RU2509256C2 - Термокомпрессионное устройство - Google Patents

Термокомпрессионное устройство Download PDF

Info

Publication number
RU2509256C2
RU2509256C2 RU2012109267/06A RU2012109267A RU2509256C2 RU 2509256 C2 RU2509256 C2 RU 2509256C2 RU 2012109267/06 A RU2012109267/06 A RU 2012109267/06A RU 2012109267 A RU2012109267 A RU 2012109267A RU 2509256 C2 RU2509256 C2 RU 2509256C2
Authority
RU
Russia
Prior art keywords
cylinders
wall
source
compressor
gas
Prior art date
Application number
RU2012109267/06A
Other languages
English (en)
Other versions
RU2012109267A (ru
Inventor
Владимир Иванович Гореликов
Сергей Александрович Гашилов
Original Assignee
Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" filed Critical Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева"
Priority to RU2012109267/06A priority Critical patent/RU2509256C2/ru
Publication of RU2012109267A publication Critical patent/RU2012109267A/ru
Application granted granted Critical
Publication of RU2509256C2 publication Critical patent/RU2509256C2/ru

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Изобретение относится к холодильной технике. Термокомпрессионное устройство содержит источник газа высокого давления с подключенными к нему баллонами-компрессорами, параллельно включенными в объединенную магистраль заправки баллонов-компрессоров и подачи газа потребителю на входе в теплообменник-охладитель, а также источник холода. Каждый баллон-компрессор выполнен в виде теплоизолированной двустенной емкости с оребрением внутреннего сосуда, размещенным в межстенной полости. Межстенная полость каждой теплоизолированной двустенной емкости подключена непосредственно к общему источнику холода, выполненному в виде сосуда Дьюара с жидким азотом. В каждой теплоизолированной двустенной емкости внутренний сосуд снабжен автономным подогревателем, выполненным в виде электронагревателя из угольной ткани, закрепленного на внешней стенке внутреннего сосуда и подключенного к внешнему источнику электропитания. В объединенную магистраль включены вентили, установленные соответственно на выходе (входе) источника газа высокого давления, каждого баллона-компрессора и теплообменника-охладителя. Задачей изобретения является улучшение и упрощение конструкции и эксплуатации устройства для термоциклирования баллонов-компрессоров и обеспечение непрерывной заправки баллонов потребителя газом, исключающей его загрязнение. 1 ил.

Description

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств (термокомпрессоров) используемых, например, при заполнении газом баллонов высокого давления с соблюдением высоких требований по чистоте, как закачиваемого газа, так и внутренних объемов и поверхностей заправляемой системы.
Принцип работы термокомпрсссиошюго устройства широко известен. Основу его составляет емкость (баллон-компрессор), которую вначале охлаждают, желательно до температуры конденсации газа, и заполняют ее газом из стендовых баллонов. Затем стендовые баллоны отсекают, емкость нагревают, давление газа в ней растет, и он перекачивается в заправляемую емкость. Таких циклов всасывания - нагнетания совершается столько, сколько необходимо для достижения заданного давления в заправляемой емкости.
Известно компрессионное устройство для регенерации хладагентов (см., например, патент США №5379607, МПК: F25B 49/00, от 12.10.1993), содержащее компрессор, ресивер, емкости высокого давления, теплообменники и магистрали заправки и подачи газа потребителю. Наличие в них механического компрессора, использующего смазку для вращающихся и перемещающихся узлов и деталей, не исключает загрязнения газа парами масла (смазки), что недопустимо при перекачке (заправке) газа в баллоны потребителя, применяющего данный газ в качестве рабочего компонента. Кроме того, усложнена конструкция и эксплуатация устройства.
Недостатками аналога являются загрязнение газа при заправке баллонов потребителя, низкая эффективность и сложность конструкции устройства.
Известно также термокомпрессионное устройство по патенту России №2351840, МПК: F17C 5/06, с приоритетом от 07.08.2007, выбранное в качестве прототипа и содержащее источник газа высокого давления с подключенным к нему баллонами-компрессорами, параллельно включенными в объединенную магистраль заправки баллонов-компрессоров и подачи газа потребителю па входе в теплообменник-охладитель, а также источник холода. В состав устройства входят модули термоциклирования баллонов-компрессоров, теплоизолированные емкости которых заполнены теплоносителем с погруженными в пего баллонами-компрессорами, подключенными к источнику газа высокого давления, и снабжены каждая нагревателем и теплообменником-охладителем, подключенными к источнику холода. Данное устройство позволяет обеспечить непрерывную заправку баллонов потребителя газом, исключающую его загрязнение, но использование жидкого теплоносителя для проведения термоциклирования баллонов-компрессоров значительно усложняет конструкцию и эксплуатацию устройства для термоциклирования баллонов-компрессоров.
Недостатками прототипа является сложность конструкции и эксплуатации устройства для термоциклирования баллонов-компрессоров.
Задачей настоящего изобретения является создание такого термокомпрессионного устройства, которое исключало бы использование жидкого или газообразного теплоносителя, улучшало и упростило конструкцию и эксплуатацию устройства для термоциклировапия баллонов-компрессоров, при этом обеспечивало бы непрерывную заправку баллонов потребителя газом, исключающую его загрязнение.
Технический результат достигается тем, что в тсрмокомпрессионном устройстве, содержащем источник газа высокого давления с подключенным к нему баллонами-компрессорами, параллельно включенными в объединенную магистраль заправки баллонов-компрессоров и подачи газа потребителю на входе в теплообменник-охладитель, а также источник холода, в отличие от известного, в нем каждый баллон-компрессор выполнен в виде теплоизолированной двустенной емкости с оребрением внутреннего сосуда, размещенным в межстенной полости, подключенной к источнику холода, при этом в каждой теплоизолировапной двустенной емкости внутренний сосуд снабжен подогревателем, а мсжстснная полость на выходе сообщена с охлаждаемым экраном, установленным в слоях теплоизоляции.
Использование предлагаемого термокомпрессионпого устройства, например, при заправке баллонов потребителя, устанавливаемых на космических летательных аппаратах, таких как спутники связи, позволят получить значительный экономический эффект за счет улучшения и упрощения конструкции и эксплуатации устройства для термоциклирования баллонов-компрессоров, а также за счет обеспечения непрерывной заправки баллонов потребителя газом, исключающей его загрязнение.
Сущность изобретения поясняется чертежом.
Термокомпрсссионнос устройство состоит из следующих основных узлов и деталей: источника газа высокого давления 1, например, стендовых баллонов высокого давления, заправленных чистым газом, например, ксеноном и подключенных к нему двух баллонов-компрессоров 2, 3, источника холода 4, например, сосуда Дьюара с жидким азотом, и объединенной магистрали 5 заправки баллонов-компрессоров и подачи газа потребителю, снабженной теплообменником-охладителем 7. В термокомпрессионном устройстве два автономно работающих баллона-компрессора 2, 3 параллельно включены в объединенную магистраль 5 заправки баллонов-компрессоров и подачи газа потребителю на входе 8 в теплообменник-охладитель 7. Каждый баллон-компрессор 2, 3 выполнен в виде теплоизолированной емкости с двумя стенками - двустенной емкости с оребрением 9, 10 внутреннего сосуда 11, 12, размещенным в образованной стенками емкости полости - межстенной полости 13, 14 соответственно, подсоединенной к источнику холода 4, при этом в каждой тенлоизолированной двустенной емкости внутренний сосуд 11, 12 снабжен соответственно подогревателем 15, 16, например, электронагревателем из угольной ткани, закрепленным на внешней стенке внутреннего сосуда и подключенным к внешнему источнику электропитания, а межстенная полость 13, 14 на выходе 17, 18 сообщена с охлаждаемым экраном 19, 20, установленным в слоях теплоизоляции 21, 22. В объединенную магистраль 5 включены вентили 23, 24. 25, установленные соответственно на выходе (входе) источника газа высокого давления 1, баллона-компрессора 3 и баллона-компрессора 3, а также вентиль 26, установленный на входе (выходе) из теплообменника-охладителя 7. Такая расстановка вентилей посредством их переключения обеспечивает как заправку баллонов-компрессоров 2, 3, так и подачу газа потребителю 6, а при необходимости и обратную перекачку газа из баллонов потребителя 6. В качестве теплоизоляции 21, 22 используют, например, пенополиуретан или многослойную экранно-вакуумную изоляцию.
Подачу хладагента, например, жидкого азота от источника холода 4, например, из сосуда Дьюара производят по трубопроводу подачи хладагента 27, снабженному вентилями 28, 29, установленными непосредственно на входе соответственно в межстстеные полости 13, 14. Охлаждаемые экраны 19, 20 выполнены, например, в виде обечаек 30, 31 с закрепленными на их поверхности трубчатыми змеевиками 32, 33, скрепленными соответственно с обечайками посредством пайки.
Поясним эксплуатацию термокомпрессионного устройства.
Перед началом функционирования термокомпрессионного устройства производят очистку внутренних полостей объединенной магистрали заправки баллонов-компрессоров и подачи газа потребителю, включая баллоны-компрессоры и баллоны потребителей от влаги и воздуха. Очистка производится способом вакуумирования с последующей продувкой чистым азотом и ксеноном. Источником закачиваемого газа, например, ксенона в баллоны потребителя являются стендовые баллоны 1, заполненные чистым ксеноном высокого давления 40 кг/см2. В закачиваемом ксеноне должно быть кислорода не более 3·10-5 объемных долей, а водяных паров не более 4·10-5 объемных долей.
Работа устройства основана на использовании принципа термокомпрессора, в котором необходимое для заправки (закачки) давление ксенона достигается в баллонах-компрессорах 2, 3 по изохорическому процессу. После проведения очистки внутренних полостей магистралей подачи ксенона и баллонов осуществляют процесс термокомпрессии и подачу ксенона в баллоны потребителя 6, который производится следующим образом:
В исходном положении все вентили закрыты.
Первоначально производят захолаживание баллонов-компрессоров 2, 3 для этого открывают вентиля 28 и 29 на трубопроводе подачи хладагента 27, например, парообразного или жидкого азота от источника холода 4, например, например, из сосуда Дьюара и подают в межстенные полости 13, 14 жидкий или парообразный азот, захолаживают внутренние сосуды 11, 12 до температуры порядка минус 80°C, при этом пары азота, образующиеся в межстенных полостях 13, 14, через выходы 17, 18 поступают в змеевики 32, 33 охлажденных экранов 19, 20 соответственно, охлаждают экраны 19, 20, снимают теплопритоки, поступающие из окружающей среды к баллонам-компрессорам 2, 3 и сбрасываются в атмосферу.
В захолаженные внутренние сосуды 11, 12 из стендового баллона 1 подают ксенон, для чего открывают вентили 23, 24, 25, и заполняют внутренние сосуды 11, 12 до заданного давления, при этом происходит конденсация ксенона во внутреннем сосуде 11, 12 (цикл всасывания). После заполнения внутреннего сосуда 11, 12 баллонов-компрессоров 2, 3 ксеноном и охлаждения его до температуры порядка минус 80°C стендовый баллон 1 отсекают (закрывают вентили 23, 24, 25) и закрытием вентилей 28, 29 на трубопроводе подачи хладагента 27 прекращают подачу хладагента в межстенные полости 13, 14. Одновременно включают подогреватели 15, 16 и нагревают внутренние сосуды 11, 12 до температуры порядка плюс 90°C, при этом давление ксенона во внутренних сосудах 11, 12 растет, а при сообщении его с баллонами потребителя 6 посредством открытия вен-гилей 24, 25, 26 на объединенной магистрали 5, ксенон, проходя через теплообменник-охладитель 7, охлаждается до заданной температуры (температуры охлаждающей среды) и поступает в баллоны потребителя 6 (цикл нагнетания). После выравнивания давления между внутренними сосудами 11, 12 баллонов-компрессоров 2, 3 и баллонами потребителя 6 вентили 24, 25, 26 закрывают, а также выключают подогреватели 15, 16.
Таких последовательных процессов (температурных циклов) охлаждения-нагрева вновь пополняемых порций ксенона из стендового баллона 1 в баллоны-компрессоры 2, 3 совершают столько, сколько необходимо для достижения заданного давления ксенона в баллонах потребителя 6, например, до 100 кг/см2.
Выполнение устройства с одинаковыми автономно работающими баллонами-компрессорами, которые параллельно включены в объединенную магистраль заправки баллонов-компрессоров и подачи газа в баллоны потребителя на входе в теплообменник-охладитель, позволяет обеспечить непрерывную заправку баллонов потребителя газом, исключающую загрязнение газа, т.к. такая конструкция дает возможность производить заправку (цикл нагнетания), например от баллона-компрессора 2, в то время как баллон-компрессор 3 находится в состоянии подготовки к заправке (цикл всасывании), т.е. одновременно, когда баллон-компрессор 2 находится в состоянии цикла нагнетания, баллон-компрессор 3 находится в состоянии цикла всасывания и наоборот.
Такой режим работы баллонов-компрессоров позволяет попеременно, а в целом бесперебойно пополнять баллоны потребителя закачиваемым газом (ксеноном). Выполнение каждого баллона-компрессора 2, 3 в виде теплоизолированной двустенной емкости, снабженной автономными подогревателями 15, 16 и получающей непосредственное охлаждение от общего источника холода 4 посредством прокачки хладагента через межстенную полость 13, 14 позволяет исключить потребность в специальном теплоносителе и оборудовании (специальных агрегатов и устройств) для его подготовке при охлаждении и нагревании, и тем самым значительно улучшить и упростить конструкцию и эксплуатацию устройства термоциклирования баллонов-компрессоров 2, 3, при этом обеспечивается непрерывная заправка баллонов потребителя 6 газом, исключающая его загрязнение, что выполняет поставленную задачу.

Claims (1)

  1. Термокомпрессионное устройство, содержащее источник газа высокого давления с подключенными к нему баллонами-компрессорами, параллельно включенными в объединенную магистраль заправки баллонов-компрессоров и подачи газа потребителю на входе в теплообменник-охладитель, а также источник холода, причем каждый баллон-компрессор выполнен в виде теплоизолированной двустенной емкости с оребрением внутреннего сосуда, размещенным в межстенной полости, отличающееся тем, что межстенная полость каждой теплоизолированной двустенной емкости подключена непосредственно к общему источнику холода, выполненному в виде сосуда Дьюара с жидким азотом, и в каждой теплоизолированной двустенной емкости внутренний сосуд снабжен автономным подогревателем, выполненным в виде электронагревателя из угольной ткани, закрепленного на внешней стенке внутреннего сосуда и подключенного к внешнему источнику электропитания, при этом в объединенную магистраль включены вентили, установленные соответственно на выходе (входе) источника газа высокого давления, каждого баллона-компрессора и теплообменника-охладителя.
RU2012109267/06A 2012-03-12 2012-03-12 Термокомпрессионное устройство RU2509256C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012109267/06A RU2509256C2 (ru) 2012-03-12 2012-03-12 Термокомпрессионное устройство

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012109267/06A RU2509256C2 (ru) 2012-03-12 2012-03-12 Термокомпрессионное устройство

Publications (2)

Publication Number Publication Date
RU2012109267A RU2012109267A (ru) 2013-09-20
RU2509256C2 true RU2509256C2 (ru) 2014-03-10

Family

ID=49182882

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012109267/06A RU2509256C2 (ru) 2012-03-12 2012-03-12 Термокомпрессионное устройство

Country Status (1)

Country Link
RU (1) RU2509256C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022194837A1 (fr) * 2021-03-17 2022-09-22 Eifhytec Système de compression thermique d'un gaz

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331627A1 (de) * 1988-03-04 1989-09-06 GebràœDer Sulzer Aktiengesellschaft Anlage und Verfahren für die periodische Be- und Entladung eines Gasspeichers
US6688115B1 (en) * 2003-01-28 2004-02-10 Air Products And Chemicals, Inc. High-pressure delivery system for ultra high purity liquid carbon dioxide
RU2243445C1 (ru) * 2003-04-14 2004-12-27 Открытое акционерное общество "Кузполимермаш" Заправочная станция сжиженных углеводородных газов
RU2351840C1 (ru) * 2007-08-07 2009-04-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Компрессионное термическое устройство
RU2437037C1 (ru) * 2010-05-24 2011-12-20 Открытое Акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П.Королева" Термокомпрессионное устройство

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331627A1 (de) * 1988-03-04 1989-09-06 GebràœDer Sulzer Aktiengesellschaft Anlage und Verfahren für die periodische Be- und Entladung eines Gasspeichers
US6688115B1 (en) * 2003-01-28 2004-02-10 Air Products And Chemicals, Inc. High-pressure delivery system for ultra high purity liquid carbon dioxide
RU2243445C1 (ru) * 2003-04-14 2004-12-27 Открытое акционерное общество "Кузполимермаш" Заправочная станция сжиженных углеводородных газов
RU2351840C1 (ru) * 2007-08-07 2009-04-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Компрессионное термическое устройство
RU2437037C1 (ru) * 2010-05-24 2011-12-20 Открытое Акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П.Королева" Термокомпрессионное устройство

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022194837A1 (fr) * 2021-03-17 2022-09-22 Eifhytec Système de compression thermique d'un gaz

Also Published As

Publication number Publication date
RU2012109267A (ru) 2013-09-20

Similar Documents

Publication Publication Date Title
RU2437037C1 (ru) Термокомпрессионное устройство
RU2432523C1 (ru) Термокомпрессионное устройство
KR101912489B1 (ko) 극저온 펌프
US20150192249A1 (en) Equipment and method for filling pressurized gas cylinders from a liquefied gas tank
CN112815596B (zh) 一种混合制冷系统及其速冻方法
US20170314826A1 (en) Refrigeration system
KR102133684B1 (ko) 초전도 자석을 가온 및 냉각시키기 위한 시스템
US10352591B2 (en) Cooling device and method therefore for CO2 washing machine
RU2509256C2 (ru) Термокомпрессионное устройство
RU2351840C1 (ru) Компрессионное термическое устройство
RU2363860C1 (ru) Термокомпрессионное устройство
RU2425277C1 (ru) Термокомпрессионное устройство
RU2432522C1 (ru) Термокомпрессионное устройство (варианты)
RU2533599C2 (ru) Термокомпрессионное устройство
RU2347133C1 (ru) Компрессионное термическое устройство (варианты)
RU2460932C1 (ru) Термокомпрессионное устройство
RU2509257C2 (ru) Термокомпрессионное устройство
RU2447354C2 (ru) Термокомпрессионное устройство
RU2499180C2 (ru) Термокомпрессионное устройство
RU2528785C2 (ru) Термокомпрессионное устройство
WO2002016836A1 (fr) Refroidisseur a cycle de stirling, chambre de refroidissement et refrigerateur
RU2514335C2 (ru) Термокомпрессионное устройство
RU2487291C2 (ru) Термокомпрессивное устройство
RU2387919C2 (ru) Термокомпрессионное устройство
RU2424466C1 (ru) Термокомпрессионное устройство

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160313