RU2510822C1 - Способ изготовления комбинированных подовых блоков - Google Patents

Способ изготовления комбинированных подовых блоков Download PDF

Info

Publication number
RU2510822C1
RU2510822C1 RU2012158364/02A RU2012158364A RU2510822C1 RU 2510822 C1 RU2510822 C1 RU 2510822C1 RU 2012158364/02 A RU2012158364/02 A RU 2012158364/02A RU 2012158364 A RU2012158364 A RU 2012158364A RU 2510822 C1 RU2510822 C1 RU 2510822C1
Authority
RU
Russia
Prior art keywords
layer
composite heat
resistant material
cathode block
carbon
Prior art date
Application number
RU2012158364/02A
Other languages
English (en)
Inventor
Андрей Геннадьевич Сбитнев
Геннадий Викторович Архипов
Виталий Валерьевич Пингин
Original Assignee
Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" filed Critical Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр"
Priority to RU2012158364/02A priority Critical patent/RU2510822C1/ru
Application granted granted Critical
Publication of RU2510822C1 publication Critical patent/RU2510822C1/ru

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

Настоящее изобретение относится к способу производства комбинированных подовых блоков для алюминиевых электролизеров. Способ включает введение материала углеродистой подложки в форму и нанесение на нее слоя композиционного жаростойкого материала, содержащего борид металла, уплотнение содержимого формы в виде катодного блока и обжиг катодного блока, в качестве материала углеродистой подложки и слоя композиционного жаростойкого материала используют материалы, имеющие близкие коэффициенты термического линейного расширения и значения натриевого расширения и следующий гранулометрический состав: содержание фракций в углеродистой подложке (-10+0,071) мм - 76±10 мас.% и (-0,071+0) мм - 24±10 мас.%, содержание фракций в слое композиционного жаростойкого материала (-10+0,071) мм - 50±30 мас.% и (-0,071+0) мм - 30±50 мас.%, при этом материал углеродистой подложки вводят в предварительно нагретую до температуры материала форму. Слой композиционного жаростойкого материала в уплотненном состоянии составляет не более 8,0% от высоты катодного блока и содержит 20,0-80,0 мас.% диборида металла. Уплотнение катодного блока проводят виброформованием, а обжиг - при 1100°С в течение 5 часов. Обеспечивается повышение качества и срока службы. 2 з.п. ф-лы, 3 ил., 1 табл.

Description

Настоящее изобретение относится к электролитическому производству алюминия, а именно к катодным блокам, применяемым в электролизерах для получения первичного алюминия.
В электролизерах для получения первичного алюминия в конструкции катодного устройства используют углеродные блоки, представляющие собой обожженную гомогенную смесь термоантрацита и/или графита, а также пека. Углеродные блоки еще называют подовыми или катодными блоками, которые вместе с бортовой футеровкой образуют шахту электролизной ванны. В шахте расположен расплавленный электролит, в который сверху погружаются анодные блоки, состоящие из обожженной гомогенной смеси кокса и пека. В электролизной ячейке, посредством протекания электролитической реакции разложения глинозема, происходит осаждение алюминия на подовые блоки. В процессе эксплуатации электролизера зачастую происходит преждевременный вывод его из строя из-за разрушения подины и проникновения расплава алюминия и электролита в цоколь ванны.
Основным негативным фактором, сокращающим период нахождения электролизера в рабочем состоянии, является проникновение натрия в структуру катодных блоков, вследствие чего происходит «набухание» угольных блоков, которое выражается в значении натриевого расширения. В процессе проникновения натрия, катодные блоки меняют свою структуру, что выражается в образовании трещин и каверн.
Еще одним фактором, негативно влияющим на срок службы электролизеров, является постоянное перемещение компонентов расплава электролита и алюминия по поверхности подины. Данное явление вызвано магнитно-гидродинамическими (МГД) эффектами. Вследствие постоянного перемещения компонентов по углеродной подине ванны происходит ее износ, причем данный износ может иметь локальный характер. Иными словами, для отдельно взятого участка подины эрозия угольных блоков может иметь критический характер, а в остальной части подины износ будет минимален.
Решением проблемы увеличения срока службы электролизера является непосредственно повышение качества катодных блоков и использование принципиально новых углеродных блоков, имеющих в своем составе композитный слой, - так называемых комбинированных подовых блоков (КПБ). Данные блоки должны обеспечивать образование прикатодного слоя расплавленного алюминия за счет содержания в них «смачивающей» добавки в виде борида металла, в частности диборида титана. Несмотря на свою высокую стоимость применение диборида титана в виде «смачивающей» добавки связано с его инертностью к воздействию агрессивных сред, возникающих в электролизных ячейках, т.е. стойкость к эрозии, а также со способностью смачиваться жидким алюминием.
Результатом образования прикатодного слоя алюминия на углеродной подине будет сниженное проникновение натрия в катодный блок и в цоколь ванны. Кроме того, слой алюминия на рабочей поверхности комбинированных подовых блоков позволит избежать образования прослойки электролита между расплавленным алюминием и подиной ванны, что, в свою очередь, влияет на снижение напряжения, вследствие чего будет наблюдаться сокращение энергозатрат на производство алюминия.
Однако при создании подобных комбинированных подовых блоков возникает проблема наличия разницы в физико-механических характеристиках между слоями углеродной подложки и поверхностного (рабочего) слоя. Поверхностный слой заведомо содержит некоторое количество диборида титана и имеет значения коэффициента термического линейного расширения (КТЛР) и натриевого расширения, отличающиеся от углеродной подложки (подового блока).
Предпринимаемые ранее попытки создания «смачиваемых» катодных блоков были не совсем удачны. Данные блоки изготавливались либо полностью из диборида титана, что экономически нецелесообразно, либо путем нанесения на обычные углеродные блоки суспензий, паст или элементов из диборида титана (патент US №5527442, С25С 3/08, опубл. 18.06.96), однако отличие в КТЛР и натриевом расширении данных материалов приводит к образованию трещин и пустот, заполняемых в процессе эксплуатации электролитом, и последующему отшелушиванию композитного слоя.
Еще одним вариантом создания комбинированных подовых блоков было создание на углеродной подложке одного поверхностного слоя с содержанием диборида титана либо нескольких поверхностных слоев с различным между собой содержанием диборида титана (заявка на изобретение RU №2010148769, опубл. 20.06. 2012). Однако, во время обжига данных блоков, возникают существенные термические напряжения вследствие разного КТЛР подложки и поверхностных слоев, что приводит к их последующему разрушению. Кроме того, обожженные изделия, при эксплуатации в электролизной ванне также будут негативно влиять на срок ее эксплуатации. В результате различного термического и натриевого расширения слоев данных комбинированных блоков происходит быстрое отшелушивание смачиваемого слоя от угольной подины ванны.
Наиболее близким к заявляемому способу является способ изготовления многослойной катодной структуры (патент RU №2227178, С25С 3/08, опубл. 20.06.1996), включающий введение материала углеродистой подложки катода в форму и нанесение на нее слоя композиционного жаростойкого материала. При этом перед нанесением композиционного слоя производят рифление поверхности углеродистой подложки, что, по мнению авторов, при виброформовании заготовки способствует смешению слоев и тем самым позволяет компенсировать разницу между термическими расширениями. Согласно патенту, содержание диборида титана в композиционных слоях (в зависимости от количества слоев) должно варьироваться от 10,0-20,0 до 50,0-90,0%. По всей видимости, получение прослойки при формовании заготовки, с усредненными между углеродистой подложкой и композиционными слоями физико-механическими свойствами невозможно. Вероятно, авторы патента предполагают перемещение материала из углеродистой подложки в сторону компенсационного слоя и наоборот, и получение, таким образом, прослойки с гомогенной смесью. Однако данное перемещение может быть ограничено параметрами виброформования, обеспечивающими получение заготовки многослойного блока с заданной кажущейся плотностью. Иными словами, для смешения слоев с помощью вибрации необходимо задать такие амплитуду и частоту, которые позволят материалу перемещаться на достаточное расстояние и сохранить при этом достаточную плотность получаемой заготовки. К тому же, формование «зеленых» заготовок производится с помощью пригруза, который создает статико-динамическую нагрузку на материал и не позволяет ему свободно перемещаться по высоте матрицы.
В основу изобретения положена задача, заключающаяся в разработке способа изготовления комбинированных подовых блоков, способных смачиваться жидким алюминием и противостоять износу и отшелушиванию смачиваемого покрытия.
Техническим результатом является получение комбинированных подовых блоков с заведомо одинаковыми физико-механическими свойствами, обеспечивающими отсутствие трещин, отслоений и пустот на границе слоев.
Достижение вышеуказанного технического результата обеспечивается тем, что в способе производства комбинированных подовых блоков для алюминиевых электролизеров, включающем введение материала углеродистой подложки в форму и нанесение на нее слоя композиционного жаростойкого материала, содержащего борид металла, уплотнение содержимого формы в виде катодного блока и обжиг катодного блока, используют в качестве материала углеродистой подложки и слоя композиционного жаростойкого материала, материалы, имеющие близкие коэффициенты термического линейного расширения и значения натриевого расширения и следующий гранулометрический состав: содержание фракций в углеродистой подложке (-10+0,071) мм - 76±10 мас.% и (-0,071+0) мм - 24±10 мас.%, содержание фракций в слое композиционного жаростойкого материала (-10+0,071) мм - 50±30 мас.% и (-0,071+0) мм - 30+50 мас.%, при этом материал углеродистой подложки вводят в предварительно нагретую до температуры материала, форму.
Способ дополняют частные признаки, способствующие достижению технического результата, а именно:
Слой композиционного жаростойкого материала в уплотненном состоянии составляет не более 8,0% высоты катодного блока, а содержание диборида металла 20,0-80,0 мас.%, уплотнение катодного блока проводят виброформованием, а обжиг - при 1100°С в течение 5 часов.
Предложенный способ изготовления комбинированных подовых блоков позволяет получать готовые углеродные изделия, структура которых не содержит трещин, что обусловлено адгезией между слоем углеродистой подложки и слоем композиционного жаростойкого материала. Данное явление, в свою очередь, обуславливает длительный срок службы изделий в электролизерах для получения первичного алюминия.
В качестве углеродистой подложки для слоя композиционного жаростойкого материала используется шихта подового блока, состоящая из термоантрацита и/или графита, и пек. При этом оба слоя по своим основным физико-механическим свойствам аналогичны друг другу, что обусловлено гранулометрическим составом композиционного жаростойкого материала, подобранным к составу шихты углеродистой подложки. В таблице представлен состав шихты комбинированного подового блока.
Таблица
Слой Фракция, мм
(-10+5) (-5+0) (-0,071) (-0,071)
Углеродная составляющая TiB2
Содержание, мас.%
Композиционный жаростойкий материал 10±5 40±10 - 50±30
Углеродистая подложка 28±5 48±10 24±10 -
Шихта композиционного жаростойкого слоя подобрана таким образом, что при обжиге отформованной «зеленой» заготовки на границе двух слоев не возникает термических напряжений, т.е. значения относительной усадки и расширения подложки и композиционного жаростойкого слоя совпадают. На границе слоев комбинированного подового блока не возникает отслаиваний, шелушений и образования пустот. В обожженном состоянии слой углеродистой подложки и композиционный жаростойкий слой обладают приближенными друг к другу значениями коэффициента термического линейного расширения, а также значениями натриевого расширения, что обуславливает продолжительную работу КПБ в условиях проведения электролиза.
Для получения заготовок КПБ («зеленых» блоков) готовую гомогенную массу подового блока с температурой 140-160±20°С помещают в предварительно разогретую до температуры 120±20°С стальную матрицу, представляющую собой короб с цельным днищем и сплошными стенками, и разравнивают до получения ровной поверхности подложки. Затем на подложку наносится композиционный жаростойкий слой с температурой 140-160±20°С, который выравнивается до получения ровной поверхности. На нее помещается пригруз, создающий удельное давление порядка 0,3 кг/см2. Виброформование проводится в течение 7 минут, после чего готовая заготовка подвергается обжигу при 1100°С в течение 5 часов. Высота полученного таким образом композиционного жаростойкого слоя КПБ составляет от 3,0% до 8,0% от высоты заготовки. Нижний предел определен необходимым в условиях электролиза сроком службы подового блока, верхний предел жаростойкого покрытия ограничен с экономической точки зрения, в связи с высокой стоимостью материала покрытия (TiB2).
Результаты испытаний образцов КПБ представлены на фигурах 1, 2 и 3, где показаны физико-механические и химические свойства комбинированного подового блока и композиционного жаростойкого слоя.
На фиг.1 представлены графики изменения термического расширения поверхностного слоя композиционного жаростойкого материала (СП) и углеродистой подложки подового блока (ПБ) во время обжига. Представленные данные были получены при определении термического расширения на отдельных образцах СП и ПБ. Как видно, характер графиков одинаков, что указывает на однородность составов СП и ПБ, а также на то, что их гранулометрические составы находятся в заявленных в формуле изобретения пределах.
На фиг.2 представлены графики термического расширения обожженных образцов (СП) и углеродистой подложки (ПБ) при увеличении температуры. Как видно, характер кривых во время нагрева практически не отличается.
На фиг.3 представлены графики изменения проникновения натрия (натриевого расширения) в образцы поверхностного слоя (СП) и углеродистой подложки (ПБ) в течение 120 мин. Характер графиков указывает на равномерное изменение объема в слоях поверхностного слоя композиционного жаростойкого материала и подложки при проникновении в них натрия.

Claims (3)

1. Способ производства комбинированных подовых блоков для алюминиевых электролизеров, включающий введение материала углеродистой подложки в форму и нанесение на нее слоя композиционного жаростойкого материала, содержащего борид металла, уплотнение содержимого формы в виде катодного блока и обжиг катодного блока, отличающийся тем, что в качестве материала углеродистой подложки и слоя композиционного жаростойкого материала, используют материалы, имеющие близкие коэффициенты термического линейного расширения и значения натриевого расширения со следующим гранулометрическим составом: содержание фракций в углеродистой подложке (-10+0,071) мм - 76±10 мас.% и (-0,071+0) мм - 24±10 мас.%, содержание фракций в слое композиционного жаростойкого материала (-10+0,071) мм - 50±30 мас.% и (-0,071+0) мм - 30±50 мас.%, при этом материал углеродистой подложки вводят в форму, предварительно нагретую до температуры материала.
2. Способ по п.1, отличающийся тем, что уплотненный слой композиционного жаростойкого материала составляет не более 8,0% от высоты катодного блока и содержит 20,0-80,0 мас.% диборида металла.
3. Способ по п.1, отличающийся тем, что уплотнение катодного блока проводят виброформованием, а обжиг - при 1100°С в течение 5 часов.
RU2012158364/02A 2012-12-29 2012-12-29 Способ изготовления комбинированных подовых блоков RU2510822C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012158364/02A RU2510822C1 (ru) 2012-12-29 2012-12-29 Способ изготовления комбинированных подовых блоков

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012158364/02A RU2510822C1 (ru) 2012-12-29 2012-12-29 Способ изготовления комбинированных подовых блоков

Publications (1)

Publication Number Publication Date
RU2510822C1 true RU2510822C1 (ru) 2014-04-10

Family

ID=50437657

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012158364/02A RU2510822C1 (ru) 2012-12-29 2012-12-29 Способ изготовления комбинированных подовых блоков

Country Status (1)

Country Link
RU (1) RU2510822C1 (ru)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028301A (en) * 1989-01-09 1991-07-02 Townsend Douglas W Supersaturation plating of aluminum wettable cathode coatings during aluminum smelting in drained cathode cells
WO2000029644A1 (en) * 1998-11-17 2000-05-25 Alcan International Limited Wettable and erosion/oxidation-resistant carbon-composite materials
CA2354007A1 (en) * 1998-12-16 2000-06-22 Alcan International Limited Multi-layer cathode structures
RU2257425C2 (ru) * 2000-02-16 2005-07-27 Алкан Интернешнел Лимитед Способ формирования защитного покрытия для углеродсодержащих компонентов электролизной ячейки
CN1245538C (zh) * 2003-04-15 2006-03-15 中南大学 一种铝电解用硼化钛/氧化铝阴极涂层及制备方法
RU2293797C2 (ru) * 2001-10-15 2007-02-20 Алюминиюм Пешинэ Предшественник покрытия и способ нанесения на подложку огнеупорного слоя
RU2337184C2 (ru) * 2006-11-30 2008-10-27 Общество с ограниченной ответственностью "Эксперт-Ал" (ООО "Эксперт-Ал") Способ получения и поддержания защитного смачиваемого покрытия на углеродистых блоках катодного устройства электролизера для производства алюминия
CN100465349C (zh) * 2005-12-26 2009-03-04 石忠宁 一种带有二硼化钛涂层的铝电解阴极及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028301A (en) * 1989-01-09 1991-07-02 Townsend Douglas W Supersaturation plating of aluminum wettable cathode coatings during aluminum smelting in drained cathode cells
WO2000029644A1 (en) * 1998-11-17 2000-05-25 Alcan International Limited Wettable and erosion/oxidation-resistant carbon-composite materials
CA2354007A1 (en) * 1998-12-16 2000-06-22 Alcan International Limited Multi-layer cathode structures
RU2227178C2 (ru) * 1998-12-16 2004-04-20 Алкан Интернешнел Лимитед Способ изготовления многослойной катодной структуры
RU2257425C2 (ru) * 2000-02-16 2005-07-27 Алкан Интернешнел Лимитед Способ формирования защитного покрытия для углеродсодержащих компонентов электролизной ячейки
RU2293797C2 (ru) * 2001-10-15 2007-02-20 Алюминиюм Пешинэ Предшественник покрытия и способ нанесения на подложку огнеупорного слоя
CN1245538C (zh) * 2003-04-15 2006-03-15 中南大学 一种铝电解用硼化钛/氧化铝阴极涂层及制备方法
CN100465349C (zh) * 2005-12-26 2009-03-04 石忠宁 一种带有二硼化钛涂层的铝电解阴极及其制备方法
RU2337184C2 (ru) * 2006-11-30 2008-10-27 Общество с ограниченной ответственностью "Эксперт-Ал" (ООО "Эксперт-Ал") Способ получения и поддержания защитного смачиваемого покрытия на углеродистых блоках катодного устройства электролизера для производства алюминия

Similar Documents

Publication Publication Date Title
CN100491600C (zh) 一种可湿润阴极炭块的制备方法
CN101255568B (zh) 一种铝电解用粒度级配功能梯度TiB2/C复合阴极及制备方法
CN105728708B (zh) 一种高密度长寿命钨钼合金坩埚的生产方法
RU2533066C2 (ru) Катодный блок для алюминиевого электролизера и способ его получения
CN103443330B (zh) 具有抗磨表面的石墨化阴极块
RU2510822C1 (ru) Способ изготовления комбинированных подовых блоков
US2952605A (en) Refractories resistant to aggressive melts and treatment for obtaining them
CN1880511A (zh) 高体密半石墨质阴极炭块及其生产方法
RU2371523C1 (ru) Композиционный материал для смачиваемого катода алюминиевого электролизера
CN107557813B (zh) 一种用于电解铝阴极槽整体筑炉技术的冷捣糊料
RU2495964C2 (ru) Многослойный катодный блок
EP0128165A1 (fr) Produits refractaires constitues de grains lies par des residus carbones et du silicium metal en poudre, et procede de fabrication.
EP3415663B1 (en) Electrolyzer cathode lining method for producing primary aluminum
JPS58501172A (ja) 焼結耐火硬質金属
RU2666806C2 (ru) Способ изготовления катодного блока для электролитической ячейки для получения алюминия
CN1091471C (zh) 硼化钛─碳复合层阴极碳块及其制备方法
CN104496498A (zh) 一种底吹式铸造火车车轮石墨模具的制备方法
RU2568542C2 (ru) Способ изготовления катодного блока для ячейки алюминиевого электролизера и катодный блок
JPH02236292A (ja) フッ素電解製造用炭素質電極板の製造法
CA2805562C (en) Process for producing a cathode block for an aluminium electrolysis cell and a cathode block
CN109400128B (zh) 一种含叶腊石粉体的铝碳质耐火材料及其制备方法
CN114450437A (zh) 具有焙烤阳极的铝电解槽阴极块的保护方法、保护性复合混合物和涂层
CN100339337C (zh) 冶炼用高强高铝耐火球的制备方法
CN101314857A (zh) 一种自润复合层惰性阴极碳块
RU2347856C2 (ru) Способ получения холоднонабивной подовой массы

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201230