RU2516375C1 - Датчик давления на основе нано- и микроэлектромеханической системы для прецизионных измерений - Google Patents

Датчик давления на основе нано- и микроэлектромеханической системы для прецизионных измерений Download PDF

Info

Publication number
RU2516375C1
RU2516375C1 RU2012151028/28A RU2012151028A RU2516375C1 RU 2516375 C1 RU2516375 C1 RU 2516375C1 RU 2012151028/28 A RU2012151028/28 A RU 2012151028/28A RU 2012151028 A RU2012151028 A RU 2012151028A RU 2516375 C1 RU2516375 C1 RU 2516375C1
Authority
RU
Russia
Prior art keywords
membrane
radius
rigid center
nano
support base
Prior art date
Application number
RU2012151028/28A
Other languages
English (en)
Inventor
Евгений Михайлович Белозубов
Валерий Анатольевич Васильев
Дмитрий Михайлович Хованов
Павел Сергеевич Чернов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ)
Priority to RU2012151028/28A priority Critical patent/RU2516375C1/ru
Application granted granted Critical
Publication of RU2516375C1 publication Critical patent/RU2516375C1/ru

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

Изобретение относится к измерительной технике и может быть использовано для прецизионных измерений давления жидких и газообразных сред. Сущность: датчик содержит корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из упругого элемента в виде мембраны с жестким центром, заделанной по контуру в опорное основание, образованной на ней гетерогенной структуры из тонких пленок материалов, герметизирующей контактной колодки и соединительных проводников. Сформированные в гетерогенной структуре радиальные тензорезисторы, установленные по двум окружностям, состоят из идентичных тензоэлементов в форме квадратов, соединенных тонкопленочными перемычками и включенных в мостовую измерительную цепь. Центры первых и вторых тензоэлементов размещены по окружностям с радиусами, определенными по соответствующим соотношениям. Между мембраной и жестким центром, а также мембраной и опорным основанием выполнены закругления с определенным радиусом. Технический результат: повышение точности и технологичности. 1 табл., 9 ил.

Description

Изобретение относится к измерительной технике и может быть использовано для прецизионных измерений давления жидких и газообразных сред.
Современные тонкопленочные тензорезисторные датчики давления относятся к изделиям нано- и микросистемной техники [1, 2], они содержат нано- и микроэлектромеханические системы (НиМЭМС), состоящие из упругого элемента (УЭ) простой (мембрана, стержень, балка и т.п.) или сложной формы (две мембраны, соединенные между собой силопередающим штоком; мембрана, соединенная со стержнем; балка с отверстиями и прорезями и др.), гетерогенной структуры, герметизирующей контактной колодки, соединительных проводников. Гетерогенная структура состоит из нано- и микроразмерных тонкопленочных диэлектрических, тензорезистивных, терморезистивных, контактных и других слоев, сформированных на мембране. По данным последних разработок толщина тензорезистивного слоя может быть 40-100 нм. Образованные в гетерогенной структуре элементы (тензорезисторы, терморезисторы, контактные проводники и др.) объединяются в измерительную цепь.
Известны тензорезисторные датчики давления с тензорезисторами, расположенными на мембране в радиальном направлении и соединенными в мостовую измерительную цепь, и способы их изготовления [3, 4]. При толщинах мембран ~0,25 мм (0,2…0,3 мм) таким датчикам свойственна достаточно высокая нелинейность (до 0,4%) из-за неоптимального расположения тензорезисторов по радиусу мембраны.
Наиболее близким по технической сущности к предлагаемому решению является выбранный в качестве прототипа датчик давления на основе нано- и микроэлектромеханической системы, содержащий корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из упругого элемента в виде мембраны (толщиной ~0,25 мм) с жестким центром заделанной по контуру в опорное основание, образованной на ней гетерогенной структуры из тонких пленок материалов, герметизирующей контактной колодки и соединительных проводников. Сформированные в гетерогенной структуре радиальные тензорезисторы, установленные по двум окружностям, состоят из идентичных тензоэлементов в форме квадратов, соединенных тонкопленочными перемычками, включенными в мостовую измерительную цепь [5].
Недостатком известной конструкции датчика давления является сравнительно невысокая точность из-за возникающей нелинейности мостовой измерительной цепи, которая обусловлена тем, что расположенные на периферии мембраны и на границе тонкой части мембраны и жесткого центра радиальные тензорезисторы неодинаково деформируются. Радиальные тензорезисторы, находящиеся на периферии мембраны, испытывают большие деформации, чем испытывают деформации радиальные тензорезисторы, расположенные на границе тонкой части мембраны и жесткого центра. Вследствие этого происходит неодинаковое изменение сопротивлений тензорезисторов смежных плеч мостовой измерительной цепи. Появляется погрешность от нелинейности, которая зависит от коэффициента симметрии k и относительных изменений сопротивлений плеч измерительной цепи ε1, ε2, ε3, ε4 [6]. Для тензорезисторных датчиков по прототипу при толщинах мембран 0,2…0,3 мм величина нелинейности может достигать 0,06%.
Таким образом, в известном датчике давления возникает погрешность от нелинейности измерительной цепи, которая обусловлена возникновением несимметрии сопротивлений и различием относительных изменений сопротивлений радиальных тензорезисторов, расположенных на периферии мембраны, и радиальных тензорезисторов, расположенных на границе тонкой части мембраны и жесткого центра, при деформациях мембраны.
Кроме того, недостатком известного датчика давления является невысокая технологичность изготовления датчика в связи с невозможностью предварительного определения диаметра жесткого центра и радиусов закруглений и радиусов окружностей для расположения тензорезисторов, соответствующих оптимальным значениям. Недостатком также является низкая устойчивость к воздействию виброускорений.
Задачей предлагаемого изобретения является повышение точности за счет уменьшения нелинейности и повышения чувствительности путем определения оптимального расположения тензоэлементов на мембране, имеющей жесткий центр и закругления у жесткого центра и основания. Кроме того, задачей предлагаемого изобретения является повышение технологичности изготовления датчика за счет предварительного определения диаметра жесткого центра и радиусов закруглений, радиусов окружностей для расположения тензорезисторов, соответствующих оптимальным значениям.
Техническим результатом изобретения является повышение точности за счет уменьшения нелинейности измерительной цепи датчика и повышения чувствительности, путем расположения радиальных тензоэлементов, воспринимающих отрицательные радиальные деформации на окружности с радиусом, при котором абсолютные значения отрицательных радиальных деформаций равны максимальным положительным радиальным деформациям мембраны. Кроме того, техническим результатом является повышение технологичности изготовления датчика за счет возможности определения расчетным путем необходимого диаметра жесткого центра и радиусов закруглений, а также радиусов окружностей для расположения тензорезисторов, при которых обеспечивается минимальная нелинейность мостовой измерительной цепи и максимальная чувствительность. Также техническим результатом предлагаемого изобретения является повышение виброустойчивости (при обеспечении минимальной нелинейности) за счет возможности увеличения жесткости заделки мембраны, путем увеличения радиусов закруглений у жесткого центра мембраны и на ее периферии в месте заделки (основания мембраны) и возможности определения, соответствующих им, оптимальных диаметра жесткого центра мембраны и радиусов окружностей для расположения тензорезисторов.
Это достигается тем, что в известном датчике давления на основе нано- и микроэлектромеханической системы, содержащем корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из упругого элемента в виде мембраны (толщиной ~0,25 мм) с жестким центром, заделанной по контуру в опорное основание, образованной на ней гетерогенной структуры из тонких пленок материалов, герметизирующей контактной колодки и соединительных проводников, в которой сформированные в гетерогенной структуре радиальные тензорезисторы, установленные по двум окружностям, состоят из идентичных тензоэлементов в форме квадратов, соединенных тонкопленочными перемычками, включенными в мостовую измерительную цепь, в соответствии с предлагаемым изобретением, центры первых радиальных тензоэлементов размещены по окружности, радиус которой определен по соотношению:
R 1 = ( 5,0504 R з 3 + 7,7355 R з 2 4.6267 R з 1,4888 ) R м , ( 1 )
Figure 00000001
а центры вторых радиальных тензоэлементов размещены по окружности, радиус которой определен по соотношению:
R 2 = ( 0,5994 R з 3 + 0,9602 R з 2 0.8344 R з + 1,1218 ) R м , ( 2 )
Figure 00000002
при этом между мембраной и жестким центром, а также мембраной и опорным основанием выполнены закругления с радиусом, который определен по соотношению:
R З i = 0 6 p i ( R ж ц R м ) i ( 3 )
Figure 00000003
где R ж ц R м
Figure 00000004
- относительный радиус жесткого центра, который задан в интервале от 0,04 до 0,73 (относительных единиц); Rжц - радиус жесткого центра; Rм - радиус мембраны; RЗ - радиус закругления между мембраной и жестким центром, а также между мембраной и опорным основанием, pi - коэффициенты полинома, приведенные в таблице 1:
Таблица 1
i 0 1 2 3 4 5 6
pi 0,6935 -0,358 -1,646 1,208 2,54 -7,015 5,23
На фиг.1 показана конструкция датчика давления для прецизионных измерений, который изготавливается по предлагаемому способу. Он содержит нано- и микроэлектромеханическую систему (НиМЭМС) 1, установленную в корпус 2, выводные проводники 3 и втулку выводных проводников 4.
На фиг.2 отдельно показана НиМЭМС датчика давления для прецизионных измерений, состоящая из упругого элемента 5, герметизирующей втулки 6, контактной колодки 7, диэлектрической втулки 8, выводных колков 9 и соединительных проводников 10. Тонкопленочная НиМЭМС 1 представляет собой конструктивно законченный герметичный модуль, обеспечивающий высокую технологичность сборки датчика.
На фиг.3 показан упругий элемент 5 (см. фиг.2) НиМЭМС датчика, который содержит мембрану 11 толщиной ~0,25 мм (0,2…0,3 мм) с жестким центром 12 (фиг.3), жесткозаделанную в опорное основание 13. На планарной стороне мембраны 11 методами тонкопленочной технологии образована гетерогенная структура 14 из нано- и микроразмерных пленок материалов, содержащая тонкопленочные диэлектрические, тензорезистивные и контактные слои. В гетерогенной структуре 14 с использованием фотолитографии и травления сформированы по двум окружностям первые 15, 16 и вторые 17, 18 радиальные тензорезисторы из идентичных тензоэлементов, контактные проводники и контактные площадки к ним. Тензорезисторы 15, 16 и 17, 18 включены в противоположные плечи мостовой измерительной цепи соответственно.
Центры первых радиальных тензоэлементов тензорезисторов 15, 16 размещены по окружности, радиус которой определен по соотношению (1):
R 1 = ( 5,0504 R з 3 + 7,7355 R з 2 4.6267 R з 1,4888 ) R м
Figure 00000005
,
а центры вторых радиальных тензоэлементов тензорезисторов 17, 18 размещены по окружности, радиус которой определен по соотношению (2):
R 2 = ( 0,5994 R з 3 + 0,9602 R з 2 0.8344 R з + 1,1218 ) R м
Figure 00000006
,
где RЗ - радиус закругления между мембраной и жестким центром, а также между мембраной и опорным основанием, Rм - радиус мембраны.
При этом между мембраной 11 и жестким центром 12, а также мембраной 11 и опорным основанием 13 выполнены закругления с радиусом, который перед этим определен по соотношению (3):
R З i = 0 6 p i ( R ж ц R м ) i
Figure 00000007
,
где R ж ц R м
Figure 00000008
- относительный радиус жесткого центра, который задают в интервале от 0,04 до 0,73 (относительных единиц); Rжц - радиус жесткого центра; Rм - радиус мембраны; RЗ - радиус закругления между мембраной и жестким центром, а также между мембраной и опорным основанием, рi - коэффициенты полинома (3), приведенные в таблице 1.
Таблица 1
i 0 1 2 3 4 5 6
pi 0,6935 -0,358 -1,646 1,208 2,54 -7,015 5,23
На фиг.4 отдельно показан один тензоэлемент тензорезисторов 15-18 (см. фиг.3), сформированный в гетерогенной структуре 14, которая образуется на заранее подготовленной поверхности мембраны 11 (см. фиг.4), высота микронеровностей не должна превышать 50-100 нм. При высоте микронеровностей более 100 нм становится принципиально невозможным формирование устойчивых тонкопленочных структур. Гетерогенная структура состоит из подслоя диэлектрика 19 (к примеру, хром - Cr толщиной от 150-до 300 нм), диэлектрического слоя 20 (например, SiO-SiO2), тензорезистивного слоя 21 (например, сплав Х20Н75Ю толщиной 40-100 нм), подслоя проводников 22 (например, ванадий - V), проводников и контактных площадок 23 (к примеру, золото - Au).
Соотношения (1), (2), (3) были получены аппроксимацией данных, полученных в результате численного моделирования деформаций методом конечных элементов.
На фиг.5 показаны зависимости изменения значений максимальных отрицательных (поверхность 1) (для наглядности отрицательные деформации взяты с обратным знаком, т.е. по модулю) и максимальных положительных (поверхность 2) деформаций от изменения радиуса закруглений RЗ и относительного радиуса жесткого центра R ж ц R м
Figure 00000008
. Линия пересечения поверхностей 1 и 2 обозначена кривой 1, что соответствует значениям максимальных относительных деформаций положительного и отрицательного знака, равным по абсолютной величине).
На фиг.6 изображен график зависимости значения радиусов закругления RЗ от изменения значения относительного радиуса жесткого центра R ж ц R м
Figure 00000008
, при котором относительные деформации разного (положительного и отрицательного) знака равны по абсолютной величине.
На фиг.7 представлены графики зависимостей относительных радиусов x R м
Figure 00000009
(x - положение текущего радиуса мембраны; Rм - радиус мембраны) положения на мембране максимальных отрицательных деформаций (кривая 1 соответствует выражению (1)) и максимальных положительных деформаций (кривая 2 соответствует выражению (2)), равных по абсолютному значению, в зависимости от радиуса закруглений RЗ.
Рассмотрим пример определения радиусов положения максимальных значений относительной радиальной деформации положительного (R1) и отрицательного (R2) знаков, равных между собой по абсолютному значению. Возьмем радиус мембраны Rм=2,5 мм, относительный радиус жесткого центра R ж ц R м = 0,3
Figure 00000010
, подставим значения в выражение (3) и получим RЗ=0,477 мм. Тогда для нахождения окружности R1 на плоской стороне мембраны с максимальным значением относительной радиальной деформации положительного знака подставим значения RЗ и Rм в выражение (1) и получим R1=1,23 мм. Аналогично, для нахождения радиуса окружности R2 на плоской стороне мембраны с максимальным значением относительной радиальной деформации отрицательного знака, подставим значения Rз и Rм в выражение (2) и получим R2=2,19 мм.
Датчик давления для прецизионных измерений работает следующим образом. Измеряемое давление воздействует на мембрану 11 с жестким центром 12. В результате чего мембрана изгибается, и на ее планарной поверхности возникают деформации, которые воспринимаются тензорезисторами 15, 16, 17, 18, включенными в мостовую измерительную цепь. Изменение сопротивлений тензорезисторов преобразуется мостовой измерительной цепью в выходной сигнал.
В связи с размещением радиальных тензорезисторов 15, 16 и 17, 18 на окружностях с радиусами R1 и R2 соответственно они оказываются расположенными в зонах максимальных деформаций, тензорезисторы 15, 16 в зоне положительных деформаций, а тензорезисторы 17, 18 в зоне отрицательных деформаций. При этом максимальные значения относительной радиальной деформации в этих зонах равны по абсолютному значению, вследствие чего тензорезисторы 15, 16 и 17, 18 изменяют свое сопротивление от номинального значения пропорционально друг другу (но с разным знаком). Тем самым повышается линейность выходного сигнала мостовой измерительной цепи во всем диапазоне измеряемого давления.
Для каждого относительного радиуса жесткого центра R ж ц R м
Figure 00000008
в интервале значений от 0,04 до 0,732 может быть определен радиус закругления RЗ (см. фиг.6) согласно выражению (3), которому соответствуют относительные радиусы положения на мембране максимальных значений относительных радиальных деформаций разного знака (кривая 1 и кривая 2 на фиг.7), равных по абсолютному значению.
При изготовлении датчика давления по известному способу (по прототипу) радиус закругления между мембраной и жестким центром, а также между мембраной и опорным основанием обычно равен RЗ=0,1 мм (получаемый неизбежно в результате механической обработки режущим инструментом). В этом случае жесткость мембраны изменяется только за счет изменения значения относительного радиуса R ж ц R м
Figure 00000008
жесткого центра. Согласно предлагаемому способу жесткость мембраны может меняться за счет изменения значения относительного радиуса R ж ц R м
Figure 00000008
жесткого центра и за счет изменения значения радиуса закругления RЗ. Увеличение радиуса закругления RЗ увеличивает жесткость мембраны и позволяет уменьшить значение относительного радиуса жесткого центра R ж ц R м
Figure 00000008
.
Как показывают исследования, увеличение радиуса закругления между мембраной и жестким центром, а также между краем мембраны и опорным основанием увеличивает жесткость мембраны, а следовательно, увеличивает частоту ее собственных колебаний. На фиг.8 изображены зависимости частоты первой моды собственных колебаний мембраны от относительного радиуса жесткого центра R ж ц R м
Figure 00000008
для прототипа (кривая 1, RЗ - постоянный и равен 0,1 мм) и для предлагаемой конструкции (кривая 2, RЗ - рассчитывается согласно выражению (3)). Как видно из фиг.8, частота первой моды собственных колебаний для предлагаемой конструкции (кривая 2) выше, чем у прототипа (кривая 1). В связи с этим частотная погрешность, определяемая собственной частотой колебаний мембраны, у предлагаемой конструкции будет меньше.
Поскольку увеличение радиуса RЗ закруглений приводит к увеличению жесткости мембраны, равенство максимальных положительных и отрицательных деформаций достигается при меньших значениях относительного радиуса жесткого центра R ж ц R м
Figure 00000008
по сравнению с конструкцией прототипа. Уменьшение относительного радиуса жесткого центра R ж ц R м
Figure 00000008
приводит к уменьшению массы мембраны и увеличению ее собственной частоты, тем самым уменьшается частотная погрешность и повышается устойчивость датчика к воздействию виброускорений.
На фиг.9 представлены зависимости максимальных значений относительных радиальных деформаций от относительного радиуса жесткого центра для прототипа (кривая 1) и для конструкции, изготовленной по предлагаемому способу (кривая 2).
Благодаря отличительным признакам изобретения повышается точность датчика за счет уменьшения нелинейности выходного сигнала мостовой измерительной цепи и повышения чувствительности. Кроме того, повышается технологичность за счет возможности размещения тензорезисторов на поверхности мембраны оптимальным образом при различных соотношениях относительного радиуса жесткого центра R ж ц R м
Figure 00000008
и радиуса закругления RЗ. Кроме того, повышается виброустойчивость за счет возможности увеличения жесткости мембраны (увеличения радиусов закругления RЗ) и уменьшения ее массы (уменьшения относительного радиуса жесткого центра R ж ц R м
Figure 00000008
).
Таким образом, предлагаемое изобретение выгодно отличается от известных ранее. Оно позволяет повысить точность за счет уменьшения нелинейности, частотной погрешности и повышения чувствительности. Кроме того, позволяет повысить технологичность изготовления датчика давления для прецизионных измерений и его виброустойчивость.
Источники информации
1. Белозубов Е.М, Белозубова Н.Е. Тонкопленочные тензорезисторные датчики давления - изделия нано- и микросистемной техники // Нано- и микросистемная техника - 2007. - №.12. - С.49-51.
2. Белозубов Е.М., Васильев В.А., Громков Н.В. Тонкопленочные нано- и микроэлектромеханические системы - основа современных и перспективных датчиков давления для ракетной и авиационной техники // Измерительная техника - М., 2009. - №7. - С.35-38.
3. Васильев В.А. Технологические особенности твердотельных мембранных чувствительных элементов // Вестник Московского государственного технического университета. Сер. Приборостроение. - М., 2002. - №4. - С.97-108.
4. Патент РФ №2398195, МПК G01L 9/04, B82B 3/00. Бюл. №24 от 27.08.10. Способ изготовления нано- и микроэлектромеханической системы датчика давления и датчик давления на ее основе / Е.М.Белозубов, В.А.Васильев, П.С.Чернов.
5. Патент РФ №2345341, МПК G01L 9/04, G01L 7/08. Бюл. №3 от 27.01.09. Датчик давления / Е.М.Белозубов, Н.Е.Белозубова.
6. Васильев В.А., Тихонов А.И. Анализ и синтез измерительных цепей преобразователей информации на основе твердотельных структур // Метрология. - М., 2003. - №1. - С.3-20.

Claims (1)

  1. Датчик давления на основе нано- и микроэлектромеханической системы, содержащий корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из упругого элемента в виде мембраны с жестким центром, заделанной по контуру в опорное основание, образованной на ней гетерогенной структуры из тонких пленок материалов, герметизирующей контактной колодки и соединительных проводников, в которой сформированные в гетерогенной структуре радиальные тензорезисторы, установленные по двум окружностям, состоят из идентичных тензоэлементов в форме квадратов, соединенных тонкопленочными перемычками и включенных в мостовую измерительную цепь, в соответствии с предлагаемым изобретением, центры первых радиальных тензоэлементов размещены по окружности, радиус которой определен по соотношению
    Figure 00000001

    а центры вторых радиальных тензоэлементов размещены по окружности, радиус которой определен по соотношению
    Figure 00000011

    при этом между мембраной и жестким центром, а также мембраной и опорным основанием выполнены закругления с радиусом, который определен по соотношению
    Figure 00000012

    где
    Figure 00000004
    - относительный радиус жесткого центра, который задан в интервале от 0,04 до 0,73 (относительных единиц); Rжц - радиус жесткого центра; Rм - радиус мембраны; RЗ - радиус закругления между мембраной и жестким центром, а также между мембраной и опорным основанием, pi - коэффициенты полинома, приведенные в таблице 1
    Таблица 1 i 0 1 2 3 4 5 6 pi 0,6935 -0,358 -1,646 1,208 2,54 -7,015 5,23
RU2012151028/28A 2012-11-28 2012-11-28 Датчик давления на основе нано- и микроэлектромеханической системы для прецизионных измерений RU2516375C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012151028/28A RU2516375C1 (ru) 2012-11-28 2012-11-28 Датчик давления на основе нано- и микроэлектромеханической системы для прецизионных измерений

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012151028/28A RU2516375C1 (ru) 2012-11-28 2012-11-28 Датчик давления на основе нано- и микроэлектромеханической системы для прецизионных измерений

Publications (1)

Publication Number Publication Date
RU2516375C1 true RU2516375C1 (ru) 2014-05-20

Family

ID=50778942

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012151028/28A RU2516375C1 (ru) 2012-11-28 2012-11-28 Датчик давления на основе нано- и микроэлектромеханической системы для прецизионных измерений

Country Status (1)

Country Link
RU (1) RU2516375C1 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1712802A1 (ru) * 1989-02-13 1992-02-15 Предприятие П/Я А-1891 Датчик давлени
WO1994029685A1 (en) * 1993-06-03 1994-12-22 Kavlico Corporation Sensitive resistive pressure transducer
RU2345341C1 (ru) * 2007-06-19 2009-01-27 Федеральное государственное унитарное предприятие Научно-исследовательский институт физических измерений Тонкопленочный датчик давления
US7762138B2 (en) * 2003-12-11 2010-07-27 Proteus Biomedical, Inc. Pressure sensor circuits
RU2397460C1 (ru) * 2009-06-01 2010-08-20 Государственное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ) Датчик давления на основе тензорезисторной тонкопленочной нано- и микроэлектромеханической системы
RU2411474C1 (ru) * 2010-02-15 2011-02-10 Евгений Михайлович Белозубов Датчик давления повышенной точности на основе нано- и микроэлектромеханической системы с тонкопленочными тензорезисторами
RU2427810C1 (ru) * 2010-05-13 2011-08-27 Государственное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ) Датчик давления повышенной чувствительности на основе нано- и микроэлектромеханической системы с тонкопленочными тензорезисторами

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1712802A1 (ru) * 1989-02-13 1992-02-15 Предприятие П/Я А-1891 Датчик давлени
WO1994029685A1 (en) * 1993-06-03 1994-12-22 Kavlico Corporation Sensitive resistive pressure transducer
US7762138B2 (en) * 2003-12-11 2010-07-27 Proteus Biomedical, Inc. Pressure sensor circuits
RU2345341C1 (ru) * 2007-06-19 2009-01-27 Федеральное государственное унитарное предприятие Научно-исследовательский институт физических измерений Тонкопленочный датчик давления
RU2397460C1 (ru) * 2009-06-01 2010-08-20 Государственное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ) Датчик давления на основе тензорезисторной тонкопленочной нано- и микроэлектромеханической системы
RU2411474C1 (ru) * 2010-02-15 2011-02-10 Евгений Михайлович Белозубов Датчик давления повышенной точности на основе нано- и микроэлектромеханической системы с тонкопленочными тензорезисторами
RU2427810C1 (ru) * 2010-05-13 2011-08-27 Государственное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ) Датчик давления повышенной чувствительности на основе нано- и микроэлектромеханической системы с тонкопленочными тензорезисторами

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. *

Similar Documents

Publication Publication Date Title
RU2398195C1 (ru) Способ изготовления нано- и микроэлектромеханической системы датчика давления и датчик давления на его основе
EP3236226B1 (en) Method of manufacturing a pressure sensor
Kumar et al. Design principles and considerations for the ‘ideal’silicon piezoresistive pressure sensor: a focused review
Wang et al. A silicon-based shear force sensor: development and characterization
US9513182B2 (en) Pressure sensor having multiple piezoresistive elements
US10782196B2 (en) Strain gauge with mechanically decoupled temperature sensor
Basov et al. Development of high-sensitivity piezoresistive pressure sensors for− 0.5…+ 0.5 kPa
CN104020036B (zh) 一种确定横向集中载荷下环形预应力薄膜最大挠度的方法
CN104019931B (zh) 一种确定横向集中载荷下环形预应力薄膜最大应力的方法
RU2362133C1 (ru) Микроэлектронный датчик абсолютного давления и чувствительный элемент абсолютного давления
US11092504B2 (en) Micromechanical redundant piezoresistive array pressure sensor
RU2411474C1 (ru) Датчик давления повышенной точности на основе нано- и микроэлектромеханической системы с тонкопленочными тензорезисторами
RU2516375C1 (ru) Датчик давления на основе нано- и микроэлектромеханической системы для прецизионных измерений
RU2427810C1 (ru) Датчик давления повышенной чувствительности на основе нано- и микроэлектромеханической системы с тонкопленочными тензорезисторами
Kumar et al. Design of piezoresistive MEMS absolute pressure sensor
RU2397460C1 (ru) Датчик давления на основе тензорезисторной тонкопленочной нано- и микроэлектромеханической системы
RU2451270C1 (ru) Полупроводниковый датчик абсолютного давления повышенной точности
Lee et al. Development of a piezoresistive MEMS pressure sensor for a precision air data module
RU2391640C1 (ru) Тензорезисторный датчик давления на основе тонкопленочной нано- и микроэлектромеханической системы
Sindhanaiselvi et al. Performance analysis of embossed diaphragm based MEMS piezo resistive pressure sensor for flood level measurement
RU2480723C1 (ru) Датчик давления на основе нано- и микроэлектромеханической системы повышенной точности и надежности
Thawornsathit et al. Mechanical diaphragm structure design of a MEMS-based piezoresistive pressure sensor for sensitivity and linearity enhancement
JP3666622B2 (ja) 荷重検出装置
RU2541714C1 (ru) Высокоточный датчик давления на основе нано- и микроэлектромеханической системы
RU2520943C2 (ru) Датчик давления на основе нано- и микроэлектромеханической системы балочного типа

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20141129

NF4A Reinstatement of patent

Effective date: 20160127

MM4A The patent is invalid due to non-payment of fees

Effective date: 20161129