комплекса можно оптимировать относительно его общего переноса тепла и его общей потери давления. Расстояния между перемычками и расстояния между сквозными отверстиями могут быть от менее 1 мм до нескольких сантиметров. Таким образом, многоотражательный многослойный комплекс выполнен в виде экстремального случая выполнения сконструированной пористой структуры, при этом многоотражательный многослойный комплекс имеет высокое геометрическое структурирование.
В многоотражательном многослойном комплексе возникают наряду с течением у критической точки еще другие механизмы переноса тепла. В обычной сконструированной пористой структуре зона течения у критической точки ограничена очень небольшим поперечным сечением, которое образовано зоной затронутых охлаждающей текучей средой структурных элементов. За счет этого становится необходимой указанная выше концентрация возможно большего количества критических точек в единице объема, за счет чего требуется большое количество пор на дюйм пористой структуры. В многоотражательном многослойном комплексе зона высокого переноса тепла у критических точек распространяется на все промежуточное пространство между ограничивающими слоями перемычек. За счет этого расстояние между перемычками и сквозными отверстиями может быть далеко не таким небольшим, как это необходимо в сконструированных пористых структурах с 40-50 порами на дюйм. Дополнительно к этому, за счет столкновений распространяющейся в стороны охлаждающей текучей среды с перемычками образуется завихрение, которое обеспечивает аналогично большой перенос тепла на перемычки и лежащие дальше ниже по потоку поверхности столкновения, чем в самой критической точке. Таким образом, вся внутренняя поверхность многоотражательного многослойного комплекса имеет большой перенос тепла, хотя расстояние между перемычками и сквозными отверстиями может быть намного больше, чем при 40-50 порах на дюйм.
Продольные направления перемычек предпочтительно проходят перпендикулярно слоям перфорированных экранов. Кроме того, перемычки предпочтительно расположены с равномерным распределением по поверхности перфорированных экранных слоев. Сквозные отверстия предпочтительно расположены на одинаковом расстоянии от четырех непосредственно соседних перемычек, и образованное между четырьмя перемычками промежуточное пространство имеет предпочтительно либо в одном слое перфорированных экранов, либо в другом слое перфорированных экранов одно из сквозных отверстий, так что сквозные отверстия расположены с зазором.
Перемычки имеют предпочтительно круговое поперечное сечение. В качестве альтернативного решения, перемычки предпочтительно имеют ланцетовидное поперечное сечение с двумя противоположно лежащими тупыми кромками и двумя противоположно лежащими острыми кромками. Кроме того, на воображаемых, пересекающих острые кромки линиях предпочтительно лежат сквозные отверстия того соседнего перфорированного экранного слоя, через который охлаждающая текучая среда выходит в образованное между четырьмя перемычками промежуточное пространство, когда многоотражательный многослойный комплекс на своей одной плоской стороне нагружается давлением охлаждающей текучей среды. Кроме того, предпочтительно, что на воображаемых, пересекающих тупые кромки линиях лежат сквозные отверстия того соседнего перфорированного экранного слоя, через который охлаждающая текучая среда входит в образованное между четырьмя перемычками промежуточное пространство, когда многоотражательный многослойный комплекс на своей одной плоской стороне нагружается давлением охлаждающей текучей среды. За счет этого достигается равномерное ускорение потока охлаждающей текучей среды между точкой столкновения с тупыми кромками и выходными сквозными отверстиями соответствующей плоскости. Тем самым предотвращается отрыв потока охлаждающей текучей среды, который происходит, например, при перемычках с круговым поперечным сечением позади наиболее узкого поперечного сечения и ниже по потоку значительно уменьшает перенос тепла на лежащую на подветренной стороне поверхность перемычки. Все поточные эффекты, такие как, например, завихрение потока охлаждающей текучей среды в образованных перемычками промежуточных пространствах, остаются, так что ланцетовидное выполнение перемычек является оптимальным для многоотражательного многослойного комплекса.
У сквозных отверстий перфорированные экранные пластины предпочтительно округлены или снабжены фаской. За счет этого уменьшаются потери давления в многоотражательном многослойном комплексе, за счет чего можно уменьшить давление охлаждающей текучей среды, с которым следует нагружать многоотражательный многослойный комплекс. За счет дополнительного округления переходов между пластинами перфорированных экранов и перемычками напряжения в перфорированных экранных пластинах и перемычках предпочтительно распределяются так, что исключаются чрезмерные пики напряжений. Стенка, согласно изобретению, имеет многоотражательный многослойный комплекс, который находится в контакте с поверхностью стенки плоско и с обеспечением теплопроводности. Многоотражательный многослойный комплекс предпочтительно прилегает к стенке одним из слоев с перемычками, и стенка предпочтительно имеет множество сквозных отверстий, так что стенка выполнена в качестве одного из перфорированных экранных слоев. Плотность распределения сквозных отверстий в стене можно предпочтительно выбирать равной плотности распределения сквозных отверстий в перфорированных экранных слоях, так что обеспечивается возможность создания оптимального, направленного перпендикулярно стенке потока. Кроме того, можно оптимально использовать эффузивный охлаждающей эффект при тесно лежащих рядом друг с другом сквозных отверстиях в стенке. Однако плотность распределения отверстий в стене может отличаться от плотности распределения отверстий в перфорированных экранных пластинах.
Способ, согласно изобретению, изготовления многоотражательного многослойного комплекса имеет стадию:
печатания друг на друге отдельных слоев многоотражательного многослойного комплекса способом трафаретной печати, при этом для каждых двух перфорированных экранных слоев и одного слоя перемычек создается один трафарет, через который продавливается паста. Паста предпочтительно имеет металлический порошок и связующее вещество. Многоотражательный многослойный комплекс предпочтительно подвергают спеканию. Толщина перфорированных экранных пластин предпочтительно имеет тот же порядок величины, что и толщина слоев перемычек. Кроме того, предпочтительно, что трафарет изготавливают из металлической фольги фотохимическим способом. В способе трафаретной печати отдельные слои многоотражательного многослойного комплекса печатают друг на друге, при этом для каждого слоя (в целом двух перфорированных экранных слоев и одного слоя перемычек) создают один трафарет. При самой печати для каждого слоя через поры трафарета выдавливают пасту, состоящую из металлического порошка и связующего вещества, которую затем предпочтительно в виде единого целого подвергают спеканию. Если известны параметры процесса, такие как, например, состав, время высыхания и величина усадки, то процесс можно экономично выполнять большими сериями.
В качестве альтернативного решения, другой способ, согласно изобретению, изготовления многоотражательного многослойного комплекса имеет стадии:
предварительного изготовления блоков многоотражательного многослойного комплекса из слоев с постоянным поперечным сечением; предварительной сушки и штабелирования друг на друге блоков. При этом предпочтительно многоотражательный многослойный комплекс подвергают спеканию. Толщина перфорированных экранных пластин предпочтительно имеет одинаковый порядок величины с толщиной слоев перемычек. При предварительном изготовлении блоков многоотражательного многослойного комплекса их предварительно сушат и точно штабелируют друг на друге и затем соединяют друг с другом в процессе спекания. Основой высокой точности изготовления многоотражательного многослойного комплекса является высокоточное изготовление форм для блоков. Формы изготавливают, например, фотохимическим способом, который применяют для отдельных слоев форм, которые изготавливают из металлической фольги.
Кроме того, в качестве альтернативного решения, другой способ, согласно изобретению, изготовления многоотражательного многослойного комплекса имеет стадии:
создания слоев перфорированных пластин и слоев перемычек из тонкой металлической фольги; штабелирования слоев металлической фольги с образованием многоотражательного многослойного комплекса; соединения слоев металлической фольги с помощью "transient liquid phase bonding" (соединения с переходной жидкой фазой). Тем самым слои металлической фольги штабелируют непосредственно друг на друге и соединяют с помощью соединения с переходной жидкой фазой, при этом слои металлической фольги фотохимическим способом формируют в отдельные слои позитива многоотражательного многослойного комплекса.
Если величина прямоугольной координатной сетки перемычек и сквозных отверстий составляет порядка до 1 мм, то предпочтительно можно применять способ трафаретной печати. Однако при больших расстояниях между перемычками существует опасность, что печатаемая с нависанием пленка может разрываться. Однако способ изготовления многоотражательного многослойного комплекса с предварительно изготовленными блоками из предварительно высушенного материала из спекаемого вещества и связующего вещества можно использовать для размера прямоугольной координатной сетки перемычек и сквозных отверстий, который составляет 10 мм и больше. Соединение с переходной жидкой фазой отдельных слоев металлической фольги можно использовать при величине прямоугольной координатной сетки более 10 мм.
Ниже приводится пояснение предпочтительных вариантов выполнения многоотражательного многослойного комплекса, согласно изобретению, со ссылками на прилагаемые чертежи, на которых схематично изображено:
фиг.1 и 3 - первый вариант выполнения многоотражательного многослойного комплекса, согласно изобретению, в изометрической проекции;
фиг.2 - поперечный разрез на виде сверху второго варианта выполнения многоотражательного многослойного комплекса, согласно изобретению;
фиг.4 - обычная сконструированная пористая структура в изометрической проекции.
Как показано на фиг.1-3, многоотражательный многослойный комплекс имеет множество перфорированных экранных слоев 2, в которых предусмотрено множество сквозных отверстий 3 согласно прямоугольной координатной сетке. Через сквозные отверстия 3 проходит поток охлаждающей текучей среды, так что сквозные отверстия имеют каждое входную сторону 4 и выходную сторону 5.
Кроме того, многоотражательный многослойный комплекс 1 имеет множество слоев 6 перемычек, которые расположены каждый между двумя соседними перфорированными экранными слоями 2, так что многоотражательный многослойный комплекс 1 имеет образованную из перфорированных экранных слоев 2 и слоев 6 перемычек многослойную структуру. Слои 6 перемычек образованы из множества перемычек 7, которые также расположены в растре аналогично сквозным отверстиям 3 и проходят своими продольными направлениями перпендикулярно перфорированным экранным слоям 2. За счет этого с помощью перемычки 7 перекрывается расстояние между двумя соседними слоями 2 перфорированных экранов, так что тепло из слоя 2 перфорированных экранов может передаваться через перемычку 7 в другой перфорированный экранный слой 2.
Между соседними перемычками 7 в одном из слоев 6 перемычек образовано промежуточное пространство 8, в которое входит либо входная сторона 4 одного из сквозных отверстий 3, либо выходная сторона 5 одного из сквозных отверстий 3. За счет этого сквозные отверстия 3 расположены с зазором.
Перемычки 7 одного слоя 6 перемычек расположены каждая на одной линии с непосредственно соседними перемычками других слоев перемычек, при этом перемычки 7 в показанном первом варианте выполнения многоотражательного многослойного комплекса, согласно изобретению, имеют каждая круговое поперечное сечение 9. В противоположность этому, перемычки 7 в показанном на фиг.2 втором варианте выполнения многоотражательного многослойного комплекса, согласно изобретению, имеют ланцетовидное поперечное сечение, которое образовано двумя противоположными друг другу острыми кромками 11 и двумя противоположными друг другу тупыми кромками 12, при этом острые кромки 11 и тупые кромки 12 при прохождении по краю ланцетовидного поперечного сечения 10 расположены попеременно друг с другом. На воображаемой линии, которая пересекает обе острые кромки 11 ланцетовидного поперечного сечения 10 одной из перемычек 7, лежат относительно промежуточного пространства 8 сквозные отверстия 3 своими обращенными к промежуточному пространству 8 выходными сторонами 5. Аналогичным образом, на воображаемой линии, которая проходит через тупые кромки 12 ланцетовидных поперечных сечений 10 перемычек 7, лежат обращенные к промежуточному пространству 8 входные стороны 4 сквозных отверстий 3.
На фиг.1 и 3 внизу предусмотрена находящаяся в контакте по поверхности и с обеспечением теплопроводности с подлежащей охлаждению стенкой плоская сторона 17 многоотражательного многослойного комплекса 1. Противоположно этой плоской стороне 17 на многоотражательном многослойном комплексе 1 предусмотрена нагружаемая давлением охлаждающей среды плоская сторона 16. Поток охлаждающей среды проходит через сквозные отверстия 3 и входит на выходной стороне 5 в одно из промежуточных пространств 8 основным потоком 13. За счет того что диаметр сквозных отверстий 3 меньше ширины промежуточных пространств 8, в промежуточном пространстве 8 возникает завихрение 14 охлаждающей текучей среды. После этого возникает поперечный поток 14, который проходит от точки столкновения основного потока 13 с перфорированным экранным слоем 2 к входным отверстиям 4 расположенных со смещением в следующей плоскости сквозных отверстий 3. Охлаждающая текучая среда после этого выходит на входной стороне 4 сквозного отверстия 3 из промежуточного пространства 8 снова в качестве основного потока 13 и попадает через выходную сторону 5 сквозного отверстия 3 в лежащее ниже промежуточное пространство 8. Противоположно основному потоку 13 возникает передаваемый через перемычки 7 из стены тепловой поток 15. Тепловой поток 15 передается, при рассматривании в направлении основного потока 13, из промежуточного пространства 8 в промежуточное пространство 8 посредством конвективного переноса тепла в охлаждающую текучую среду, так что обеспечивается возможность охлаждения стены с помощью охлаждающей текучей среды, дополнительно к этому тепловой поток, который входит в каждый перфорированный экранный слой 2, частично принимается из охлаждающей текучей среды падающим перпендикулярно на перфорированный экранный слой 2 основным потоком 13. Таким образом, в целом происходит охлаждение многоотражательного многослойного комплекса 1 посредством комбинации из охлаждения за счет столкновения и конвективного охлаждения на конфигурации игольчатого типа.

Claims (24)

1. Многоотражательный многослойный комплекс для охлаждения стенки с помощью охлаждающей текучей среды, при этом многоотражательный многослойный комплекс выполнен с возможностью контактирования (17) с поверхностью подлежащей охлаждению стенки плоско и с обеспечением теплопроводности, а также имеет множество перфорированных экранных слоев (2) с множеством выполненных в качестве перфорированных экранов, расположенных с распределением по поверхности перфорированных экранных слоев (2) сквозных отверстий (3) и множество слоев (6) перемычек, которые расположены попеременно друг над другом с перфорированными экранными слоями (2) и имеют каждый множество перемычек (7), которые расположены с распределением по поверхности перфорированных экранных слоев (2) и перемыкают их, при этом каждая перемычка (7) одного слоя (6) перемычек расположена на одной линии с одной из перемычек (7) других слоев (6) перемычек, и каждое сквозное отверстие (3) одного перфорированного экранного слоя (2) расположено со смещением относительно сквозных отверстий (3) соседних перфорированных экранных слоев (2) так, что когда многоотражательный многослойный комплекс (1) на одной своей плоской стороне (16) нагружается охлаждающей текучей средой, охлаждающая текучая среда проходит через сквозные отверстия (3) и затопляет расположенные между перемычками (7) и перфорированными экранными слоями (2) промежуточные пространства (8), за счет чего обеспечивается возможность отвода переносимого из стенки в перемычки (7) теплового потока (15) с помощью охлаждающей текучей среды.
2. Многоотражательный многослойный комплекс по п.1, в котором продольные направления перемычек (7) проходят перпендикулярно перфорированным экранным слоям (2).
3. Многоотражательный многослойный комплекс по п.2, в котором перемычки (7) расположены согласно прямоугольной координатной сетке с равномерным распределением по поверхности перфорированных экранных слоев (2).
4. Многоотражательный многослойный комплекс по п.3, в котором сквозные отверстия (3) расположены на одинаковом расстоянии от четырех непосредственно соседних перемычек (7), и образованное между четырьмя перемычками (7) промежуточное пространство имеет либо в одном перфорированном экранном слое (2), либо в другом перфорированном экранном слое одно из сквозных отверстий (3), так что сквозные отверстия (3) расположены с зазором.
5. Многоотражательный многослойный комплекс по п.4, в котором перемычки (7) имеют круговое поперечное сечение (9).
6. Многоотражательный многослойный комплекс по п.4, в котором перемычки (7) имеют ланцетовидное поперечное сечение (10) с двумя противоположно лежащими тупыми кромками (12) и двумя противоположно лежащими острыми кромками (11).
7. Многоотражательный многослойный комплекс по п.6, в котором на воображаемых, пересекающих острые кромки (11) линиях лежат сквозные отверстия (3) того перфорированного экранного слоя (2), через который охлаждающая текучая среда выходит в образованное между четырьмя перемычками (7) промежуточное пространство (8), когда многоотражательный многослойный комплекс (1) на своей одной плоской стороне (16) нагружается давлением охлаждающей текучей среды.
8. Многоотражательный многослойный комплекс по п.6 или 7, в котором на воображаемых, пересекающих тупые кромки (12) линиях лежат сквозные отверстия (3) того перфорированного экранного слоя (2), через который охлаждающая текучая среда входит в образованное между четырьмя перемычками (7) промежуточное пространство (8), когда многоотражательный многослойный комплекс (1) на своей одной плоской стороне (16) нагружается давлением охлаждающей текучей среды.
9. Многоотражательный многослойный комплекс по любому из пп.1-7, в котором у сквозных отверстий (3) перфорированные экранные пластины округлены.
10. Многоотражательный многослойный комплекс по п.8, в котором у сквозных отверстий (3) перфорированные экранные пластины округлены.
11. Стенка с многоотражательным многослойным комплексом по любому из пп.1-10, причем многоотражательный многослойный комплекс (1) контактирует (17) с поверхностью стенки плоско и с обеспечением теплопроводности.
12. Стенка по п.11, при этом многоотражательный многослойный комплекс прилегает к стенке одним из слоев (6) перемычек, и стенка имеет множество сквозных отверстий (3), так что стенка выполнена в качестве одного из перфорированных экранных слоев (2).
13. Способ изготовления многоотражательного многослойного комплекса (1) по любому из пп.1-10, включающий стадию печатания друг на друге отдельных слоев многоотражательного многослойного комплекса способом трафаретной печати, при этом для каждых двух перфорированных экранных слоев (2) и одного слоя (6) перемычек создают один трафарет, через который продавливается паста.
14. Способ по п.13, при котором паста имеет металлический порошок и связующее вещество.
15. Способ по п.13 или 14, при котором трафарет изготавливают из металлической фольги фотохимическим способом.
16. Способ по п.13 или 14, при котором многоотражательный многослойный комплекс (1) подвергают спеканию.
17. Способ по п.15, при котором многоотражательный многослойный комплекс (1) подвергают спеканию.
18. Способ по п.13 или 14, при котором толщина перфорированных экранных пластин имеет одинаковый порядок величины с толщиной слоев (6) перемычек.
19. Способ по п.15, при котором толщина перфорированных экранных пластин имеет одинаковый порядок величины с толщиной слоев (6) перемычек.
20. Способ по п.17, при котором толщина перфорированных экранных пластин имеет одинаковый порядок величины с толщиной слоев (6) перемычек.
21. Способ изготовления многоотражательного многослойного комплекса (1) по любому из пп.1-8, содержащий стадии:
- предварительного изготовления блоков многоотражательного многослойного комплекса (1) из слоев с постоянным поперечным сечением;
- предварительной сушки и штабелирования друг на друге блоков.
22. Способ по п.22, при котором многоотражательный многослойный комплекс (1) подвергают спеканию.
23. Способ по п.21 или 22, при котором толщина перфорированных экранных пластин имеет одинаковый порядок величины с толщиной слоев (6) перемычек.
24. Способ изготовления многоотражательного многослойного комплекса по любому из пп.1-8, содержащий стадии:
- создания перфорированных экранных слоев (2) и слоев (6) перемычек из тонкой металлической фольги;
- штабелирования слоев металлической фольги с образованием многоотражательного многослойного комплекса (1);
- соединения слоев металлической фольги с помощью соединения с переходной жидкой фазой.
RU2009146588/06A 2008-12-16 2009-12-15 Многоотражательный многослойный комплекс для охлаждения стенки и способ изготовления такого многоотражательного многослойного комплекса (варианты) RU2518773C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08021833A EP2199725B1 (de) 2008-12-16 2008-12-16 Multi-Impingement-Verbund zum Kühlen einer Wand
EPEP08021833 2008-12-16

Publications (2)

Publication Number Publication Date
RU2009146588A RU2009146588A (ru) 2011-06-20
RU2518773C2 true RU2518773C2 (ru) 2014-06-10

Family

ID=40600134

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009146588/06A RU2518773C2 (ru) 2008-12-16 2009-12-15 Многоотражательный многослойный комплекс для охлаждения стенки и способ изготовления такого многоотражательного многослойного комплекса (варианты)

Country Status (5)

Country Link
EP (1) EP2199725B1 (ru)
JP (1) JP5511352B2 (ru)
CN (1) CN101787904B (ru)
AT (1) ATE528606T1 (ru)
RU (1) RU2518773C2 (ru)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10018052B2 (en) 2012-12-28 2018-07-10 United Technologies Corporation Gas turbine engine component having engineered vascular structure
US10036258B2 (en) 2012-12-28 2018-07-31 United Technologies Corporation Gas turbine engine component having vascular engineered lattice structure
GB201403404D0 (en) 2014-02-27 2014-04-16 Rolls Royce Plc A combustion chamber wall and a method of manufacturing a combustion chamber wall
CN105222158B (zh) * 2014-06-30 2018-04-13 中国航发商用航空发动机有限责任公司 浮动瓦块以及燃烧室火焰筒
US10094287B2 (en) 2015-02-10 2018-10-09 United Technologies Corporation Gas turbine engine component with vascular cooling scheme
EP3170980B1 (en) * 2015-11-23 2021-05-05 Raytheon Technologies Corporation Components for gas turbine engines with lattice cooling structure and corresponding method for producing
US10077664B2 (en) 2015-12-07 2018-09-18 United Technologies Corporation Gas turbine engine component having engineered vascular structure
US10221694B2 (en) 2016-02-17 2019-03-05 United Technologies Corporation Gas turbine engine component having vascular engineered lattice structure
JP6717662B2 (ja) * 2016-05-20 2020-07-01 株式会社Ihi ラティス構造
EP3478941B1 (en) * 2016-08-30 2021-02-24 Siemens Energy Global GmbH & Co. KG Impingement cooling features for gas turbines
CN110462166B (zh) 2017-04-07 2022-12-20 通用电气公司 用于涡轮组件的冷却组件
US10774653B2 (en) 2018-12-11 2020-09-15 Raytheon Technologies Corporation Composite gas turbine engine component with lattice structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2087065A (en) * 1980-11-08 1982-05-19 Rolls Royce Wall structure for a combustion chamber
RU2168039C2 (ru) * 1996-07-05 2001-05-27 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - ВНИИГАЗ" Двигатель внутреннего сгорания с уменьшенным теплоотводом и способ его изготовления
US6255000B1 (en) * 1992-02-18 2001-07-03 Allison Engine Company, Inc. Single-cast, high-temperature, thin wall structures
RU2298732C1 (ru) * 2004-09-09 2007-05-10 Юнайтид Текнолоджиз Копэрейшн Панель тепловой защиты камеры сгорания, охлаждаемый компонент газотурбинного двигателя (варианты) и способ его изготовления (варианты)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3900629A (en) * 1973-09-14 1975-08-19 Bendix Corp Porous laminate and method of manufacture
GB2049152B (en) * 1979-05-01 1983-05-18 Rolls Royce Perforate laminated material
US4296606A (en) * 1979-10-17 1981-10-27 General Motors Corporation Porous laminated material
US5145001A (en) * 1989-07-24 1992-09-08 Creare Inc. High heat flux compact heat exchanger having a permeable heat transfer element
US20020119079A1 (en) * 1999-12-10 2002-08-29 Norbert Breuer Chemical microreactor and microreactor made by process
US6902372B2 (en) * 2003-09-04 2005-06-07 Siemens Westinghouse Power Corporation Cooling system for a turbine blade
EP1533113A1 (de) * 2003-11-14 2005-05-25 Siemens Aktiengesellschaft Hochtemperatur-Schichtsystem zur Wärmeableitung und Verfahren zu dessen Herstellung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2087065A (en) * 1980-11-08 1982-05-19 Rolls Royce Wall structure for a combustion chamber
US6255000B1 (en) * 1992-02-18 2001-07-03 Allison Engine Company, Inc. Single-cast, high-temperature, thin wall structures
RU2168039C2 (ru) * 1996-07-05 2001-05-27 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - ВНИИГАЗ" Двигатель внутреннего сгорания с уменьшенным теплоотводом и способ его изготовления
RU2298732C1 (ru) * 2004-09-09 2007-05-10 Юнайтид Текнолоджиз Копэрейшн Панель тепловой защиты камеры сгорания, охлаждаемый компонент газотурбинного двигателя (варианты) и способ его изготовления (варианты)

Also Published As

Publication number Publication date
EP2199725B1 (de) 2011-10-12
EP2199725A1 (de) 2010-06-23
CN101787904A (zh) 2010-07-28
JP2010144722A (ja) 2010-07-01
ATE528606T1 (de) 2011-10-15
RU2009146588A (ru) 2011-06-20
CN101787904B (zh) 2016-06-08
JP5511352B2 (ja) 2014-06-04

Similar Documents

Publication Publication Date Title
RU2518773C2 (ru) Многоотражательный многослойный комплекс для охлаждения стенки и способ изготовления такого многоотражательного многослойного комплекса (варианты)
US7938624B2 (en) Cooling arrangement for a component of a gas turbine engine
US10196901B2 (en) Cooling of engine components
JP2010144722A6 (ja) 壁を冷却するための多重インピンジメント複合体
EP1803897B1 (en) Gas turbine blade wall cooling arrangement
US7270515B2 (en) Turbine airfoil trailing edge cooling system with segmented impingement ribs
CA2383959C (en) Heat transfer promotion structure for internally convectively cooled airfoils
US10787911B2 (en) Cooling configuration for a gas turbine engine airfoil
EP1533480A2 (en) Hot gas path component with mesh and turbulated cooling
KR101163290B1 (ko) 가스 터빈 블레이드 및 이것을 구비한 가스 터빈
US20120177503A1 (en) Component cooling channel
US20130149169A1 (en) Component having cooling channel with hourglass cross section
JP6324417B2 (ja) ガスタービン用の冷却される複合シート
CN101482029B (zh) 涡轮叶片叶冠
US8955333B2 (en) Heat exchange bulkhead
CN108367536B (zh) 负泊松比华夫式结构
CN112097552A (zh) 一种复合式的紧凑型换热器芯体
JP2023512425A (ja) ろう付けプレート式熱交換器及びその使用
JP4930276B2 (ja) 高温部品の内面冷却構造
JP2006183945A (ja) オイルクーラ
CN109083689B (zh) 凹部、冷却结构、冷却组件和形成凹部的方法
KR101682639B1 (ko) 다공성 미세구조를 가지는 최외곽 유로를 포함하는 가스터빈 베인 및 블레이드
WO2020013863A1 (en) Airfoil for a turbine engine incorporating pins
CN110449030B (zh) 催化剂结构体
JP5105287B2 (ja) 通気性蓄熱板

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191216