RU2513838C1 - Гистоэквивалент-биопластический материал - Google Patents

Гистоэквивалент-биопластический материал Download PDF

Info

Publication number
RU2513838C1
RU2513838C1 RU2013107843/15A RU2013107843A RU2513838C1 RU 2513838 C1 RU2513838 C1 RU 2513838C1 RU 2013107843/15 A RU2013107843/15 A RU 2013107843/15A RU 2013107843 A RU2013107843 A RU 2013107843A RU 2513838 C1 RU2513838 C1 RU 2513838C1
Authority
RU
Russia
Prior art keywords
wound
hyaluronic acid
histoequivalent
bioplastic material
biomaterial
Prior art date
Application number
RU2013107843/15A
Other languages
English (en)
Inventor
Ольга Ивановна Бурлуцкая
Рамиль Рафаилевич Рахматуллин
Татьяна Ивановна Бурцева
Абай Ижбулатович Адельшин
Original Assignee
Общество с ограниченной ответственностью "ДЖИ-Групп"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ДЖИ-Групп" filed Critical Общество с ограниченной ответственностью "ДЖИ-Групп"
Priority to RU2013107843/15A priority Critical patent/RU2513838C1/ru
Priority to CN201380056998.0A priority patent/CN104870026A/zh
Priority to AU2013378873A priority patent/AU2013378873B2/en
Priority to EP13876064.0A priority patent/EP2959924A4/en
Priority to US14/442,209 priority patent/US9878067B2/en
Priority to SG11201503941QA priority patent/SG11201503941QA/en
Priority to PCT/RU2013/000795 priority patent/WO2014129929A1/ru
Priority to CA2898848A priority patent/CA2898848A1/en
Priority to KR1020157017272A priority patent/KR20150090916A/ko
Application granted granted Critical
Publication of RU2513838C1 publication Critical patent/RU2513838C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0009Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
    • A61L26/0023Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0061Use of materials characterised by their function or physical properties
    • A61L26/008Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Изобретение относится к медицине, а именно к комбустиологии, хирургии, косметологии, и может найти применение в качестве биопластического материала для замещения дефектов покровных тканей. Описан гистоэквивалент-биопластический материал, включающий основу в виде матрицы, в качестве материала которой используют нативную форму гиалуроновой кислоты. Гистоэквивалент-биопластический материал получают путем смешивания 1,5% раствора гиалуроновой кислоты и 5% раствора пептидного комплекса при следующем количественном соотношении: 80-90 мл и 10-20 мл, соответственно, до образования вязкого эластичного геля, который помещают на форму-основу и подвергают ультрафиолетовой фотополимеризации в ламинарных шкафах в течение 5-7 часов, с последующим переносом на аппарат для перфорации, при этом готовый материал имеет перфорацию и насечки. Технический результат - повышение эффективности заживления ран. 1 табл., 11 ил., 1 пр.

Description

Изобретение относится к медицине, а именно к комбустиологии, хирургии, косметологии и может найти применение в качестве биопластического материала для замещения дефектов покровных тканей (защиты от испарения и проникновения инфекции) и стимуляции регенерации.
Разработка и изучение новых биодеградируемых, пластических и биосовместимых материалов, предназначенных для эффективной органоспецифической регенерации с высоким функциональным и эстетическим результатом, является актуальной проблемой современной регенеративной медицины и трансплантологии. Очевидно, что новые материалы должны отвечать требованиям соответствия специфической морфологии реципиентных тканей и способствовать их функциональному восстановлению (Bioartificial organs, 1999; Биосовместимость, 1999; Sudesh et al., 2000; 2004; Biopolymers for Medicinal and Pharmaceutical Applications, 2005).
В настоящее время активно развивается новейшее направление медицинской биоинженерии по созданию тканеинженерных конструкций и биоискусственных органов на основе биоматериалов с новыми функциональными свойствами, так называемые гистоэквивалент-биопластические материалы (ГЭБ) (Шумаков, 1995; Шумаков с соавт., 2003; Штильман, 2006). Ключевым свойством таких материалов является их способность к биодеградации естественными метаболическими путями в организме с включением промежуточных и конечных продуктов в биохимические циклы без их системного и локального накопления, как, например, молочная и гликолевая кислоты включаются в цикл Кребса. При этом такие продукты не должны быть токсичными, а их концентрация в кровяном русле не должна превышать предельно допустимый уровень (Волова Т.Г., 2003).
Физиологическая метаболизация биоматериалов, составляющих каркасную основу тканеинженерных конструкций, предопределяет сбалансированность репаративных процессов без выраженных явлений воспалительных реакций и предупреждает явление иммунного отторжения, избегая при этом ответа организма на инородное тело (Шишацкая Е., 2011).
Разработка новых гистоэквивалент-биопластических материалов (БМ) основывается на изучении кинетики биоразрушения и динамики его прочностных свойств, а также на оценке влияния и характер регенеративного процесса. Характер и степень выраженности этого воздействия определяются совокупностью физико-химических свойств собственно материала и интенсивностью ответных физиолого-биохимических реакций организма-реципиента.
Поэтому разработка новых биодеградируемых материалов с максимальной степенью биохимической комплементарности базируется на создании матриц, состоящих из макромолекулярных комплексов, доступных для собственных энзимных систем организма и других лизирующих агентов.
В связи с чем идеальный вариант биодеградируемого материала должен отвечать следующим требованиям.
1. Макромолекулярная конструкция с программированным периодом биодеградации естественными метаболическими путями, не являющаяся объектом иммуно-воспалительных реакций.
2. Включение промежуточных и/или конечных продуктов биометаболизации материала в механизмы регенерации на этапе сигнального хемотаксиса защитных клеток организма.
3. Максимальное соответствие временного периода биодеградации материала и длительности репаративного процесса.
Таким образом, с позиции оптимального иммуно-биохимического комплаэнса выполнение вышеуказанных требований по разработке новых биодеградируемых материалов обеспечивало бы оптимальный морфологический и функциональный результат органоспецифического гистогенеза.
Ранние исследования по разработке биодеградируемых материалов были сфокусированы на натуральных полимерах (коллаген, целлюлоза и др.), в последующем - на продуктах химического синтеза. Примерами таких биодеградируемых полимеров являются полиангидриды, полиэфиры, полиакрилы, поли (метилметакрилаты), полиуретаны. Было выделено несколько ключевых факторов, позволяющих контролировать растворение материала: гидрофильность/гидрофобность, аморфность/кристалличность, молекулярный вес, наличие гетероатомов (например, помимо углерода) (Хлусов И.А., 2007).
Естественно, что наиболее перспективными являются материалы, при расщеплении которых образуются природные мономеры. Например, полилактиды, полигликолиды, полиоксиалканоаты и их сополимеры расщепляются соответственно до молочной, гликолевой, оксимасляной кислот, из которых в цикле Кребса образуются вода и углекислый газ, выводящиеся из организма естественным путем.
Прототипом данного изобретения является наноструктурированный биопластический материал (Патент РФ№2425694 опубл. 10.08.11 г.), включающий в себя нативную форму гиалуроновой кислоты, а основой является наноструктурированная матрица, представляющая собой наноструктурированную гиалуроновую кислоту, полученную путем фотохимической сшивки, имеющую ячеистое строение в диапазоне от 50 до 100 нм.
Подобная структурная организация макромолекул гиалуроновой кислоты и коллагена придает биоматериалу эластичность, повышенную адгезию, дренажные качества, прозрачность.
Однако полученная таким образом макромолекулярная структура биопластического материала в клинических условиях является недостаточно эффективной.
1. По структуре данный материал является монофазным, вследствие чего в условиях раневого процесса он образует однородное покрытие, превращаясь, таким образом, в сухой струп (Рахматуллин P.P. Биопластический материал на основе гиалуроновой кислоты: биофизические аспекты фармакологических свойств. // Фармации. - 2011. - №4. - С.37-39). По отзывам клиницистов, однородный сухой биологический струп требует ежедневных перевязок с обязательным увлажнением струпа, что в итоге приводит к затягиванию сроков заживления и рубцовым изменениям с ограничением функций, например, в области суставов.
2. Сложная наноструктурная организация биоматериала значительно затрудняет процесс его биометаболизации в ране, т.е. по мере заживления он не рассасывается и становится причиной для присоединения вторичной инфекции и, как следствие, осложненного течения раневого процесса. Соответственно требуется удаление материала из раны при перевязках, а поскольку сухой струп прочно спаивается с подлежащими тканями, то данная процедура является травматичной для раны и болезненной для пациента.
3. Монофазная наноструктурная организация биоматериала не обеспечивает эффективного дренирования раневого отделяемого и приводит к скоплению жидкости под биоматериалом, из-за чего необходимо при перевязках дополнительно материал перфорировать скальпелем и формировать в нем дренажные окна (Рахматуллин P.P., Бурлуцкая О.И., Адельшина Л.Р., Бурцева Т.И. Эффективность нового метода восстановления дефекта кожи у больного с врожденным буллезным эпидермолизом: клиническое наблюдение. // Вопросы современной педиатрии. - 2011. - Том 10, №2, - С.190-192). Подобные манипуляции «тревожат» рану и болезненно переносятся пациентами, особенно детьми.
Таким образом, наноструктурирование биопластического материала обуславливает формирование оптимальных биоинженерных свойств (адгезия, прозрачность), но не обеспечивает благоприятного заживления ран и может стать причиной осложнений.
Технический результат - повышение эффективности заживления ран.
Задача решается тем, что в гистоэквивалент-биопластическом материале, включающем основу в виде матрицы, в качестве материала которой используют нативную форму гиалуроновой кислоты, согласно изобретению гистоэквивалент-биопластический материал содержит 1,5% раствор гиалуроновой кислоты и 5% раствор пептидного комплекса, смешанные до образования вязкого эластичного геля, помещенные в основу и подвергнутые ультрафиолетовой фотополимеризации в ламинарных шкафах в течение 5-7 часов при следующем количественном соотношении, мл:
- 1,5% раствор гиалуроновой кислоты - 80-90;
- 5% раствор пептидного комплекса - 10-20,
при этом готовый материал имеет перфорацию и насечки.
На фиг.1 представлена микрорельефность гистоэквивалент-биопластического материала, на фиг.2 - распределение сил адгезии на поверхности гистоэквивалент-биопластического материала, на фиг.3 - схожесть рельефа биоматериала с кожным рисунком человека, на фиг.4 - схема двухфазной структуры биоматериала, находящегося в области раны, на фиг.5 - атомно-спектрометрическое изображение биоматериала после клеточного культивирования, на фиг.6 - схема расположения насечек и отверстий гистоэквивалент-биопластического материала, на фиг.7 - вид трофической язвы левой голени больной сахарным диабетом, на фиг.8 и 9 - этапы биопластики язвы левой голени больной сахарным диабетом, на фиг.10 и 11 - этапы заживления язвы левой голени больной сахарным диабетом.
Состав пептидных комплексов, присутствующих в гидроколлоиде гиалуроновой кислоты, представлен в таблице, откуда видно, что пептидные комплексы имеют различный аминокислотный состав с варьирующей молекулярной массой 244-459 Да. В обнаруженных пептидах превалируют алифатические (лейцин, изолейцин, аланин, глицин) и полярные незаряженные аминокислотные остатки: треонин, пролин, гистидин, серин, а также полярные заряженные аминокислотные остатки: аргинин, глутамин, аспарагин, лизин, аргинин. Кроме того, присутствуют димеры изолейцинов и полимерные трипептиды, в том числе пептиды, содержащие ароматические аминокислотные остатки (триптофан) и полярные незаряженные аминокислотные остатки.
Исследуемые параметры Хим. формула Масса Дельта массы в нанопотоковом режиме Масса в отн. ед.
GlyTrpIle C19H26N4O4 374.19541 -2.33 10.692
IleAspIle C16H29N3O6 359.20564 12.97 8.674
PheArgPro C20H30N6O4 418.23285 -0.29 9.024
GlnHisHis C17H24N8O5 420.18697 -5.74 17.732
AlaTrpLys C20H29N5O4 403.22195 -5.76 8.934
ProHisTyr C20H25N5O5 415.18557 -11.10 14.407
ThrTrpTrp C26H29N5O5 491.21687 -12.84 9.460
LysPheThr C19H3ON4O5 394.22162 -7.25 8.854
LysArgMet C17H35N7O4S 433.24712 10.73 9.102
PheCysMet C17H25N3O4S2 399.12865 4.19 11.108
Ilelle C12H24N2O3 244.17869 8.67 11.038
AspLysLys C16H31N5O6 389.22743 16.59 8.863
TrpPro C16H19N3O3 301.14264 -18.38 10.672
GluThr C9H16N2O6 248.10084 3.47 5.500
Desmosine C24H4ON5O8 526.28769 -15.37 9.523
Важно, что в пептидной фракции присутствует десмозин (аминокислота, производная лизина). Благодаря своей разветвленной структуре, которая имеет четыре аминокислотных группы, одна молекула десмозина может входить одновременно в четыре пептидные цепи. Этим самым возможно формировать двухфазную структуру гистоэквивалент-биопластического материала.
Двухфазная структура нового биоматериала позволяет в ране формировать полноценный биологический струп, который снаружи является пластинкой, а стороной, обращенной к ране, принимает вид вязкого гидроколлоида.
Кроме того, двухфазная структура нового биоматериала благодаря разности сил натяжения придает биоматериалу уникальный макрорельефный рисунок. Макроповерхность гистоэквивалент-биопластического материала биоматериала имеет уникальную рельефность и внешне очень сходна с дерматоглификой кожи человека.
Благодаря разнополярности аминокислот создается эффект поверхностной энергии натяжения, что отражается на формировании уникальной микрорельефности.
На атомно-спектрометрических изображениях ультраструктура поверхности препарата представлена глобулярными образованиями однотипной морфологии с уникальной рельефностью.
Известно, что закрепление соматических клеток с большей вероятностью происходит на поверхности материала, обладающего высокой поверхностной энергией (на гидрофильной поверхности), в то же время на основные клеточные процессы (рост, дифференциация, миграция) в большей степени оказывает влияние геометрические и размерные особенности рельефа подложки [Hertz Н. Uber die Beruhrung Fester Elastischer Korper (On the contact of elastic solids) // J. Reine Angew. - 2011. - №92. - S. 156 171].
Оценивая гидрофильные/гидрофобные свойства предлагаемого биоматериала методом фиксации контактного угла воды, значение которого составило 83°, рассчитали на этой основе работу адгезии, которая с учетом коэффициента шероховатости оказалась равной 99,88 мН/м, что характеризует поверхность нового материала как умерено смачиваемую.
Дополнительно проведенная визуализация поверхности биополимера в режиме регистрации сил адгезии позволила локализовать области с повышенной адгезией.
Поверхностная энергия сил адгезии является фундаментальной характеристикой биопластических материалов для оценки эффективной миграции клеток на их поверхности при регенерации. Установлено, что наличие локальных областей с разной адгезией обеспечивают направленный таксис клеток и однородное их распределение по всей поверхности (Hallab N.J. Bundy K.J. O'Connor К. et al. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion // Tissue engineering. - 2001. - V.7. - №1. - P. 55-71).
Оценивая по краевому углу смачивания термодинамическую работу воды на поверхности гистоэквивалент-биопластического материала, зафиксированные значения сил сцепления характеризуют его двухфазный биоматериал, обладающий гидрофильными/гидрофобными свойствами. Это объясняется наличием разнополярных веществ (аминокислот пептидного комплекса), пространственно распределенных в структуре гидроколлоида гиалуроновой кислоты, выступающей в роли базисной матрицы материала.
Подтверждением этого стала прямая визуализация поверхности биоматериала в режиме адгезионно-контактной атомно-силовой микроскопии. Полученные результаты свидетельствуют о наличии значительных по отношению к визуализированной площади участков на поверхности биоматериала, демонстрирующих адгезивные свойства.
В свою очередь, культивирование мезенхимальных стромальных стволовых клеток с использованием гистоэквивалент-биопластического материла в качестве подложки и последующей атомно-силовой микроскопией поверхности позволили детектировать присутствие на ней клеток продолговатой формы, шириной 3,7 мкм. Последующее более детальное исследование выявило наличие на поверхности клетки переплетающихся фибриллярных волокон. Подобный характер их расположения является свидетельством наличия у культивируемых мезенхимальных стволовых клеток процессов миграции, при которых они активно взаимодействуют с поверхностью подложки, проникая в подлежащий матрикс.
Таким образом, наличие пептидного комплекса обеспечивает организацию двухфазной структуры биоматериала, которая является основой для формирования полноценного биологического струпа в ране (с наружной поверхности - пластинка, изнутри - гидроколлоид). Гистоэквивалент-биопластический материал имеет сквозные микроперфорации для эффективного дренажа раневого отделяемого.
Максимальная морфологическая схожесть структуры и внешнего вида биоматериала с покровными тканями (кожей) дает основания для введения в названия изобретения термина «гистоэквивалент-биопластический материал».
Гистоэквивалент-биопластический материал получают следующим образом.
В качестве сырья используют гиалуроновую кислоту нативной формы, имеющей волокнистое наноструктурированное строение, способное формировать эластичную пластину и пептидный комплекс. Нативная форма гиалуроновой кислоты создает оптимальные условия для миграции и пролиферации клеток, источником которых являются кусочки жизнеспособных тканей, помещенных в области микроперфораций (своего рода клеточные ячейки) гистоэквивалент-биопластического материала.
Готовят 1,5% раствор гиалуроновой кислоты 5% раствор пептидного комплекса при комнатной температуре. Затем их смешивают до образования вязкого эластичного геля.
Далее вязкий эластичный гель помещают на форму-основу и в специально сконструированных ламинарных шкафах подвергают ультрафиолетовой фотополимеризации.
Для этого в ламинарных шкафа создается определенный микроклимат (температура - 0-3 градуса Цельсия, влажность - 50-55%, с вентиляцией скорости воздушного потока - 0,50 м/с). Затем смесь подвергают ультрафиолетовому облучению в течение 5-7 часов. Готовый материал переносят на аппарат для перфорации и упаковки.
В итоге в формах образуется эластичная пленка белесоватого цвета, максимально схожая с дерматоглификой рисунка кожи человека.
Пластине путем вырезки придается овальная форма (большой диаметр - 15 см, малый диаметр - 11 см), площадь овальной пластины соответствует среднестатической площади ладони взрослого человека. В медицине принято считать, что ладонь взрослого человека составляет примерно 5% поверхности тела, например, таким образом, оценивается площадь ожогов.
Затем на пластине с помощью перфоратора наносятся круглые отверстия, а затем механически с помощью специального ножа. Равномерные распределенные насечки необходимы для дренирования раневого экссудата и более плотной связи биоматериала и подлежащей ткани. Круглые отверстия диаметром 3 мм служат посадочными лунками для эпителиальных тканей. Эти ткани являются собственными тканями пациента, которые иссекаются с краев раны при ее хирургической обработке. В дальнейшем они служат источниками клеток для эффективной эпителизации (заживления) раны.
В результате клинического применения у больных с дефектами покровных тканей установлено, что гистоэквивалент-биопластический материал формирует полноценный биологический струп и способствует ускоренному заживлению ран.
Важно отметить, что гистоэквивалент-биопластический материал оказался эффективным у больных, которым традиционная терапия не помогала.
Клинический пример.
Больная А., 59 лет, проживает в Кувандыке, поступила в 4 х/о НУЗ «ОКБ на ст. Оренбург» ОАО «РЖД» 16 декабря 2011 года с диагнозом: Гигантская циркулярная гнойно-некротическая трофическая язва левой голени. Сахарный диабет 2 типа, тяжелое течение. Аллергический дерматит нижних конечностей. Анемия.
Больна в течение 1 года, как образовалась язва после перенесенной некротической формы рожи. Размеры дефекта - циркулярная полоса шириной от 8 до 10 см от н/3 до с/3 голени с элементами фасций и сухожилий в дне раны. Все ранее применяемые методы лечения, включая перевязки с антисептиками, мазями и различными раневыми покрытиями эффекта не имели и крайне болезненно переносились пациентом.
При поступлении выполнена хирургическая обработка раны, иссечены некротические участки, с получение округлых кусочков жизнеспособной ткани кожи размером 0,5 на 1 мм. Затем на подготовленную рану накладывают гистоэквивалент-биопластический материал, имеющий в своей структуре микроперфорации диаметром 3 мм и насечки. После того как биоматериал прилипнет к ране и превратится в эластичную пластинку, в его перфорации укладываются извлеченные из физиологического раствора кусочки жизнеспособных тканей самого пациента. После того как все микроперфорации будут заполнены кусочками тканей, укладывается стерильная салфетка и повязка.
Проведен длительный курс комплексного консервативного лечения с коррекцией сопутствующей патологии. Наблюдалось образование двухфазной структуры биоматериала, находящегося в области раны: наружная пластинка - биологический струп, и внутренняя - гидроколлоид.
После очищения раны сформировался плоский гранулирующий циркулярный дефект с краевой эпителизацией.
При использовании гистоэквивалент-биопластического материала было установлено, что он оказывает наиболее мощное стимулирующее воздействие на фибробласты, активируя рецепторы CD44 на синтез уже собственной гиалуроновой кислоты, коллагена III типа и эластина, что предотвращает образование гипертрофических рубцов.
В результате проведенного лечения предлагаемым биоматериалом отмечено, что через 2-3 часа после наложения все пациенты отмечали, что исчезала боль. Впоследствии было отмечено отсутствие явления контрактурных изменений раневой области и полноценное восстановление кожных покровов. Надо отметить, что использование данного биоматериала позволило избежать воспалительной реакции (нагноения) и формирования гипертрофических рубцов в период реабилитации. Не зафиксировано ни одного случая аллергической и/или воспалительной реакции у больных.
Таким образом, по сравнению с прототипом, проведенные исследования показывают, что гистоэквивалент-биопластический материал способен формировать полноценный биологический струп и стимулировать заживление ран с хорошим эстетическим результатом без образования рубцов, а также обладает высокой биосовместимостью с покровными тканями человеческого организма.
Новизной разработанного гистоэквивалент-биопластического материала является оригинальный состав пептидного комплекса, с разнополярными аминокислотами. Наличие данного пептидного комплекса обеспечивает организацию двухфазной структуры биоматериала, которая является основой для формирования полноценного биологического струпа в ране (с наружной поверхности - пластинка, изнутри - гидроколлоид). Гистоэквивалент-биопластический материал имеет сквозные микроперфорации для эффективного дренажа раневого отделяемого.
Отличительной особенностью данного гистоэквивалент-биопластического материала является его способность образовывать двухфазное раневое покрытие и формировать таким образом полноценный биологический струп, эффективно дренировать рану, что в итоге обеспечивает оптимальную регенерацию дефекта покровных тканей без образования рубцов и деформаций. Кроме того, биоматериал имеет специальные посадочные лунки для собственных тканей пациента, из которых формируются ростковые зоны для заживления ран.

Claims (1)

  1. Гистоэквивалент-биопластический материал, включающий основу в виде матрицы, в качестве материала которой используют нативную форму гиалуроновой кислоты, отличающийся тем, что указанный биопластический материал получают путем смешивания 1,5% раствора гиалуроновой кислоты и 5% раствора пептидного комплекса при следующем количественном соотношении: 80-90 мл и 10-20 мл, соответственно, до образования вязкого эластичного геля, который помещают на форму-основу и подвергают ультрафиолетовой фотополимеризации в ламинарных шкафах в течение 5-7 часов, с последующим переносом на аппарат для перфорации, при этом готовый материал имеет перфорацию и насечки.
RU2013107843/15A 2013-02-21 2013-02-21 Гистоэквивалент-биопластический материал RU2513838C1 (ru)

Priority Applications (9)

Application Number Priority Date Filing Date Title
RU2013107843/15A RU2513838C1 (ru) 2013-02-21 2013-02-21 Гистоэквивалент-биопластический материал
CN201380056998.0A CN104870026A (zh) 2013-02-21 2013-09-12 等同于组织的生物塑料材料
AU2013378873A AU2013378873B2 (en) 2013-02-21 2013-09-12 Histo-equivalent bioplastic material
EP13876064.0A EP2959924A4 (en) 2013-02-21 2013-09-12 BIOPLASTIC MATERIAL HISTOLOGICAL EQUIVALENT
US14/442,209 US9878067B2 (en) 2013-02-21 2013-09-12 Histo-equivalent bioplastic material
SG11201503941QA SG11201503941QA (en) 2013-02-21 2013-09-12 Histo-equivalent bioplastic material
PCT/RU2013/000795 WO2014129929A1 (ru) 2013-02-21 2013-09-12 Гистоэквивалент-биопластический материал
CA2898848A CA2898848A1 (en) 2013-02-21 2013-09-12 Histo-equivalent bioplastic material
KR1020157017272A KR20150090916A (ko) 2013-02-21 2013-09-12 조직-등가 바이오플라스틱 소재

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013107843/15A RU2513838C1 (ru) 2013-02-21 2013-02-21 Гистоэквивалент-биопластический материал

Publications (1)

Publication Number Publication Date
RU2513838C1 true RU2513838C1 (ru) 2014-04-20

Family

ID=50481102

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013107843/15A RU2513838C1 (ru) 2013-02-21 2013-02-21 Гистоэквивалент-биопластический материал

Country Status (9)

Country Link
US (1) US9878067B2 (ru)
EP (1) EP2959924A4 (ru)
KR (1) KR20150090916A (ru)
CN (1) CN104870026A (ru)
AU (1) AU2013378873B2 (ru)
CA (1) CA2898848A1 (ru)
RU (1) RU2513838C1 (ru)
SG (1) SG11201503941QA (ru)
WO (1) WO2014129929A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2557529C1 (ru) * 2014-08-12 2015-07-20 Общество с ограниченной ответственностью Научно-производственное предприятие Лаборатория Матрикс Микродисперсный гистоэквивалент-биопластический материал
RU2619257C1 (ru) * 2016-09-14 2017-05-12 Константин Александрович Корейба Способ лечения дефектов мягких тканей у больных с синдромом диабетической стопы
RU2644306C1 (ru) * 2016-11-22 2018-02-08 Общество с ограниченной ответственностью "ДЖИ-Групп" Способ восстановления дефектов покровных тканей

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2425694C1 (ru) * 2010-04-14 2011-08-10 Государственное образовательное учреждение высшего профессионального образования "Оренбургский государственный университет" Наноструктурированный биопластический материал
RU2438648C1 (ru) * 2010-08-02 2012-01-10 Рамиль Рафаилевич Рахматуллин Комплексное косметическое средство с омолаживающим и лифтинг-эффектом
RU2461622C2 (ru) * 2007-11-28 2012-09-20 Огенодженесис, Инк. Биоинженерный конструкт для имплантации ткани и способ изготовления названного биоинженерного конструкта (варианты)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69622575T2 (de) * 1995-11-15 2003-02-13 Seikagaku Corp., Tokio/Tokyo Photovernetztes hyaluronsäuregel und verfahren zu dessen herstellung
US7217853B2 (en) * 2002-05-24 2007-05-15 Corium International, Inc. Composition for cushions, wound dressings and other skin-contacting products
EP1530600B1 (en) * 2002-08-09 2007-03-14 Ottawa Health Research Institute Bio-synthetic matrix and uses thereof
JP4619789B2 (ja) * 2002-10-04 2011-01-26 ナノマトリックス,インコーポレイテッド 皮膚およびその他の組織のためのシーラント
MXPA05013003A (es) * 2003-05-30 2006-03-17 Alza Corp Composiciones de deposito elastomerico implantables, usos de las mismas y metodo para elaboracion.
CA2691645A1 (en) * 2007-06-25 2008-12-31 Lipopeptide Ab New medical products
US20110160137A1 (en) * 2008-08-27 2011-06-30 Amorepacific Corporation Composition containing collagen peptide for improving skin care
FR2941231B1 (fr) * 2009-01-16 2016-04-01 Sederma Sa Nouveaux peptides, compositions les comprenant et utilisations cosmetiques et dermo-pharmaceutiques.
MX2015000554A (es) * 2012-07-13 2015-09-28 Univ Tufts Encapsulación de fases inmisibles en biomateriales de fibroína de seda.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2461622C2 (ru) * 2007-11-28 2012-09-20 Огенодженесис, Инк. Биоинженерный конструкт для имплантации ткани и способ изготовления названного биоинженерного конструкта (варианты)
RU2425694C1 (ru) * 2010-04-14 2011-08-10 Государственное образовательное учреждение высшего профессионального образования "Оренбургский государственный университет" Наноструктурированный биопластический материал
RU2438648C1 (ru) * 2010-08-02 2012-01-10 Рамиль Рафаилевич Рахматуллин Комплексное косметическое средство с омолаживающим и лифтинг-эффектом

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Каталог Профессиональная косметика ТЕТе Cosmeceutical, Гиалуроновая кислота+комплекс пептидов 30 ml (3х10ml), 10.11.12 09:02 [найдено 2013.10.17]. найдено из Интернет: . *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2557529C1 (ru) * 2014-08-12 2015-07-20 Общество с ограниченной ответственностью Научно-производственное предприятие Лаборатория Матрикс Микродисперсный гистоэквивалент-биопластический материал
RU2619257C1 (ru) * 2016-09-14 2017-05-12 Константин Александрович Корейба Способ лечения дефектов мягких тканей у больных с синдромом диабетической стопы
RU2644306C1 (ru) * 2016-11-22 2018-02-08 Общество с ограниченной ответственностью "ДЖИ-Групп" Способ восстановления дефектов покровных тканей

Also Published As

Publication number Publication date
US20160256603A1 (en) 2016-09-08
EP2959924A1 (en) 2015-12-30
US9878067B2 (en) 2018-01-30
WO2014129929A1 (ru) 2014-08-28
CN104870026A (zh) 2015-08-26
SG11201503941QA (en) 2015-07-30
CA2898848A1 (en) 2014-08-28
AU2013378873A1 (en) 2015-05-28
KR20150090916A (ko) 2015-08-06
AU2013378873B2 (en) 2016-07-14
EP2959924A4 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
Islam et al. Chitin and chitosan: structure, properties and applications in biomedical engineering
TWI461227B (zh) 再生生物功能性膠原生物基質用來治療內臟或體壁缺陷的用途
ES2373676T3 (es) Vendajes para heridas que comprenden celulosa oxidada y colágeno recombinante humano.
Narayanan et al. Viscosity attunes the adhesion of bioinspired low modulus polyester adhesive sealants to wet tissues
US20190202998A1 (en) Visible light-curable water-soluble chitosan derivative, chitosan hydrogel, and preparation method therefor
Ijaola et al. Polymeric biomaterials for wound healing applications: A comprehensive review
Jahan et al. Silver-nanoparticle-entrapped soft GelMA gels as prospective scaffolds for wound healing
JPS60122568A (ja) 親水性バイオポリマーコポリエレクトロライト
CA2572297A1 (en) Non-adhesive hydrogels
CN113577014B (zh) 医疗器械、水凝胶及其制备方法与应用
US20200325249A1 (en) Visible light-curable water-soluble chitosan derivative, chitosan hydrogel, and preparation method therefor
Kazi et al. Effectiveness of the sodium alginate as surgical sealant materials
RU2513838C1 (ru) Гистоэквивалент-биопластический материал
AU2015397501B2 (en) Method for manufacturing collagen film using ultraviolet light, collagen film manufactured by using same, and biomaterial prepared using collagen film
Su et al. Functionalized electrospun double-layer nanofibrous scaffold for wound healing and scar inhibition
CA3100352A1 (en) Controlled hydrogel delivery of focal adhesion kinase inhibitor for decreased scar formation
RU2372922C1 (ru) Способ лечения глубокого ожога кожи
CN115814173A (zh) 自粘性可吸收生物补片及其制备方法和应用
RU2481127C1 (ru) Микронаноструктурированный биопластический материал
Scognamiglio et al. Development of hyaluronan-based membranes for the healing of intestinal surgical wounds: a preliminary study
CN112386740A (zh) 一种成纤维细胞生长因子自粘性人工硬膜修补片及其制备方法
US20220265273A1 (en) Collagen matrix and n-hydroxylsuccinimide functionalized polyethylene glycol staple line reinforcement
Liu et al. A biodegradable, adhesive, and stretchable hydrogel and potential applications for allergic rhinitis and epistaxis
Chowdhary et al. Biopolymers for wound healing
RU2695066C1 (ru) Способ лечения травматических разрывов печени с использованием пленочного покрытия на основе бактериальной целлюлозы