RU2505885C1 - Способ изготовления датчика вакуума с наноструктурой заданной чувствительности и датчик вакуума на его основе - Google Patents

Способ изготовления датчика вакуума с наноструктурой заданной чувствительности и датчик вакуума на его основе Download PDF

Info

Publication number
RU2505885C1
RU2505885C1 RU2012124205/28A RU2012124205A RU2505885C1 RU 2505885 C1 RU2505885 C1 RU 2505885C1 RU 2012124205/28 A RU2012124205/28 A RU 2012124205/28A RU 2012124205 A RU2012124205 A RU 2012124205A RU 2505885 C1 RU2505885 C1 RU 2505885C1
Authority
RU
Russia
Prior art keywords
sno
thin
nanostructure
tin
semiconductor resistor
Prior art date
Application number
RU2012124205/28A
Other languages
English (en)
Other versions
RU2012124205A (ru
Inventor
Игорь Александрович Аверин
Валерий Анатольевич Васильев
Андрей Андреевич Карманов
Римма Михайловна Печерская
Игорь Александрович Пронин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ)
Priority to RU2012124205/28A priority Critical patent/RU2505885C1/ru
Publication of RU2012124205A publication Critical patent/RU2012124205A/ru
Application granted granted Critical
Publication of RU2505885C1 publication Critical patent/RU2505885C1/ru

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

Изобретение относится к измерительной технике. В способе изготовления датчика вакуума с наноструктурой получают гетероструктуру из различных материалов, в которой формируют тонкопленочный полупроводниковый резистор, после чего ее закрепляют в корпусе датчика, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников. Тонкопленочный полупроводниковый резистор формируют в виде сетчатой наноструктуры (SiO2)100%-x(SnO2)x. Массовую долю компонента х определяют (задают) в интервале 50%≤х≤90% путем нанесения золя ортокремниевой кислоты, содержащего гидроксид олова, на подложку из кремния с помощью центрифуги и последующим отжигом. Золь приготавливают в два этапа, на первом этапе смешивают тетраэтоксисилан и этиловый спирт, затем на втором этапе в полученный раствор вводят дистиллированную воду, соляную кислоту (HCl) и двухводный хлорид олова (SnCl2·2H2O). Изобретение обеспечивает повышение чувствительности датчика вакуума. 2 н.п. ф-лы, 10 ил.

Description

Предлагаемое изобретение относится к измерительной технике и может быть использовано при изготовлении датчиков вакуума для измерения давления разреженного газа в вакуумных установках различного назначения.
Известны датчики вакуума, содержащие проволочный резистор, выполняющий функции чувствительного элемента, и способы их изготовления [1, 2].
Известны датчики давления на основе нано- и микроэлектромеханических систем, содержащие тонкопленочный резистор, и способы их изготовления [3, 4]. Их общим недостатком является недостаточно высокая чувствительность в области низкого вакуума.
Наиболее близким по технической сущности к предлагаемому решению является способ изготовления датчика вакуума с применением полупроводниковой пленки и датчик вакуума на его основе [5]. Он заключается в том, что образуют гетероструктуру из различных материалов, в которой формируют тонкопленочный полупроводниковый резистор (который может быть наноструктурой), после чего ее закрепляют в корпусе датчика, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников. Датчик вакуума, изготовленный таким способом, содержит корпус, тонкопленочный полупроводниковый резистор (который может быть наноструктурой), контактные площадки, контактные проводники, выводы корпуса.
Недостатком такого способа и датчика вакуума на его основе является относительно низкая чувствительность при измерении давлений в области низкого вакуума. Кроме того, недостатком является отсутствие возможности изготавливать датчик с заданной чувствительностью и максимально возможной чувствительностью.
Техническим результатом изобретения является повышение чувствительности датчика вакуума, получение возможности изготавливать датчик вакуума с заданной и максимально возможной чувствительностью.
Это достигается тем, что в известном способе изготовления датчика вакуума с наноструктурой, заключающемся в том, что образуют гетероструктуру из различных материалов, в которой формируют тонкопленочный полупроводниковый резистор, после чего ее закрепляют в корпусе датчика, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников, в соответствии с предлагаемым изобретением тонкопленочный полупроводниковый резистор формируют в виде сетчатой наноструктуры (SiO2)100%-x(SnO2)x, массовую долю компонента x которой перед этим определяют (задают) в интервале 50%≤х≤90%, путем нанесения золя ортокремниевой кислоты, содержащего гидроксид олова, на подложку из кремния с помощью центрифуги и последующим отжигом, который приготавливают в два этапа, на первом этапе смешивают тетраэтоксисилан и этиловый спирт, затем на втором этапе в полученный раствор вводят дистиллированную воду, соляную кислоту (HCl) и двухводный хлорид олова (SnCl2·2H2O).
В данном способе изготовления датчика вакуума с наноструктурой, в соответствии с предлагаемым изобретением, массовую долю компонента x в интервале 50%≤х≤90% определяют (выбирают) исходя из зависимости концентрации диоксида олова (SnO2) от чувствительности S по соотношению:
Figure 00000001
где S - чувствительность в %, которая задается в пределах от 16,74% до 35,70%; x - массовая доля SnO2 в %, а необходимые объем VТЭОС тетраэтоксисилана, объем этанола (Vэтанола), объем дистиллированной воды (Vводы) и массу двухводного хлорида олова (SnCl2·2H2O) для приготовления золя ортокремниевой кислоты, содержащего гидроксид олова, определяют по соотношениям:
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
где
Figure 00000006
- масса диоксида олова (SnO2) в мг; x - массовая доля SnO2 в %.
В этом способе изготовления датчика вакуума с наноструктурой в соответствии с предлагаемым изобретением на первом этапе приготовления золя смешивают тетраэтоксисилан (ТЭОС) и этиловый спирт (95%) в соотношении 1:1,047 при комнатной температуре и выдерживают определенное время, а на втором этапе в полученный раствор вводят дистиллированную воду в соотношении 1:0,323,соляную кислоту (HCl) в соотношении 1:0,05, двухводный хлорид олова (SnCl2·2H2O) в соотношении 1:2,262 и перемешивают определенное время, где за единицу принят объем ТЭОС.
В таком способе изготовления датчика вакуума с наноструктурой в соответствии с предлагаемым изобретением на первом этапе приготовления золя после смешивания тетраэтоксисилана и этилового спирта смесь выдерживают в течение 30 минут до перехода ко второму этапу, а на втором этапе после введения дистиллированной воды, соляной кислоты (HCl) и двухводного хлорида олова (SnCl2·2H2O) смесь перемешивают в течение 60 минут.
В таком способе изготовления датчика вакуума с наноструктурой в соответствии с предлагаемым изобретением золь ортокремневой кислоты, содержащий гидрооксид олова, наносят на подложку из кремния (Si) с помощью центрифуги с использованием дозатора при скорости вращения центрифуги 3000 об/мин в течение 2 минут, а отжиг осуществляют при температуре 600°С в течение 30 минут в воздушной среде.
При этом датчик вакуума с наноструктурой, изготовленный по предлагаемому способу, содержит корпус, установленную в нем гетерогенную структуру из тонких пленок материалов, образованную на подложке из полупроводника, тонкопленочный полупроводниковый резистор и контактные площадки к нему, сформированные в гетерогенной структуре, выводы корпуса и контактные проводники, соединяющие контактные площадки с выводами корпуса, в соответствии с предлагаемым изобретением полупроводниковый резистор изготовлен в виде сетчатой наноструктуры на основе золя ортокремниевой кислоты, содержащего гидроксид олова, на подложке из кремния с помощью центрифуги и последующим отжигом, который приготовлен в два этапа, на первом этапе смешивался тетраэтоксисилан и этиловый спирт, а на втором этапе в полученный раствор вводились дистиллированная вода, соляная кислота (HCl) и двухводный хлорид олова (SnCl2·2H2O), причем массовая доля компонента x в интервале 50%≤х≤90% определена (задана) исходя из зависимости концентрации диоксида олова (SnO2) от чувствительности S по соотношению (1):
Figure 00000007
,
где S - чувствительность в %, которая задается в пределах от 16,74% до 35,70%; x - массовая доля SnO2 в %, а необходимые объем VТЭОС тетраэтоксисилана, объем этанола (Vэтанола), объем дистиллированной воды (Vводы) и массу двухводного хлорида олова (SnCl2·2H2O) для приготовления золяортокремниевой кислоты, содержащего гидроксид олова, определяют соотношениям (2-5):
Figure 00000008
,
Figure 00000009
,
Figure 00000010
,
Figure 00000011
,
где
Figure 00000012
- масса диоксида олова (SnO2) в мг; x - массовая доля SnO2 в %.
Кроме того, в датчике вакуума с наноструктурой, изготовленной по предлагаемому способу, содержащем корпус, установленную в нем гетерогенную структуру из тонких пленок материалов, образованную на подложке из полупроводника, тонкопленочный полупроводниковый резистор и контактные площадки к нему, сформированные в гетерогенной структуре, выводы корпуса и контактные проводники, соединяющие контактные площадки с выводами корпуса, в соответствии с предлагаемым изобретением полупроводниковый резистор изготовлен в виде сетчатой наноструктуры на основе золя ортокремниевой кислоты, содержащего гидроксид олова, на подложке из кремния с помощью центрифуги и последующим отжигом, который приготовлен в два этапа, на первом этапе смешивался тетраэтоксисилан и этиловый спирт, а на втором этапе в полученный раствор вводились дистиллированная вода, соляная кислота (HCl) и двухводный хлорид олова (SnCl2·2H2O), причем тетраэтоксисилан и этиловый спирт в соотношении 1:1,047, дистиллированная вода в соотношении 1:0,323,соляная кислота (HCl) в соотношении 1:0,05, двухводный хлорид олова (SnCl2·2H2O) в соотношении 1:2,262.
На фиг.1 показана конструкция датчика вакуума, который изготавливается по предлагаемым способам. Датчик вакуума содержит корпус 1 (фиг.1), гетерогенную структуру 2 (из тонких пленок материалов), в которой сформирован тонкопленочный полупроводниковый резистор 3 (наноструктура), контактные площадки 4, контактные проводники 5, выводы корпуса 6, штуцер 7, изоляторы 8, подложку 9 (из кремния).
Согласно предлагаемого способа золь ортокремниевой кислоты, содержащий гидроксид олова, приготавливают в два этапа для нанесения на подложку 9 из кремния (фиг.1). На первом этапе смешивают тетраэтоксисилан и этиловый спирт, смесь выдерживают в течение 30 минут до перехода ко второму этапу. Время выдержки установлено исходя из времени протекания реакции обменного взаимодействия между тетраэтоксисиланом и этиловым спиртом, в результате которой образуется этиловый эфир ортокремневой кислоты. На втором этапе после введения дистиллированной воды, соляной кислоты (HCl) и двухводного хлорида олова (SnCl2·2H2O) смесь перемешивают в течение 60 минут. Время процесса установлено исходя из времени протекания реакции гидролиза эфира, в результате которой образуется ортокремневая кислота. А также, исходя из того, что за это же время на этом этапе происходит образование гидроксида олова (Sn(OH)2) и протекает реакция поликонденсации ортокремневой кислоты.
Золь ортокремневой кислоты, содержащий гидрооксид олова, наносят на подложку 9 (фиг.1) из кремния (Si) с помощью центрифуги с использованием дозатора при скорости вращения центрифуги 3000 об/мин в течение 2 минут. Использование таких режимов центрифуги позволяет достичь необходимой толщины, равномерности и сетчатой наноструктуры пленки (SiO2)100%-x(SnO2)x (тонкопленочного полупроводникового резистора 3), а также частично удалить растворитель из этой пленки.
В качестве подложки из кремния (Si) могут быть использованы пластины кремния КЭФ (111) толщиной 200-300 мкм не окисленные и окисленные промышленным способом в кислороде. Последние имеют окисный слой SiO2, толщина которого около 800 нм.
Отжиг осуществляют при температуре 600°С в течение 30 минут в воздушной среде. Использование таких параметров процесса позволяет окончательно удалить растворитель из пор на поверхности и в объеме пленки, а также осуществить реакции по разложению ортокремневой кислоты (Si(OH)4) до диоксида кремния (SiO2) и гидроксида олова (Sn(OH)4) до диоксида олова (SnO2).
Наличие окисного слоя SiO2 на поверхности подложки из Si не препятствует электрическому соединению тонкопленочного полупроводникового резистора 3 (фиг.1), выполненного в виде сетчатой наноструктуры (SiO2)100%-x(SnO2)x, с полупроводниковой подложкой 9. При изготовлении контактных площадок 4 к такому резистору из Ag путем вжигания при температуре 600°С обеспечивается электрическое соединение тонкопленочного полупроводникового резистора 3 и подложки 9 в местах контактных площадок 4. То есть тонкопленочный полупроводниковый резистор 3 оказывается параллельно включенным полупроводниковому резистору, в качестве которого выступает полупроводниковая подложка 9. При этом тонкий окисный слой SiO2 является одной из пленок материалов гетерогенной структуры 2 (фиг.1).
Датчик вакуума работает следующим образом. Тонкопленочный полупроводниковый резистор 3 при помощи выводов корпуса 6 включают в мостовую измерительную цепь (мост) в качестве одного из ее плеч, с помощью подстроечного резистора (не показан) мост балансируют (показания измерительного прибора устанавливают на нуль при начальном давлении, выбранном за точку отсчета).
При увеличении или уменьшении давления в корпусе датчика вакуума увеличивается или уменьшается (соответственно) количество молекул газа, которые участвуют в теплообмене. Если количество молекул газа уменьшается (вследствие уменьшения давления), уменьшается теплоотдача от гетерогенной структуры 2 и тонкопленочного полупроводникового резистора 3 (сформированного в ней). Их температура нагрева увеличивается, следовательно, уменьшается сопротивление тонкопленочного полупроводникового резистора 3 (сопротивление полупроводников уменьшается с повышением температуры).
Так как тонкопленочный полупроводниковый резистор 3 включают в мостовую измерительную цепь, то с изменением давления происходит ее разбаланс, который является функцией давления.
Поскольку тонкопленочный полупроводниковый резистор 3 изготовлен по предлагаемому способу в виде сетчатой наноструктуры (SiO2)100%-x(SnO2)x на основе золя ортокремниевой кислоты, содержащего гидроксид олова, на подложке из кремния, то с уменьшением давления в сетчатой наноструктуре (SiO2)100%-x(SnO2)x (с массовой долей компонента х интервале 50%≤x≤90%) происходит процесс десорбции газов, в частности кислорода, приводящий к уменьшению сопротивления тонкопленочного полупроводникового резистора 3. Дополнительное приращение к изменению сопротивления резистора повышает чувствительность в диапазоне низкого вакуума.
Сетчатая наноструктура (SiO2)100%-x(SnO2)x (сетка) в указанном интервале 50%≤х≤90% представляет собой зерна диоксида олова (SnO2), заключенные в диэлектрическую матрицу диоксида кремния (SiO2), размер которых соизмерим с размерами области пространственного заряда (длиной экранирования Дебая). Наличие в такой сетке захваченных из окружающей среды атомов газа, в частности кислорода, уменьшает размер областей пространственного заряда, зоны их перекрытия и тем самым препятствует перемещению электрических зарядов по сетке. При десорбции препятствие для перемещения электрических зарядов по сетке устраняется и проводимость растет (сопротивление уменьшается).
С изменением массовой доли компонента x сетчатой наноструктуры (SiO2)100%-x(SnO2)x в интервале 50%≤x≤90% меняется чувствительность к давлению. Соответственно изменяется и морфология поверхности тонкопленочного полупроводникового резистора 3.
На фиг.2 представлена зависимость относительного изменения сопротивления (R/R0) тонкопленочного полупроводникового резистора 3 от давления (Р), при различной массовой доле диоксида олова (компонента x). Кривая 1 - кремний (Si), кривая 2 - 90% SnO2; кривая 3 - 50% SnO2; кривая 4 - 60% SnO2; кривая 5 - 70% SnO2; кривая 6 - 80% SnO2; кривая 7 - 85% - SnO2. Максимальная чувствительность к давлению достигается при х=85%.
На фиг.3 представлена зависимость (кружки - эксперимент, сплошная линия - аппроксимация) относительного изменения сопротивления (R/R0) тонкопленочного полупроводникового резистора 3 от давления (Р) при массовой доле диоксида олова 85% (компонента х).
На фиг.4 (а-д) представлена морфология поверхности тонкопленочного полупроводникового резистора 3, полученная с помощью атомно-силового микроскопа (АСМ), при различной массовой доле диоксида олова (компонента x): а) 50% SnO2; б) 60% SnO2; в) 70% SnO2; г) 80% SnO2; д) 85% SnO2. Сетчатая наноструктура ((SiO2)100%-x(SnO2)x образуется при x=50% в форме мезапористой структуры (фиг.4а, б). До достижения x=70% в ней интенсивно растут нуклеофильные зародыши, достигая некоторого максимума (фиг.4в), после чего они распадаются. При x=80% сетчатая наноструктура (SiO2)100%-x(SnO2)x переходит в форму сетки спинодального распада (фиг.4г, д). Максимум чувствительности к давлению получен при х=85% (фиг.4д).
На фиг.5 представлена зависимость (кружки - эксперимент, сплошная линия - аппроксимация) чувствительности (S) тонкопленочного полупроводникового резистора в виде сетчатой наноструктуры (SiO2)100%-x(SnO2)x от массовой доли (х) диоксида олова (SnO2). Данная зависимость имеет вид:
Figure 00000013
где S - чувствительность в %; x - массовая доля SnO2 в %.
Зависимость концентрации диоксида олова от чувствительности имеет вид (1):
Figure 00000014
.
На фиг.6 представлена зависимость объема (VТЭОС) тетраэтоксисилана (ТЭОС) от массовой доли (х) диоксида олова (SnO2). Данная зависимость получена на основе экспериментальных данных и имеет вид (2):
Figure 00000015
,
где
Figure 00000016
- масса диоксида олова (SnO2) в мг; x - массовая доля SnO2 в %.
На фиг.7 представлена зависимость объема этанола (Vэтанола) от массовой доли (x) диоксида олова (SnO2). Данная зависимость получена на основе экспериментальных данных и имеет вид (3):
Figure 00000017
.
На фиг.8 представлена зависимость объема воды (Vводы) от массовой доли (х) диоксида олова (SnO2). Данная зависимость получена на основе экспериментальных данных экспериментальных данных и имеет вид (4):
Figure 00000018
.
Дополнительное приращение к изменению сопротивления тонкопленочного полупроводникового резистора 3 (фиг.1), повышающее чувствительность в диапазоне низкого вакуума, подтверждается результатами экспериментальных исследований сетчатой наноструктуры (SiO2)100%-x(SnO2)x, которые представлены на фиг.2.
Кроме того, исследовалось влияние непроницаемого покрытия, наносимого на тонкопленочный полупроводниковый резистор. На фиг.9 представлены зависимости относительного изменения сопротивления (R/R0) тонкопленочного полупроводникового резистора в виде сетчатой наноструктуры (SiO2)100%-x(SnO2)x от давления (Р) при массовой доле диоксида олова х=85%: кривая 1 - тонкопленочный полупроводниковый резистор закрыт непроницаемым покрытием (тонким слоем парафина), кривая 2 - открыт. Видно, что когда сетчатая наноструктура (SiO2)100%-x(SnO2)x открыта, резко возрастает чувствительность к изменению давления. Это свидетельствует о включении дополнительного механизма - десорбции, увеличивающего чувствительность датчика вакуума. На фиг.10 в трехмерном пространстве показана морфология поверхности тонкопленочного полупроводникового резистора 3, полученная с помощью атомно-силового микроскопа (АСМ), при массовой доле диоксида олова х=85%, где отчетливо видна сетчатая наноструктура (SiO2)100%-x(SnO2)x.
Благодаря отличительным признакам изобретения повышается чувствительность. Кроме того, обеспечивается получение возможности изготавливать датчик вакуума с заданной и максимально возможной чувствительностью. Чувствительность S может задаваться в пределах от 16,74% до 35,70%.
Так, если задать максимально возможную чувствительность 35,70%, то с помощью выражения (1) можно определить необходимую массовую долю диоксида кремния:
x(S)=18,117·ln(4,82·35,70-65,06)=85%.
Необходимые при этом объем VТЭОС тетраэтоксисилана, объем этанола (Vэтанола), объем дистиллированной воды (Vводы) и масса двухводного хлорида олова (SnCl2·2H2O) для приготовления золя ортокремниевой кислоты, содержащего гидроксид олова, определяются по соотношениям (2), (3), (4), (5) соответственно. Если массу диоксида олова
Figure 00000019
взять равной 100 мг, то из формул (2)-(5) получим:
Figure 00000020
,
Figure 00000021
,
Figure 00000022
,
Figure 00000023
.
Из приведенного расчета следует, что соотношения для тетраэтоксисилана, этанола, воды и массы диоксида олова будут следующие.
Figure 00000024
,
Figure 00000025
,
Figure 00000026
.
В результате испытаний экспериментальных образцов датчиков вакуума, изготовленных в соответствии с формулой изобретения, установлено, что датчики позволяют значительно повысить чувствительность.
Предлагаемый способ изготовления датчика вакуума и датчик вакуума на его основе выгодно отличаются от известных и могут найти широкое применение при изготовлении датчиков вакуума.
Источники информации
1. А.с. СССР №1285327, МПК G01L 21/12 Теплоэлектрический вакуумметр / Тихонов А.И., Васильев В.А., Тельпов С.Е. // Бюл. №3 от 23.01.1987 г.
2. А.с. СССР №1420407, МПК G01L 21/12. Теплоэлектрический преобразователь давления / Васильев В.А., Тельпов С.Е., Тихонов А.И., Горбачева А.В. // Бюл. №32 от 30.08.1988 г.
3. Патент РФ№2398195, МПК G01L 9/04, В82В 3/00. Способ изготовления нано- и микроэлектромеханической системы датчика давления и датчик давления на его основе / Белозубов Е.М., Васильев В.А., Чернов П.С. // Бюл. №24 от 27.08.2010 г.
4. Патент РФ№2430342, МПК G 01 L9/00. Полупроводниковый датчик давления с частотным выходным сигналом / Васильев В.А., Громков Н.В., Москалев С.А. // Бюл. №27 от 27.09.2011 г.
5. Булыга А.В. Полупроводниковые теплоэлектрические вакуумметры. (Библиотека по автоматике, выпуск 177). М.-Л.: Изд-во Энергия, 1966. - С.115-116.

Claims (2)

1. Способ изготовления датчика вакуума с наноструктурой, заключающийся в том, что образуют гетероструктуру из различных материалов, в которой формируют тонкопленочный полупроводниковый резистор, после чего ее закрепляют в корпусе датчика, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников, отличающийся тем, что тонкопленочный полупроводниковый резистор формируют в виде сетчатой наноструктуры (SiO2)100%-x(SnO2)x, массовую долю компонента х которой перед этим определяют (задают) в интервале 50%≤x≤90%, путем нанесения золя ортокремниевой кислоты, содержащего гидроксид олова, на подложку из кремния с помощью центрифуги и последующим отжигом, который приготавливают в два этапа, на первом этапе смешивают тетраэтоксисилан и этиловый спирт, затем на втором этапе в полученный раствор вводят дистиллированную воду, соляную кислоту (HCl) и двухводный хлорид олова (SnCl2·2H2O), причем массовую долю компонента х в интервале 50%≤x≤90% определяют (задают) исходя из зависимости концентрации диоксида олова (SnO2) от чувствительности S по соотношению:
Figure 00000027

где S - чувствительность в %, которая задается в пределах от 16,74% до 35,70%; х - массовая доля SnO2 в %, а необходимые объем VТЭОС тетраэтоксисилана, объем этанола (Vэтанола), объем дистиллированной воды (Vводы) и массу двухводного хлорида олова (SnCl2·2H2O) для приготовления золя ортокремниевой кислоты, содержащего гидроксид олова, определяют по соотношениям:
Figure 00000028

Figure 00000029

где
Figure 00000006
- масса диоксида олова (SnO2) в мг; х - массовая доля SnO2 в %.
2. Датчик вакуума с наноструктурой, изготовленный по п.1, содержащий корпус, установленную в нем гетерогенную структуру из тонких пленок материалов, образованную на подложке из полупроводника, тонкопленочный полупроводниковый резистор и контактные площадки к нему, сформированные в гетерогенной структуре, выводы корпуса и контактные проводники, соединяющие контактные площадки с выводами корпуса, отличающийся тем, что полупроводниковый резистор изготовлен в виде сетчатой наноструктуры на основе золя ортокремниевой кислоты, содержащего гидроксид олова, на подложке из кремния с помощью центрифуги и последующим отжигом, который приготовлен в два этапа, на первом этапе смешивался тетраэтоксисилан и этиловый спирт, а на втором этапе в полученный раствор вводились дистиллированная вода, соляная кислота (HCl) и двухводный хлорид олова (SnCl2·2H2O), причем тетраэтоксисилан и этиловый спирт в соотношении 1:1,047, дистиллированная вода в соотношении 1:0,323, соляная кислота (HCl) в соотношении 1:0,05, двухводный хлорид олова (SnCl2·2H2O) в соотношении 1:2,262.
RU2012124205/28A 2012-06-09 2012-06-09 Способ изготовления датчика вакуума с наноструктурой заданной чувствительности и датчик вакуума на его основе RU2505885C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012124205/28A RU2505885C1 (ru) 2012-06-09 2012-06-09 Способ изготовления датчика вакуума с наноструктурой заданной чувствительности и датчик вакуума на его основе

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012124205/28A RU2505885C1 (ru) 2012-06-09 2012-06-09 Способ изготовления датчика вакуума с наноструктурой заданной чувствительности и датчик вакуума на его основе

Publications (2)

Publication Number Publication Date
RU2012124205A RU2012124205A (ru) 2013-12-20
RU2505885C1 true RU2505885C1 (ru) 2014-01-27

Family

ID=49784488

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012124205/28A RU2505885C1 (ru) 2012-06-09 2012-06-09 Способ изготовления датчика вакуума с наноструктурой заданной чувствительности и датчик вакуума на его основе

Country Status (1)

Country Link
RU (1) RU2505885C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2555499C1 (ru) * 2014-03-04 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ФГБОУ ВПО "Пензенский государственный университет") Способ изготовления датчика вакуума с трехмерной пористой наноструктурой и датчик вакуума на его основе
RU2602999C1 (ru) * 2015-06-30 2016-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ФГБОУ ВПО "Пензенский государственный университет") Способ изготовления датчика вакуума наноструктурой на основе смешанных полупроводниковых оксидов и датчик вакуума на его основе

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1420407A1 (ru) * 1986-06-05 1988-08-30 Пензенский Политехнический Институт Теплоэлектрический преобразователь давлени
US5347869A (en) * 1993-03-25 1994-09-20 Opto Tech Corporation Structure of micro-pirani sensor
US5597957A (en) * 1993-12-23 1997-01-28 Heimann Optoelectronics Gmbh Microvacuum sensor having an expanded sensitivity range
US6725724B2 (en) * 2000-07-26 2004-04-27 Robert Bosch Gmbh Manufacturing method for a thin-film high-pressure sensor
RU2398195C1 (ru) * 2009-08-26 2010-08-27 Евгений Михайлович Белозубов Способ изготовления нано- и микроэлектромеханической системы датчика давления и датчик давления на его основе
RU2408857C1 (ru) * 2009-11-16 2011-01-10 Государственное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ) Датчик давления на основе нано- и микроэлектромеханической системы с частотным выходным сигналом
RU2010134298A (ru) * 2010-08-16 2012-02-27 Евгений Михайлович Белозубов (RU) Способ настройки датчика давления на основе тонкопленочной тензорезисторной нано- и микроэлектромеханической системы

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1420407A1 (ru) * 1986-06-05 1988-08-30 Пензенский Политехнический Институт Теплоэлектрический преобразователь давлени
US5347869A (en) * 1993-03-25 1994-09-20 Opto Tech Corporation Structure of micro-pirani sensor
US5597957A (en) * 1993-12-23 1997-01-28 Heimann Optoelectronics Gmbh Microvacuum sensor having an expanded sensitivity range
US6725724B2 (en) * 2000-07-26 2004-04-27 Robert Bosch Gmbh Manufacturing method for a thin-film high-pressure sensor
RU2398195C1 (ru) * 2009-08-26 2010-08-27 Евгений Михайлович Белозубов Способ изготовления нано- и микроэлектромеханической системы датчика давления и датчик давления на его основе
RU2408857C1 (ru) * 2009-11-16 2011-01-10 Государственное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ) Датчик давления на основе нано- и микроэлектромеханической системы с частотным выходным сигналом
RU2010134298A (ru) * 2010-08-16 2012-02-27 Евгений Михайлович Белозубов (RU) Способ настройки датчика давления на основе тонкопленочной тензорезисторной нано- и микроэлектромеханической системы

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Булыга А.В. Полупроводниковые теплоэлектрические вакуумметры. (Библиотека по автоматике, выпуск 177). - М.-Л.: Энергия, 1966, с.115-116. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2555499C1 (ru) * 2014-03-04 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ФГБОУ ВПО "Пензенский государственный университет") Способ изготовления датчика вакуума с трехмерной пористой наноструктурой и датчик вакуума на его основе
RU2602999C1 (ru) * 2015-06-30 2016-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ФГБОУ ВПО "Пензенский государственный университет") Способ изготовления датчика вакуума наноструктурой на основе смешанных полупроводниковых оксидов и датчик вакуума на его основе

Also Published As

Publication number Publication date
RU2012124205A (ru) 2013-12-20

Similar Documents

Publication Publication Date Title
Wang et al. Humidity sensors based on silica nanoparticle aerogel thin films
Mintova et al. Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices
Qi et al. Preparation and humidity sensing properties of Fe-doped mesoporous silica SBA-15
Chen et al. Humidity sensing behavior of silicon nanowires with hexamethyldisilazane modification
Pronin et al. Principles of structure formation and synthesis models produced by the sol–gel method SiO2–MexOy nanocomposites
Zhang et al. Study on humidity sensing properties based on composite materials of Li-doped mesoporous silica A-SBA-15
Park et al. Wearable humidity sensors based on bar-printed poly (ionic liquid) for real-time humidity monitoring systems
Han et al. Micro-bead of nano-crystalline F-doped SnO2 as a sensitive hydrogen gas sensor
WO2019172251A1 (ja) 化学センサ素子、化学センサ素子の製造方法、および化学センサ
Su et al. Humidity sensing and electrical properties of a composite material of nano-sized SiO2 and poly (2-acrylamido-2-methylpropane sulfonate)
Liu et al. Micromachined catalytic combustion type gas sensor for hydrogen detection
RU2505885C1 (ru) Способ изготовления датчика вакуума с наноструктурой заданной чувствительности и датчик вакуума на его основе
RU2485465C1 (ru) Способ изготовления датчика вакуума с наноструктурой и датчик вакуума на его основе
Janica et al. Covalently functionalized MXenes for highly sensitive humidity sensors
Hadiyan et al. Sub-ppm acetone gas sensing properties of free-standing ZnO nanorods
CN117969655B (zh) 一种声表面波传感器在dmmp气体检测中的应用
CN110726757B (zh) 一种基于埃洛石纳米管的湿度传感器及其制备方法
RU2506659C2 (ru) Способ изготовления датчика вакуума с наноструктурой повышенной чувствительности и датчик вакуума на его основе
Li et al. Optical humidity sensing, proton-conducting sol–gel glass monolith
RU2539657C1 (ru) Способ изготовления наноструктурированного чувствительного элемента датчика вакуума и датчик вакуума
RU2602999C1 (ru) Способ изготовления датчика вакуума наноструктурой на основе смешанных полупроводниковых оксидов и датчик вакуума на его основе
Kumar et al. Sensitivity enhancement mechanisms in textured dielectric based electrolyte-insulator-semiconductor (EIS) sensors
RU2555499C1 (ru) Способ изготовления датчика вакуума с трехмерной пористой наноструктурой и датчик вакуума на его основе
KR101912892B1 (ko) 다공질의 금속산화물 나노튜브 제조 방법, 이를 통해 제조된 다공질의 금속산화물 나노튜브 및 다공질의 금속산화물 나노튜브를 포함하는 가스 센서
Pan et al. Structural and sensing properties of high-k Lu2O3 electrolyte-insulator-semiconductor pH sensors

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140610