RU2509257C2 - Термокомпрессионное устройство - Google Patents

Термокомпрессионное устройство Download PDF

Info

Publication number
RU2509257C2
RU2509257C2 RU2012121309/06A RU2012121309A RU2509257C2 RU 2509257 C2 RU2509257 C2 RU 2509257C2 RU 2012121309/06 A RU2012121309/06 A RU 2012121309/06A RU 2012121309 A RU2012121309 A RU 2012121309A RU 2509257 C2 RU2509257 C2 RU 2509257C2
Authority
RU
Russia
Prior art keywords
tubular coil
compressor
cylinder
gas
source
Prior art date
Application number
RU2012121309/06A
Other languages
English (en)
Other versions
RU2012121309A (ru
Inventor
Владимир Иванович Гореликов
Сергей Александрович Гашилов
Original Assignee
Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" filed Critical Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева"
Priority to RU2012121309/06A priority Critical patent/RU2509257C2/ru
Publication of RU2012121309A publication Critical patent/RU2012121309A/ru
Application granted granted Critical
Publication of RU2509257C2 publication Critical patent/RU2509257C2/ru

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств. Термокомпрессионное устройство содержит источник газа высокого давления с подключенным к нему баллоном-компрессором, источник холода и магистраль прокачки теплоносителя. Баллон-компрессор снабжен внешней теплозащитой и теплообменником, выполненным в виде трубчатого змеевика, размещенного во внутренней полости баллона-компрессора и прикрепленного к его стенке с обеспечением теплового контакта. На входе в трубчатый змеевик установлены параллельно включенные пускоотсечные устройства и посредством хладопровода через первое пускоотсечное устройство трубчатый змеевик подключен к источнику холода, а через второе пускоотсечное устройство - к магистрали прокачки теплоносителя. Трубчатый змеевик подключен на выходе к тепловому экрану, установленному в слоях теплоизоляции. Магистраль прокачки теплоносителя снабжена подогревателем, установленным на входе в трубчатый змеевик перед вторым пускоотсечным устройством. Технический результат изобретения заключается в том, что предлагаемая позволяет исключить использование жидкого теплоносителя, повысить эффективность теплообмена и упростить конструкцию и эксплуатацию устройства, при этом обеспечивается заправка баллонов потребителя газом, исключающая его загрязнение. 1 ил.

Description

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств (термокомпрессоров), используемых, например, при заполнении газом баллонов высокого давления с соблюдением высоких требований по чистоте, как закачиваемого газа, так и внутренних объемов и поверхностей заправляемой системы.
Принцип работы термокомпрессионного устройства широко известен. Основу его составляет емкость (баллон-компрессор), которую вначале охлаждают, желательно до температуры конденсации газа, и заполняют ее газом из стендовых баллонов. Затем стендовые баллоны отсекают, емкость нагревают, давление газа в ней растет, и он перекачивается в заправляемую емкость. Таких циклов всасывания - нагнетания совершается столько, сколько необходимо для достижения заданного давления в заправляемой емкости.
Известны компрессионные устройства для регенерации хладагентов (см., например, патент США №5379607, МПК: F25B 49/00, от 12.10.1993), содержащие компрессор, ресивер, емкости высокого давления, теплообменники, магистрали заправки и подачи газа потребителю.
Наличие в них механического компрессора, для которого используется смазка вращающихся и перемещающихся узлов и деталей, не исключает загрязнения газа парами масла (смазки), что не допускается при перекачке (заправке) газа в баллоны потребителя. Кроме того, усложнена конструкция и эксплуатация устройства.
Недостатками аналога являются загрязнение газа при заправке баллонов потребителя и сложность обслуживания при эксплуатации оборудования.
Известно также термокомпрессионное устройство для регенерации хладагентов (см., например, патент России №2351840, МПК: F17C 5/06, приоритет от 07.08.20043), выбранное в качестве прототипа и содержащее источник газа высокого давления с подключенным к нему баллоном-компрессором, источник холода и магистраль прокачки теплоносителя, а также модули для термоциклирования баллонов-компрессоров, в состав которых входят теплоизолированные емкости, заполненные жидким теплоносителем, в который погружены баллоны-компрессоры. Теплоизолированные емкости также снабжены нагревателем, мешалкой с электроприводом и теплообменником, погруженным в теплоноситель и подключенным к источнику холода. Данное устройство позволяет обеспечить заправку баллонов потребителя газом, исключающую его загрязнение, но использование жидкого теплоносителя для проведения термоциклирования баллонов-компрессоров значительно усложняет конструкцию и эксплуатацию устройства, что также приводит к увеличению материальных затрат при изготовлении и эксплуатации его.
Недостатками прототипа являются конструкции и эксплуатации устройства, а также наличие громоздкого оборудования, необходимого для проведения термоциклирования баллонов-компрессоров при использовании жидкого теплоносителя.
Задачей настоящего изобретения является создание такого термокомпрессионного устройства, которое исключало бы использование жидкого теплоносителя, повышало эффективность теплообмена, а также упрощало конструкцию и эксплуатацию устройства, при обеспечении заправки баллонов потребителя газом, исключающей его загрязнение.
Технический результат достигается тем, что в термокомпрессионном устройстве, содержащем источник газа высокого давления с подключенным к нему баллоном-компрессором, источник холода и магистраль прокачки теплоносителя в отличие от прототипа, баллон-компрессор снабжен внешней теплозащитой и теплообменником, выполненным в виде трубчатого змеевика, размещенного во внутренней полости баллона-компрессора и прикрепленного к его стенке с обеспечением теплового контакта, при этом на входе в трубчатый змеевик установлены параллельно включенные пускоотсечные устройства и посредством хладопровода через первое пускоотсечное устройство трубчатый змеевик подключен к источнику холода, а через второе пускоотсечное устройство к магистрали прокачки теплоносителя, кроме того, трубчатый змеевик подключен на выходе к тепловому экрану, установленному в слоях теплоизоляции, причем магистраль прокачки теплоносителя снабжена подогревателем, установленным на входе в трубчатый змеевик перед вторым пускоотсечным устройством.
Технический результат данного изобретения заключается в том, что предлагаемая позволяет исключить использование жидкого теплоносителя, повысить эффективность теплообмена и упростить конструкцию и эксплуатацию устройства, при этом обеспечивается заправка баллонов потребителя газом, исключающая его загрязнение.
Использование предлагаемого термокомпрессионного устройства, например, при заправке баллонов потребителя, устанавливаемых на космических летательных аппаратах (спутников связи), позволит дать значительный экономический эффект за счет исключения использования жидкого теплоносителя, повышения эффективности теплообмена, улучшения и упрощения конструкции и эксплуатации устройства, а также за счет обеспечения заправки баллонов потребителя газом, исключающей его загрязнение.
Сущность изобретения поясняется чертежом, на котором изображено термокомпрессионное устройство.
Термокомпрессионное устройство состоит из следующих основных узлов и деталей: источника газа высокого давления 1, например, стендовых баллонов высокого давления, заправленных чистым газом, например ксеноном, и подключенных к нему баллоном-компрессором 2, источника холода 3, например сосуда Дьюара с жидким азотом, и магистрали прокачки теплоносителя 4. Баллон-компрессор 2 снабжен внешней теплозащитой 5 и теплообменником 6, выполненным в виде трубчатого змеевика 7, размещенного во внутренней полости 8 баллона-компрессора и прикрепленного к его стенке 9 с обеспечением теплового контакта, например, посредством пайки. На входе 10 в трубчатый змеевик 7 установлены параллельно включенные пускоотсечные устройства 11 и 12, например вентили, и посредством хладопровода 13 (теплоизолированного трубопровода) через первое пускоотсечное устройство (вентиль) 11 трубчатый змеевик 7 подключен к источнику холода (сосуду Дьюара с жидким азотом) 3. Через второе пускоотсечное устройство (вентиль) 12 трубчатый змеевик 7 подключен к магистрали прокачки теплоносителя 4. На выходе 14 трубчатый змеевик 7 подключен к тепловому экрану 15, установленному в слоях теплоизоляции 16. Магистраль прокачки теплоносителя 4 снабжена подогревателем 17, установленным на входе 10 в трубчатый змеевик 7 перед вторым пускоотсечным устройством 12. В качестве подогревателя 17 может быть использован, например, врезной электронагреватель марки «CetaL».
Магистраль прокачки теплоносителя 4 дополнительно снабжена вентилем 18 и газовым редуктором 19, который предназначен для настройки и регулировки расхода и давления теплоносителя в магистрали прокачки теплоносителя 4. В качестве теплоносителя используют газ, например воздух, азот.
Теплозащита 5 баллона-компрессора 2 состоит из теплового экрана 15 и теплоизоляции 16, выполненной, например, из пенополиуретана или многослойной экранно-вакуумной изоляции.
Заправку, например, ксеноном баллона-компрессора 2 от стендовых баллонов 1 производят по трубопроводу заправки газа 20 с вентилем 21. Баллон-компрессор 2 подключен к баллонам потребителя 22 посредством магистрали подачи газа 23, снабженной вентилями 24 и 25 и теплообменником-охладителем 26. Трубопровод заправки газа 20 включен в магистраль подачи газа 23 между вентилями 24 и 25, что обеспечивает подачу газа из стендовых баллонов 1 отдельно, как в баллон-компрессор 2, так и в баллоны потребителя 22. Тепловой экран 15 (прокачного типа) содержит прокачной канал 27 для прокачки отходящих паров теплоносителя (азота), выполненный, например, в виде змеевика из трубки, скрепленной с обечайкой, и подключенного к змеевику 7 теплообменника 6, при этом в совокупности с теплоизоляцией 16 обеспечивает защиту баллона-компрессора 2 от теплопритоков извне при захолаживании баллона-компрессора 2, а при нагревании - защищает его от охлаждения (обратный эффект).
Работает термокомпрессионное устройство следующим образом. Перед началом работы устройства производят очистку внутренних полостей магистрали подачи газа и трубопровода заправки газа, включая баллон-компрессор и баллоны потребителей, от влаги и воздуха. Очистка производится способом вакуумирования с последующей продувкой чистым азотом и ксеноном. Источником закачиваемого газа, например ксенона, в баллоны потребителя являются стендовые баллоны 1, заполненные чистым ксеноном высокого давления порядка 40 кг/см2. В закачиваемом ксеноне должно быть кислорода не более 3·10-5 объемных долей, а водяных паров не более 4·10-5 объемных долей. Работа устройства основана на использовании принципа термокомпрессора, в котором необходимое для заправки (закачки) давление ксенона достигается в баллоне-компрессоре 2 по изохорическому процессу. После проведения очистки внутренних полостей магистрали, трубопровода и баллонов осуществляют процесс термокомпрессии и подачу (закачку) ксенона в баллоны потребителя 22, который производится следующим образом.
В исходном положении все вентили закрыты.
Первоначально производят захолаживание баллона-компрессора 2, для этого открывают вентиля 11 и от источника холода 3, например, из сосуда Дьюара подают, например, жидкий или парообразный азот (хладагент) прокачивают его через трубчатый змеевик 7, размещенный во внутренней полости 8 баллона-компрессора 2, захолаживают баллон-компрессор 2 внутренний сосуд 5 до температуры порядка минус 80°C, при этом пары азота, образующиеся в трубчатом змеевике 7, через выход 14 поступают в прокачной канал 27 теплового экрана 15, охлаждают экран 15, снимают теплопритоки, поступающие из окружающей среды к баллону-компрессору 2, и сбрасываются в атмосферу.
В захоложенный баллон-компрессор 2 из стендовых баллонов 1 подают ксенон, для чего открывают вентили 21, 24 и заполняют баллон-компрессор 2, доводя до заданного давления, при этом происходит конденсация ксенона в баллоне-компрессоре 2 (цикл всасывания). После заполнения баллона-компрессора 2 ксеноном и охлаждения его до температуры порядка минус 80°C стендовый баллон 1 отсекают (закрывают вентили 21 и 24) и закрытием вентиля 11 отсекают подачу хладагента в трубчатый змеевик 7. Одновременно открывают вентили 18, 12 на магистрали прокачки теплоносителя 4, после чего включают подогреватель 17. При этом теплоноситель (воздух), при прохождении через подогреватель 17 нагревается до температуры порядка плюс 95°C и поступает в трубчатый змеевик 7, имеющий тепловой контакт со стенкой 9 баллона-компрессора 2, нагревает баллон-компрессор 2 до температуры порядка плюс 90°C и через выход 14 поступает в прокачной канал 27 теплового экрана 15, нагревает его, создавая в совокупности с теплоизоляцией 16 защитный тепловой барьер от окружающей среды, и сбрасывается в атмосферу, при этом давление ксенона в баллоне-компрессоре 2 растет, а при сообщении его с баллонами потребителя 22 посредством открытия вентилей 24, 25 на магистрали подачи газа 23, ксенон, проходя через теплообменник-охладитель 26, охлаждается до заданной температуры (температуры охлаждающей среды) и поступает в баллоны потребителя 22 (цикл нагнетания). После выравнивания давления между баллоном-компрессором 2 и баллонами потребителя 22 вентили 24, 25 закрывают, а также выключают подогреватель 17 и закрывают вентили 12, 18 на магистрали прокачки теплоносителя 4. Таких последовательных процессов (температурных циклов) охлаждения-нагрева вновь пополняемых порций ксенона из стендового баллона 1 в баллон-компрессор 2 совершают столько, сколько необходимо для достижения заданною давления ксенона в баллонах потребителя 22, например, до 100 кг/см2.
Размещение во внутренней полости 8 баллона-компрессора 2 теплообменника 6, выполненного в виде трубчатого змеевика 7, прикрепленного с тепловым контактом к стенке 9 и обеспечивающего захолаживание баллона-компрессора 2, значительно повышает эффективность теплообмена за счет теплового контакта ксенона с поверхностью охлаждаемого хладагентом змеевика 7 непосредственно от источника холода 3, что также сокращает время захолаживания как самого баллона-компрессора 2, так и ксенона. Кроме того, подключение трубчатого змеевика через параллельно установленные перед входом 10 в трубчатый змеевик пускоотсечные устройства 11 и 12 соответственно к источнику холода 3 и к магистрали прокачки теплоносителя 4 позволяют использовать трубчатый змеевик 7 поочередно для охлаждения и нагрева баллона-компрессора 2, что упрощает и улучшает конструкцию, а подключение теплообменника 6 к тепловому экрану 15 прокачного типа обеспечивает в процессе термоциклирования баллона-компрессора 2 поочередную (соответственно при захолаживании и нагреве) его теплозащиту за счет съема теплопритоков при прокачке паров азота и создании теплового барьера при прокачке нагретого теплоносителя. Таким образом, предлагаемое техническое исполнение термокомпрессионного устройства позволяет исключить жидкий теплоноситель и использовать только газообразный теплоноситель, а также обеспечивает заправку баллонов потребителя газом, исключающей загрязнение газа, при этом повышается эффективность теплообмена, упрощены эксплуатация и улучшена конструкция устройства, что выполняет поставленную задачу.

Claims (1)

  1. Термокомпрессионное устройство, содержащее источник газа высокого давления с подключенным к нему баллоном-компрессором, источник холода и магистраль прокачки теплоносителя, отличающееся тем, что баллон-компрессор снабжен внешней теплозащитой и теплообменником, выполненным в виде трубчатого змеевика, размещенного во внутренней полости баллона-компрессора и прикрепленного к его стенке с обеспечением теплового контакта, при этом на входе в трубчатый змеевик установлены параллельно включенные пускоотсечные устройства и посредством хладопровода через первое пускоотсечное устройство трубчатый змеевик подключен к источнику холода, а через второе пускоотсечное устройство к магистрали прокачки теплоносителя, кроме того, трубчатый змеевик подключен на выходе к тепловому экрану, установленному в слоях теплоизоляции, причем магистраль прокачки теплоносителя снабжена подогревателем, установленным на входе в трубчатый змеевик перед вторым пускоотсечным устройством.
RU2012121309/06A 2012-05-23 2012-05-23 Термокомпрессионное устройство RU2509257C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012121309/06A RU2509257C2 (ru) 2012-05-23 2012-05-23 Термокомпрессионное устройство

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012121309/06A RU2509257C2 (ru) 2012-05-23 2012-05-23 Термокомпрессионное устройство

Publications (2)

Publication Number Publication Date
RU2012121309A RU2012121309A (ru) 2013-11-27
RU2509257C2 true RU2509257C2 (ru) 2014-03-10

Family

ID=49625039

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012121309/06A RU2509257C2 (ru) 2012-05-23 2012-05-23 Термокомпрессионное устройство

Country Status (1)

Country Link
RU (1) RU2509257C2 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ305557B6 (cs) * 2014-10-03 2015-12-09 Vysoká Škola Báňská - Technická Univerzita Ostrava Multifunkční plnicí jednotka plynu

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331627A1 (de) * 1988-03-04 1989-09-06 GebràœDer Sulzer Aktiengesellschaft Anlage und Verfahren für die periodische Be- und Entladung eines Gasspeichers
US7201018B2 (en) * 2003-01-28 2007-04-10 Air Products And Chemicals, Inc. Generation and delivery system for high pressure ultra high purity product
RU2432522C1 (ru) * 2010-03-15 2011-10-27 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Термокомпрессионное устройство (варианты)
RU2437037C1 (ru) * 2010-05-24 2011-12-20 Открытое Акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П.Королева" Термокомпрессионное устройство
RU2447354C2 (ru) * 2010-07-12 2012-04-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Термокомпрессионное устройство

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331627A1 (de) * 1988-03-04 1989-09-06 GebràœDer Sulzer Aktiengesellschaft Anlage und Verfahren für die periodische Be- und Entladung eines Gasspeichers
US7201018B2 (en) * 2003-01-28 2007-04-10 Air Products And Chemicals, Inc. Generation and delivery system for high pressure ultra high purity product
RU2432522C1 (ru) * 2010-03-15 2011-10-27 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Термокомпрессионное устройство (варианты)
RU2437037C1 (ru) * 2010-05-24 2011-12-20 Открытое Акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П.Королева" Термокомпрессионное устройство
RU2447354C2 (ru) * 2010-07-12 2012-04-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Термокомпрессионное устройство

Also Published As

Publication number Publication date
RU2012121309A (ru) 2013-11-27

Similar Documents

Publication Publication Date Title
RU2437037C1 (ru) Термокомпрессионное устройство
KR101912489B1 (ko) 극저온 펌프
RU2432523C1 (ru) Термокомпрессионное устройство
CN1862209A (zh) 真空充液装置和真空充液方法
FR3028306B1 (fr) Dispositif et procede de refroidissement d'un gaz liquefie
CN103518109A (zh) 低温冷却装置和方法
CN102393107A (zh) 负压液氮过冷器装置及其降低液氮温度的方法
CN104826446B (zh) 一种丙烯腈气体的吸附回收装置及回收方法
RU2363860C1 (ru) Термокомпрессионное устройство
RU2509257C2 (ru) Термокомпрессионное устройство
FR2983086A1 (fr) Procede et appareil de rechauffage de l'azote destine a regenerer une unite d'adsorption d'une unite de separation d'air
CN202926548U (zh) 大容积低温绝热容器用抽真空系统
RU2351840C1 (ru) Компрессионное термическое устройство
RU2432522C1 (ru) Термокомпрессионное устройство (варианты)
RU2460932C1 (ru) Термокомпрессионное устройство
RU2425277C1 (ru) Термокомпрессионное устройство
RU2509256C2 (ru) Термокомпрессионное устройство
RU2499180C2 (ru) Термокомпрессионное устройство
KR101436483B1 (ko) 퍼지가스를 이용한 크라이오 패널 가열시스템
RU2533599C2 (ru) Термокомпрессионное устройство
RU2514335C2 (ru) Термокомпрессионное устройство
RU2446345C1 (ru) Термокомпрессионное устройство
RU2347133C1 (ru) Компрессионное термическое устройство (варианты)
RU2447354C2 (ru) Термокомпрессионное устройство
RU2528785C2 (ru) Термокомпрессионное устройство

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160524