RU2504057C1 - Многоцелевая самолетная антенно-фидерная система - Google Patents

Многоцелевая самолетная антенно-фидерная система Download PDF

Info

Publication number
RU2504057C1
RU2504057C1 RU2012125573/08A RU2012125573A RU2504057C1 RU 2504057 C1 RU2504057 C1 RU 2504057C1 RU 2012125573/08 A RU2012125573/08 A RU 2012125573/08A RU 2012125573 A RU2012125573 A RU 2012125573A RU 2504057 C1 RU2504057 C1 RU 2504057C1
Authority
RU
Russia
Prior art keywords
antenna
uhf
switching
frequency
switches
Prior art date
Application number
RU2012125573/08A
Other languages
English (en)
Inventor
Марк Ильич Ривкин
Владимир Иванович Бабуров
Альберт Грейнемович Герчиков
Юрий Григорьевич Шатраков
Евгений Семенович Кузьминых
Сергей Викторович Кузьмин
Виктор Иванович Комаров
Александр Николаевич Морозов
Николай Борисович Налобин
Борис Александрович Иванов
Анатолий Александрович Пирогов
Андрей Александрович Анисимов
Виктор Михайлович Король
Михаил Абрамович Велькович
Original Assignee
Открытое Акционерное Общество "Авиационная Холдинговая Компания "Сухой"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое Акционерное Общество "Авиационная Холдинговая Компания "Сухой" filed Critical Открытое Акционерное Общество "Авиационная Холдинговая Компания "Сухой"
Priority to RU2012125573/08A priority Critical patent/RU2504057C1/ru
Application granted granted Critical
Publication of RU2504057C1 publication Critical patent/RU2504057C1/ru

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

Изобретение относится к антенной технике радиосистем навигации, посадки, управления воздушным движением. Технический результат - обеспечение устойчивой работы самолетного радиооборудования UHF частотного диапазона при круговом обзоре пространства в азимутальной плоскости, в том числе в интерференционных зонах и в L, S частотных диапазонах при значительных кренах летательного объекта. Система содержит передние UHF антенну, две L, S антенны горизонтальной поляризации, L, S антенну вертикальной поляризации, задние UHF, L, S антенну горизонтальной поляризации и L, S антенну вертикальной поляризации, коммутационно-разделительное устройство, устройство управления, пять коммутаторов на два направления, пять частотно-разделительных устройств, управляемый фазовращатель. Устройство управления входами соединено с UHF, L, S радиооборудованием, гировертикалью, определителем курсового угла радиомаяка, а выходами - с коммутационно-разделительным устройством, коммутаторами и фазовращателем. Коммутаторы соединены с одной стороны с коммутационно-разделительным устройством, а с другой стороны с антеннами непосредственно или через частотно-распределительные устройства, а с задней антенной горизонтальной поляризации - через фазовращатель. 3 ил.

Description

Многоцелевая самолетная антенно-фидерная система относится к области радиотехники, в частности к антенной технике, которая обеспечивает требуемый обзор пространства для радиосистем навигации, посадки, управления воздушным движением и др.
Насыщенность современных летательных аппаратов различными видами радиооборудования определяет тенденцию развития самолетных АФС, а именно, создание многоцелевых (многофункциональных) антенных систем, обслуживающих максимально возможное количество различных видов радиооборудования. Примером реализации указанных тенденций являются аналоги предлагаемой самолетной АФС [2]-[5]. Указанные аналоги содержат несколько групп антенн, коммутационно-разделительные устройства, устройство управления (процессор), с помощью которых формируются требуемые для работы радиооборудования диаграммы направленности АФС.
Характерным для всех указанных аналогов является дискретный обзор пространства с ограниченными зонами видимости, как в горизонтальной, так и в вертикально-продольной, вертикально-поперечной плоскостях, что для АФС, обслуживающих бортовое радиооборудование навигации, посадки, управления воздушным движением, является существенным недостатком.
Наиболее близкой к предлагаемому решению является многоканальная радиолокационная система летательного аппарата [5], в которой с целью повышения пропускной способности и уменьшения времени обслуживания объектов обеспечивается параллельный по пространству и одновременный по времени обзор всего телесного угла зоны обзора. Она содержит группу антенн в виде линзы Люнеберга, коммутационно-разделительные устройства, устройство управления (процессор сигналов), с помощью которых обеспечивается указанный выше обзор пространства.
Недостатком этой самолетной АФС является наличие интерференционных зон на участках взаимного наложения диаграмм направленности подключаемых одновременно антенн. В этих зонах происходит потеря информации. Другим недостатком, свойственным прототипу, является ограничение зон обзора в вертикально-поперечной плоскости при кренах свыше ±45° из-за смены вектора поляризации принимаемого (передаваемого) радиосигнала.
Задачей предлагаемого технического решения является создание многоцелевой самолетной АФС, обеспечивающей устойчивую работу самолетного радиооборудования UHF частотного диапазона при круговом обзоре пространства в азимутальной плоскости, в том числе в интерференционных зонах и в L, S частотных диапазонах при кренах летательного объекта свыше ±45°. Т.к. в UHF частотном диапазоне самолетное оборудование имеет один комплект приемопередатчика, круговой безинтерференционный обзор должен обеспечиваться средствами АФС. В L, S частотных диапазонах самолетное оборудование имеет два комплекта приемопередающих устройств, что позволяет обеспечить круговой безинтерференционный обзор без усложнения АФС. В L, S частотных диапазонах основной сложностью является обеспечение устойчивой работы при предельных эволюциях летательного объекта, особенно при кренах от ±45° до ±90°.
Задача решается с помощью многоцелевой самолетной антенно-фидерной системы, содержащей антенную часть, коммутационно-разделительное устройство, устройство управления и отличающейся тем, что антенная часть содержит передние антенну диапазона UHF, правую и левую антенны горизонтальной поляризации диапазонов L, S, антенну вертикальной поляризации диапазонов L, S, задние антенну горизонтальной поляризации диапазонов UHF, L, S и антенну вертикальной поляризации диапазонов L, S, пять коммутаторов на два направления, пять частотно-разделительных устройств, управляемый фазовращатель, устройство управления входами соединено с радиооборудованием в частотных диапазонах UHF, L, S, гировертикалью в диапазонах L, S, определителем курсового угла радиомаяка в диапазоне UHF, а выходами - с коммутационно-разделительным устройством, всеми коммутаторами и управляемым фазовращателем, первый коммутатор соединен с одной стороны с входом (выходом) UHF коммутационно-разделительного устройства, а с другой стороны с передней и задней антеннами диапазона UHF, причем с задней антенной он соединен через управляемый фазовращатель, и четвертое частотно-разделительное устройство, второй и пятый коммутаторы соединены с входом (выходом) S, а третий и четвертый коммутаторы - с входом (выходом) L коммутационно-разделительного устройства, с другой стороны второй и третий коммутаторы соединены с первым и вторым частотно-разделительными устройствами, которые соединены с передними соответственно правой и левой антеннами горизонтальной поляризации, четвертый и пятый коммутаторы соединены с четвертым и пятым частотно-разделительными устройствами, которые соединены с задними антеннами соответственно горизонтальной и вертикальной поляризации, третье частотно-разделительное устройство соединено с входами (выходами) S и L коммутационно-разделительного устройства и с передней антенной вертикальной поляризации.
Техническим результатом, который может быть получен при использовании предлагаемого изобретения, является обеспечение устойчивой работы самолетного радиооборудования UHF частотного диапазона при круговом обзоре пространства в азимутальной плоскости, в том числе в интерференционных зонах, и в L, S частотных диапазонах при значительных кренах летательного объекта (в том числе от ±45° до ±90°).
Изобретение поясняется чертежами.
На фиг.1 приведена структурная схема многоцелевой самолетной антенно-фидерной системы.
На фиг.2 показана суммарная диаграмма направленности передней и задней антенн горизонтальной поляризации UHF частотного диапазона.
На фиг.3 показаны зоны переключения передней и задней антенн горизонтальной поляризации UHF частотного диапазона в зависимости от значения курсового угла радиомаяка.
Предлагаемая многоцелевая антенно-фидерная система содержит (см. фиг.1) две группы антенн (2) и (6) для обеспечения обзора передней и задней полусфер пространства соответственно. Группа (2) включает антенну (2.1) частотного диапазона UHF, правую антенну (2.2) горизонтальной поляризации частотных диапазонов L, S, левую антенну (2.3) горизонтальной поляризации частотных диапазонов L, S, антенну (2.4) вертикальной поляризации частотных диапазонов L, S. Группа (6) антенн включает антенну (6.1) горизонтальной поляризации частотных диапазонов UHF, L, S и антенну (6.2) вертикальной поляризации диапазонов L, S. Группа антенн (2) может быть реализована в виде отдельных антенных блоков, размещаемых в носовой части самолета и имеющих отдельные входы для UHF, L, S частотных диапазонов. Группа антенн (6) может быть реализована в виде самостоятельного комплексного антенного блока, размещенного в хвостовой части самолета, имеющего входы UHF, L, S частотных диапазонов.
Система содержит также коммутационно-разделительное устройство (7), устройство управления (1), пять коммутаторов на два направления (4), (13), (14), (15), (16), пять частотно-разделительных устройств (3), (9), (10), (11), (12), управляемый дискретный фазовращатель (5).
Входы устройства управления (1) соединены с радиооборудованием (8), в том числе каналом (8.1) с оборудованием в частотных диапазонах UHF, L, S, каналом (8.2) с определителем курсового угла радиомаяка в диапазоне UHF, каналом (8.3) - с гировертикалью в диапазонах L, S.
Устройство управления (1) выходами соединено с коммутационно-разделительным устройством (7), всеми коммутаторами (4), (13), (14), (15), (16), управляемым фазовращателем (5), которые выполнены на основе p-i-n-диодов. Положительные управляющие напряжения смещения на этих диодах соответствуют закрытому каналу коммутатора (4), (13), (14), (15) или (16), отрицательные управляющие напряжения смещения - открытому каналу. Для фазовращателя (5) отрицательное управляющее напряжение соответствует фазовому сдвигу 0°, положительное - 180°. Например, могут быть использованы p-i-n-диоды МА4 Р606-131.
Коммутаторы направлений соединены с другими элементами системы следующим образом.
Первый коммутатор (4) соединен фидерными трактами с одной стороны с входом (выходом) UHF коммутационно-разделительного устройства (7), а с другой стороны - с антеннами (2.1) и (6.1) диапазона UHF, причем с антенной задней полусферы (6.1) он соединен через управляемый фазовращатель (5) и четвертое частотно-разделительное устройство (11).
Второй коммутатор (13) соединен с входом (выходом) S, а третий коммутатор - с входом (выходом) L коммутационно-разделительного устройства (7). С другой стороны второй и третий коммутаторы (13) и (14) соединены с первым и вторым частотно-разделительными устройствами (3) и (9). Первое частотно-разделительное устройство (3) соединено с передней правой антенной горизонтальной поляризации (2.2), второе частотно-разделительное устройство (9) соединено с передней левой антенной горизонтальной поляризации (2.3).
Четвертый коммутатор (15) соединен с входом (выходом) L, а пятый коммутатор (16) - с входом (выходом) S коммутационно-разделительного устройства (7). С другой стороны четвертый и пятый коммутаторы (15) и (16) соединены с четвертым и пятым частотно-разделительными устройствами (11) и (12). Четвертое частотно-разделительное устройство (11) соединено с задней антенной горизонтальной поляризации (6.1), пятое частотно-разделительное устройство (12) соединено с задней антенной вертикальной поляризации (6.2).
Третье частотно-разделительное устройство (10) соединено с входами (выходами) S и L коммутационно-разделительного устройства (7) и с передней антенной (2.4) вертикальной поляризации диапазонов S и L.
Входящие в состав предлагаемой АФС коммутационно- разделительные устройства (3), (9), (10), (11), (12), коммутаторы (4), (13), (14), (15), (16) и фазовращатель (5) выполнены с использованием микрополосковой технологии по традиционным схемным решениям [6]. Антенны в составе групп (2) и (6) выполнены широкополосными с учетом обеспечения работы обслуживаемого радиооборудования в указанных частотных диапазонах UHF, L, S.
Коммутаторы на два направления (4), (13), (14), (15), (16), частотно-разделительные устройства (3), (9), (10), (11), (12) и управляемый дискретный фазовращатель (5) могут быть объединены конструктивно в два самостоятельных блока коммутационно-разделительных устройств, которые используются соответственно для подключения радиооборудования к группам антенн (2) и (6).
Предлагаемая антенно-фидерная система работает следующим образом.
Независимую работу бортового радиооборудования (8) в UHF, L, S частотных диапазонах на две группы антенн (2) и (6) обеспечивает коммутационно-разделительное устройство (7), которое содержит коммутационные устройства, в частности, p-i-n диодные переключатели, частотно-разделительные устройства, сумматоры (делители). Алгоритм подключения радиооборудования указанных частотных диапазонов к рабочим антеннам из групп антенн (2, 6) задается с помощью устройства управления (1). Устройство управления (1) по управляющим сигналам обслуживаемого радиооборудования (8) формирует управляющие напряжения смещения и выдает их в заданной комбинации на переключающие p-i-n-диоды коммутационных устройств, входящих в состав коммутационно-разделительного устройства (7) и первого (4), второго (13), третьего (14), четвертого (15), пятого (16) коммутаторов на два направления и управляемого дискретного фазовращателя (5).
Режим кругового обзора пространства в UHF диапазоне обеспечивается выдачей комбинации управляющих сигналов из радиооборудования (8) UHF диапазона по каналу (8.1) в устройство управления (1). Устройство управления (1) по этим сигналам формирует и выдает управляющие напряжения на первый коммутатор (4), включенный в тракт UHF диапазона. В результате к радиооборудованию (8) UHF диапазона подключается либо антенна (2.1) горизонтальной поляризации UHF частотного диапазона из группы антенн (2) для обзора передней полусферы пространства, либо через управляемый дискретный фазовращатель (5) и четвертое частотно-разделительное устройство (11) - антенна (6.1) горизонтальной поляризации UHF, L, S частотных диапазонов из группы антенн (6), либо подключаются одновременно обе антенны (2.1) и (6.1). Суммарная диаграмма направленности этих антенн приведена на фигуре 2.
Для исключения потери информации на участках интерференционных зон с помощью дискретного фазовращателя (5) по управляющим сигналам устройства (1) в соответствии с сигналами, задаваемыми UHF радиооборудованием (8), фазовращателем (5) осуществляется изменение фазы радиосигнала в тракте антенны (6.1) обзора задней полусферы пространства на 180°. Это позволяет с требуемой частотой изменять положение углов нулевого провала в интерференционной зоне диаграммы направленности и тем самым исключить пропадание информации.
В тех случаях, когда в бортовом оборудовании UHF диапазона имеется информация о курсовом угле (КУР) наземного радиомаяка, с которым ведется работа, интерференционные зоны могут быть исключены с помощью поочередного включения передней антенны (2.1) горизонтальной поляризации UHF диапазона из группы антенн (2) или задней антенны (6.1) горизонтальной поляризации из группы антенн (6). Переключение осуществляется первым коммутатором (4) по сигналу КУР, задаваемому бортовом радиооборудованием (8) UHF диапазона по каналу (8.2) и преобразованному устройством управления (1). При изменении КУР по часовой стрелке изменение кода зоны обзора производится при значениях КУР, обозначенных на фигуре 3 литерой «А». При изменении КУР против часовой стрелки изменение кода зоны обзора производится при значениях КУР, обозначенных литерой «Б». Сформированные в бортовом радиооборудовании (8) UHF частотного диапазона сигналы (коды) переключения передаются в устройство управления (1), которое в свою очередь формирует и выдает управляющие напряжения смещения на переключающие p-i-n-диоды коммутационно-разделительного устройства (7), первого коммутатора (4) и управляемого дискретного фазовращателя (5).
При горизонтальном полете самолета и при кренах до ±45° предлагаемая многоцелевая АФС обеспечивает работу радиооборудования L, S частотных диапазонов с антеннами (2.4) и (6.2) вертикальной поляризации. Связь между радиооборудованием (8) и антенной (2.4) осуществляется в этих условиях через третье частотно-разделительное устройство (10), коммутационно-разделительное устройство (7), устройство управления (1), а между радиооборудованием (8) и антенной (6.2) - через пятое частотно-разделительное устройство (12), четвертый (15) и пятый (16) коммутаторы, коммутационно-разделительное устройство (7), устройством управления (1).
При кренах самолета свыше ±45° до ±90° из-за смены вектора поляризации упомянутых выше рабочих антенн относительно вектора поляризации рабочего радиосигнала, возникает необходимость смены вектора поляризации рабочих антенн.
В предлагаемой АФС это реализовано следующим образом.
Устройство управления (1) по сигналу гировертикали, поступающему по каналу (8.3) от обслуживающего АФС радиооборудования (8) L, S частотного диапазона при кренах самолета свыше ±45° до ±90°, подключает радиооборудование (8) L, S частотных диапазонов через коммутационно-разделительное устройство (7), третий (14) и второй (13) коммутаторы, через первое (3) и второе (9) частотно-разделительные устройства к передним правой и левой антеннам (2.2) и (2.3) горизонтальной поляризации из группы антенн (2), а через коммутационно-разделительное устройство (7), четвертый (15) и пятый (16) коммутаторы и далее через четвертое частотно-разделительное устройство (11) к антенне (6.1) горизонтальной поляризации UHF, L, S частотных диапазонов из группы антенн (6).
Создан экспериментально-опытный образец предлагаемой АФС, прошедший лабораторные испытания. Полученные при летных проверках результаты подтверждают правильность выбранного пути решения задачи - обеспечение устойчивой работы бортового радиооборудования при круговом обзоре пространства с учетом интерференционных зон и эволюциях самолета (кренах до ±90°).
Проведенные лабораторные испытания и конструктивная реализация подтверждают возможность промышленной реализации предлагаемой АФС.
Источники информации
[1] Методы проектирования слабонаправленных антенн, Приложение к журналу «Физика волновых процессов и радиотехнические системы». Самарское книжное издательство, сентябрь 2006 г., стр. 188-189.
[2] Патент Великобритании №2303508 кл. G01S 13/94, заявл. 19.02.97.
[3] Патент РФ №2355078, кл. H01Q 1/26, заявл. 13.08.07, 10.01-24А159П.
[4] Патент США 37012569, кл. Н01Q 1/38, заявл. 18.12.01.
[5] Патент РФ №2316021, G01S 13/48, заявл. 01.12.05 г.
[6] Микроэлектронные устройства СВЧ, под редакцией проф. Г.И.Веселова, Москва «Высшая школа», 1988 г.

Claims (1)

  1. Многоцелевая самолетная антенно-фидерная система, содержащая антенную часть, коммутационно-разделительное устройство, устройство управления, отличающаяся тем, что антенная часть содержит передние антенну диапазона UHF, правую и левую антенны горизонтальной поляризации диапазонов L, S, антенну вертикальной поляризации диапазонов L, S, задние антенну горизонтальной поляризации диапазонов UHF, L, S и антенну вертикальной поляризации диапазонов L, S, пять коммутаторов на два направления, пять частотно-разделительных устройств, управляемый фазовращатель, устройство управления входами соединено с радиооборудованием в частотных диапазонах UHF, L, S, гировертикалью в диапазонах L, S, определителем курсового угла радиомаяка в диапазоне UHF, а выходами - с коммутационно-разделительным устройством, всеми коммутаторами и управляемым фазовращателем, первый коммутатор соединен с одной стороны с входом (выходом) UHF коммутационно-разделительного устройства, а с другой стороны - с передней и задней антеннами диапазона UHF, причем с задней антенной он соединен через управляемый фазовращатель и четвертое частотно-разделительное устройство, второй и пятый коммутаторы соединены с входом (выходом) S, а третий и четвертый коммутаторы - с входом (выходом) L коммутационно-разделительного устройства, с другой стороны второй и третий коммутаторы соединены с первым и вторым частотно-разделительными устройствами, которые соединены с передними, соответственно, правой и левой антеннами горизонтальной поляризации, четвертый и пятый коммутаторы соединены с четвертым и пятым частотно-разделительными устройствами, которые соединены с задними антеннами соответственно горизонтальной и вертикальной поляризации, третье частотно-разделительное устройство соединено с входами (выходами) S и L коммутационно-разделительного устройства и с передней антенной вертикальной поляризации.
RU2012125573/08A 2012-06-20 2012-06-20 Многоцелевая самолетная антенно-фидерная система RU2504057C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012125573/08A RU2504057C1 (ru) 2012-06-20 2012-06-20 Многоцелевая самолетная антенно-фидерная система

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012125573/08A RU2504057C1 (ru) 2012-06-20 2012-06-20 Многоцелевая самолетная антенно-фидерная система

Publications (1)

Publication Number Publication Date
RU2504057C1 true RU2504057C1 (ru) 2014-01-10

Family

ID=49884808

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012125573/08A RU2504057C1 (ru) 2012-06-20 2012-06-20 Многоцелевая самолетная антенно-фидерная система

Country Status (1)

Country Link
RU (1) RU2504057C1 (ru)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2020664C1 (ru) * 1989-04-05 1994-09-30 Российский институт радионавигации и времени Микрополосковая антенна
GB2303508A (en) * 1989-03-03 1997-02-19 Marconi Gec Ltd Ranging system beam steering
RU2207613C1 (ru) * 2002-03-15 2003-06-27 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Гранит" Бортовая аппаратура систем управления беспилотным летательным аппаратом
RU2234776C2 (ru) * 2001-04-25 2004-08-20 ООО Научно-производственная фирма "РАПАЗ" Антенная система
RU2291525C2 (ru) * 2005-01-11 2007-01-10 Федеральное Государственное Унитарное Предприятие "Нижегородский Научно-Исследовательский Институт Радиотехники" Радиолокационное антенно-фидерное устройство для вертолета
RU2316021C2 (ru) * 2005-12-01 2008-01-27 Открытое акционерное общество "Корпорация "Фазотрон - Научно-исследовательский институт радиостроения" (ОАО "Корпорация "Фазотрон-НИИР") Многоканальная радиолокационная система летательного аппарата
US7522095B1 (en) * 2005-07-15 2009-04-21 Lockheed Martin Corporation Polygonal cylinder array antenna
RU2355078C1 (ru) * 2007-08-13 2009-05-10 ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени С.М. Буденного Устройство для многократного использования приемных антенн

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2303508A (en) * 1989-03-03 1997-02-19 Marconi Gec Ltd Ranging system beam steering
RU2020664C1 (ru) * 1989-04-05 1994-09-30 Российский институт радионавигации и времени Микрополосковая антенна
RU2234776C2 (ru) * 2001-04-25 2004-08-20 ООО Научно-производственная фирма "РАПАЗ" Антенная система
RU2207613C1 (ru) * 2002-03-15 2003-06-27 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Гранит" Бортовая аппаратура систем управления беспилотным летательным аппаратом
RU2291525C2 (ru) * 2005-01-11 2007-01-10 Федеральное Государственное Унитарное Предприятие "Нижегородский Научно-Исследовательский Институт Радиотехники" Радиолокационное антенно-фидерное устройство для вертолета
US7522095B1 (en) * 2005-07-15 2009-04-21 Lockheed Martin Corporation Polygonal cylinder array antenna
RU2316021C2 (ru) * 2005-12-01 2008-01-27 Открытое акционерное общество "Корпорация "Фазотрон - Научно-исследовательский институт радиостроения" (ОАО "Корпорация "Фазотрон-НИИР") Многоканальная радиолокационная система летательного аппарата
RU2355078C1 (ru) * 2007-08-13 2009-05-10 ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени С.М. Буденного Устройство для многократного использования приемных антенн

Similar Documents

Publication Publication Date Title
ES2869858T3 (es) Evaluación de la posición de un vehículo aéreo
US10958336B2 (en) Phased array antenna for use with low earth orbit satellite constellations
US8791853B2 (en) Air-to-ground antenna
US20160205560A1 (en) Architecture for simultaneous spectrum usage by air-to-ground and terrestrial networks
RU2459218C1 (ru) Контрольно-измерительная система радиомониторинга
JP2017516408A (ja) マルチビームアンテナシステム、およびマルチビームアンテナシステムの位相調整方法、ならびに二重偏波アンテナシステム
US9568602B1 (en) Radar system and method of due regard/detect and avoid sensing and weather sensing
CN103869347A (zh) 一种北斗卫星导航定位系统
CN110764059B (zh) 一种收发垂直波束三坐标相控阵雷达方法
US10110297B2 (en) Aircraft comprising a plurality of antenna units
CN109659666B (zh) 智能天线
DE102021210354A1 (de) Elektronische vorrichtungen mit millimeterwellen- und ultrabreitband-antennenmodulen
Heino et al. Design of phased array architectures for full-duplex joint communications and sensing
CN105356069B (zh) 一种提高车载雷达测量角度无模糊范围的方法和天线结构
RU2504057C1 (ru) Многоцелевая самолетная антенно-фидерная система
RU2566396C1 (ru) Многоцелевая самолетная антенно-фидерная система
US9105961B2 (en) Low profile, wideband GNSS dual frequency antenna structure
RU147243U1 (ru) Многоцелевая самолётная антенно-фидерная система
US9979077B2 (en) Vehicle antenna for satellite communication
El-Hennawey et al. New approach for indoor positioning with Wi-Fi using quadratic antenna arrays
US10187029B1 (en) Phase shifter
RU2005102028A (ru) Способ определения пространственного положения объекта
US20170149133A1 (en) Radar Antenna System
EP3896476B1 (en) Simplified tcas surveillance
Davydov et al. Selection basis of an antenna for a radio receiver of a small-sized module of a pulse-phase radio navigation system of a moving object

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140621

NF4A Reinstatement of patent

Effective date: 20150927