RU2503620C1 - Способ получения стабилизированного водного золя нанокристаллического диоксида церия, допированного гадолинием - Google Patents

Способ получения стабилизированного водного золя нанокристаллического диоксида церия, допированного гадолинием Download PDF

Info

Publication number
RU2503620C1
RU2503620C1 RU2012120059/05A RU2012120059A RU2503620C1 RU 2503620 C1 RU2503620 C1 RU 2503620C1 RU 2012120059/05 A RU2012120059/05 A RU 2012120059/05A RU 2012120059 A RU2012120059 A RU 2012120059A RU 2503620 C1 RU2503620 C1 RU 2503620C1
Authority
RU
Russia
Prior art keywords
gadolinium
cerium
cerium dioxide
water
doped
Prior art date
Application number
RU2012120059/05A
Other languages
English (en)
Other versions
RU2012120059A (ru
Inventor
Владимир Константинович Иванов
Ольга Сергеевна Иванова
Александр Борисович Щербаков
Дмитрий Олегович Гиль
Александр Евгеньевич Баранчиков
Юрий Дмитриевич Третьяков
Надежда Михаловна Жолобак
Николай Яковлевич Спивак
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН)
Priority to RU2012120059/05A priority Critical patent/RU2503620C1/ru
Publication of RU2012120059A publication Critical patent/RU2012120059A/ru
Application granted granted Critical
Publication of RU2503620C1 publication Critical patent/RU2503620C1/ru

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Изобретение относится к технологии производства наноматериалов для получения оксидных топливных элементов, тонких покрытий, пленок, обладающих высокой ионной проводимостью. Способ включает приготовление водного раствора солей церия и гадолиния, в котором суммарная концентрация редкоземельных элементов составляет 0,005÷0,02 моля на литр воды, а мольное соотношение Ce:Gd составляет от 19:1 до 4:1, добавление к полученному раствору анионообменной смолы в OH-форме до достижения pH 9.0÷10.0, отделение сформировавшегося коллоидного раствора от анионообменной смолы фильтрованием, гидротермальную обработку при 120÷210°С в течение 1,5÷4 ч и охлаждение до комнатной температуры. Полученный неустойчивый золь нанокристаллического диоксида церия, допированного гадолинием, дополнительно стабилизируют солью многоосновной кислоты путем добавления многоосновной кислоты (лимонной или полиакриловой) с мольным соотношением редкоземельных элементов к кислоте, равным 1:1÷4, и последующим медленным по каплям добавлением водного раствора аммиака до достижения pH 7÷8. Изобретение позволяет получать агрегативно-устойчивые водные золи со средним диаметром частиц около 4 нм, обладающих высокой морфологической однородностью, сохраняющие свои свойства в течение продолжительного времени. 4 з.п. ф-лы, 4 ил., 4 пр.

Description

Изобретение относится к технологии получения наноматериалов, а именно к способу получения стабильных водных золей нанокристаллического диоксида церия, допированного гадолинием. Золи диоксида церия, допированного гадолинием, могут быть использованы для получения тонких покрытий, пленок, обладающих высокой ионной проводимостью, при производстве оксидных топливных элементов [Р.Patsalas, S.Logothetidis, С.Metaxa // Optical performance of nanocrystalline transparent ceria films // Appl. Phys. Lett. 2002, V.81, P.466; K. Mohan Kant, V. Esposito, N. Pryds Strain induced ionic conductivity enhancement in epitaxial http://Ceo.9Gdo.1O22 thin films // Appl. Phys. Lett. 2012, 100, P.033105; патент CN 101560679].
Для получения твердых растворов на основе диоксида церия обычно используют метод соосаждения с последующим прокаливанием осадков при высоких температурах [L.D. Jadhava, M.G. Chourashiy, А.Р. Jamale, A.U. Chavan, S.P. Patil. Synthesis and characterization of nano-crystalline Ce1-xGdxO2-x/2 (x=0-0.30) solid solutions // Journal of Alloys and Compounds 2010. V.506, P.739-744]. Получаемые таким образом материалы состоят из сильно агрегированных частиц достаточно крупного размера (до 100 нм и более). Для получения твердых растворов на основе диоксида церия с наночастицами меньшего размера предложен метод, основанный на гидротермальной обработке соосажденных гидратированных диоксида церия и других редкоземельных элементов при 260°C в течение 10 ч [S. Dikmen, P. Shuk, М. Greenblatt, Н.Gomez. Hydrothermal synthesis and properties of Ce1-xGdxO2-δ solid solutions // Solid State Sciences. 2002. V.4, P.585-590].
Недостатком этих методов является то, что они не позволяют получать агрегативно-устойчивые водные золи твердых растворов на основе редкоземельных элементов.
Известен способ получения порошкообразных твердых растворов на основе диоксида церия, допированного неодимом и европием [Полежаева О.С., Иванов В.К., Долгополова Е.А., Баранчиков А.Е., Щербаков А.Б., Третьяков Ю.Д. Синтез нанокристаллических твердых растворов Ce1-xRxO2-δ (R=Nd, Eu) методом гомогенного гидролиза // Докл. Акад. наук. 2010. Т.433. №2. С.196-198], методом гомогенного гидролиза растворов нитратов церия(III) и неодима (европия) в присутствии гексаметилентетрамина при относительно невысоких температурах (90°C), позволяющий получать наночастицы твердых растворов на основе диоксида церия размером менее 10 нм.
Недостатком является то, что данный способ также не позволяет получать агрегативно-устойчивые золи твердых растворов на основе диоксида церия.
Существует способ получения золей нанокристаллического диоксида церия, стабилизированных лимонной и полиакриловой кислотами [Иванов В.К., Полежаева О.С., Шапорев А.С., Баранчиков А.Е., Щербаков А.Б., Усатенко А.В. Синтез и исследование термической устойчивости золей нанокристаллического диоксида церия, стабилизированных лимонной и полиакриловой кислотами // Журн. неорган. химии. 2010. Т.55. №3. С.368-373]. Данный способ включает получение наночастиц диоксида церия с использованием разных исходных солей: нитрата церия (III) или сульфата церия (IV). В качестве стабилизатора коллоидного раствора используют лимонную кислоту и полиакриловую кислоту (ПАК). Золи диоксида церия, стабилизированные низкомолекулярной (средняя молекулярная масса - 8000 г/моль) полиакриловой кислотой, получали следующим образом. К 50 мл 0.1 М раствора сульфата церия (IV) в 0.1 N серной кислоте добавляли 10 мл 2%-ного водного раствора ПАК. При непрерывном перемешивании в систему по каплям добавляли 3 М водный раствор аммиака до pH>11. Полученный раствор кипятили 40÷45 мин, вводили 2 мл 50% пероксида водорода и продолжали кипячение в течение еще 3÷4 ч. После термообработки раствор охлаждали и подкисляли 0.01 N серной кислотой до pH 4.5. Выпавший осадок отделяли декантацией, промывали водой и растворяли в 50 мл водного раствора аммиака (pH 8).
Недостатком метода, описанного в вышеуказанной работе, является тот факт, что этот метод непригоден для дальнейшего допирования наночастиц диоксида церия лантаноидами, в частности гадолинием.
Известен способ [Wang S., Chen S., Navrotsky A., Martin M., Kim Z.A. Modified polyol-mediated synthesis and consolidation of Gd-doped ceria nanoparticles // Solid State Ionics. 2010. V.181. P.372-378] получения коллоидных растворов диоксида церия, допированного гадолинием с размером частиц 2÷3 нм. Способ получения основан на сольволизе нитратов редкоземельных элементов в пропиленгликоле при 140°C в течение 1 ч при добавлении небольшого количества водного раствора гидроксида натрия.
Недостатком этого способа является образование неводных (в пропиленгликоле) золей диоксида церия, допированного гадолинием, использование таких золей для получения покрытий и пленок является нецелесообразным, поскольку удаление растворителя и образование пленки происходит при достаточно высоких температурах (более 140°C), а это, в свою очередь, приводит к агрегированности частиц, т.е. к низкой морфологической однородности.
Известен способ получения коллоидных водных растворов на основе диоксида церия, допированного гадолинием [Гасымова Г.А., Иванова О.С, Баранчиков А.Е., Щербаков А.Б., Иванов В.К., Третьяков Ю.Д. Синтез водных золей нанокристаллического диоксида церия, допированного гадолинием // Наносистемы: физика, химия, математика. 2011. Т.2. №3. С.113-120]. Способ получения заключается в следующем: анионообменную смолу, предварительно переведенную в OH-форму, постепенно добавляли к смешанным водным растворам нитратов церия (III) и гадолиния, где суммарная концентрация редкоземельных элементов составила 0.01 М, до достижения pH=10.0. Мольное содержание гадолиния в исходных растворах составляло от 0 до 20%. Сформировавшиеся золи отделяли от смолы фильтрованием, незамедлительно переносили в автоклавы и подвергали гидротермально-микроволновой обработке при 190°C в течение 1 ч. По окончании экспериментов автоклавы извлекали из печи и охлаждали до комнатной температуры на воздухе. Данный способ рассмотрен в качестве прототипа.
Недостатком прототипа является то, что он позволяет получать водные золи диоксида церия и диоксида церия, допированного гадолинием, сохраняющие агрегативную устойчивость в течение лишь очень малого времени, не более 1 суток, в течение которых наблюдалась агрегация частиц до микронных размеров и выпадение осадка. Золи нанокристаллического диоксида церия, допированного гадолинием, выпавшие в осадок, не могут быть использованы для получения однородных покрытий, соответственно неоднородность покрытий будет приводить к снижению их функциональных характеристик, в том числе проводимости.
Изобретение направлено на изыскание способа получения агрегативно-устойчивых водных золей нанокристаллического диоксида церия, допированного гадолинием, с характерным средним диаметром частиц около 4 нм, с гидродинамическим диаметром 25±5 нм, обладающих высокой морфологической однородностью, сохраняющих свои свойства в течение продолжительного времени.
Технический результат достигается тем, что предложен способ получения стабилизированного водного золя нанокристаллического диоксида церия, допированного гадолинием, характеризующегося высокой агрегативной устойчивостью, заключающийся в том, что готовят водный раствор солей церия и гадолиния, в котором суммарная концентрация редкоземельных элементов составляет 0.005÷0.02 молей на литр воды, а мольное соотношение Ce:Gd составляет от 19:1 до 4:1, к полученному раствору солей церия и гадолиния добавляют анионообменную смолу в OH-форме, до достижения pH 9.0÷10.0, сформировавшийся коллоидный раствор отделяют от анионообменной смолы фильтрованием и подвергают гидротермальной обработке при 120÷210°C в течение 1.5÷4 ч, после чего охлаждают до комнатной температуры, отличающийся тем, что полученный неустойчивый золь нанокристаллического диоксида церия, допированного гадолинием, дополнительно стабилизируют солью многоосновной кислоты, путем добавления многоосновной кислоты с мольным соотношением редкоземельных элементов к кислоте, равным 1:1÷4, и последующим медленным по каплям добавлением водного раствора аммиака до достижения pH 7÷8.
Целесообразно, что в качестве многоосновной кислоты используют лимонную или полиакриловую кислоту.
Также целесообразно, что в качестве соли церия используют водорастворимые соли церия с растворимостью не менее 6·10-3 моль церия в 1 л воды, а в качестве соли гадолиния используют водорастворимые соли гадолиния с растворимостью также не менее 6·10-3 моль гадолиния в 1 л воды.
Возможно, что в качестве анионообменной смолы используют смолу марки Amberlite IRA 410 CL, которую предварительно переводят в OH-форму взаимодействием со щелочью.
Важно, что гидротермальную обработку проводят с использованием микроволнового нагрева.
Сущность изобретения заключается в том, что для получения агрегативно-устойчивых водных золей нанокристаллического диоксида церия, допированного гадолинием, проводят дополнительную стабилизацию, причем не на этапе растворения солей церия и гадолиния, а после образования твердого раствора диоксида церия, допированного гадолинием, где в качестве водорастворимого стабилизатора используют лимонную или полиакриловую кислоты.
Указанная техническая задача и указанный технический результат достигается благодаря использованию в качестве стабилизатора многоосновной, хорошо адсорбирующейся на поверхности частиц диоксида церия, допированного гадолинием, лимонной или полиакриловой кислоты. Кроме того, указанный стабилизатор обеспечивает получение неагрегированных частиц и стабилизацию золя за счет действия стерического фактора, препятствующего агрегированию частиц и выпадению осадка.
Сущность заявляемого изобретения поясняется следующими прилагаемыми иллюстрациями:
Фиг.1. Микрофотография (слева) и диаграмма распределения частиц по размерам (справа) для образца водного золя диоксида церия, допированного гадолинием, с мольным соотношением церия к гадолинию равным 19:1, стабилизированного лимонной кислотой.
Фиг.2. Микрофотография (слева) и диаграмма распределения частиц по размерам (справа) для образца водного золя диоксида церия, допированного гадолинием, с мольным соотношением церия к гадолинию равным 9:1, стабилизированного лимонной кислотой.
Фиг.3. Микрофотография (слева) и диаграмма распределения частиц по размерам (справа) для образца водного золя диоксида церия, допированного гадолинием, с мольным соотношением церия к гадолинию, равным 16:3, стабилизированного лимонной кислотой.
Фиг.4. Микрофотография (слева) и диаграмма распределения частиц по размерам (справа) для образца водного золя диоксида церия, допированного гадолинием, с мольным соотношением церия к гадолинию, равным 4:1, стабилизированного лимонной кислотой.
Предлагаемое изобретение реализуется следующим образом.
В емкости подходящего объема готовят водный раствор солей церия и гадолиния. Предварительно анионообменную смолу Amberlite IRA 410 CL переводят в OH-форму путем многократного повторения процедуры замачивания и выдерживания в 10% водном растворе гидроксида натрия, после перевода анионообменной смолы в OH-форму ее промывают дистиллированной водой. При энергичном перемешивании pH водного раствора нитратов церия и гадолиния быстро повышают с помощью анионообменной смолы до значения pH 9÷10, и раствор быстро фильтруют от анионообменной смолы. В случае, если значение pH водного раствора нитратов церия и гадолиния повышать медленно, или оно будет больше 10÷11, это приведет к агрегации наночастиц и выпадению осадка. В случае, если значение pH будет меньше 8÷9, будет происходить образование гидроксосоединений церия и гадолиния. После фильтрования сформировавшийся золь подвергают гидротермальной обработке при температуре 120÷210°C в течение 1.5÷4 часов. Меньшая продолжительность данной стадии приводит к получению твердого раствора, содержащего количество гадолиния, меньше заданного, что экономически нецелесообразно. Увеличение продолжительности данной стадии экономически нецелесообразно. Затем в полученный коллоидный раствор нанокристаллического диоксида церия, допированного гадолинием, добавляют стабилизатор, лимонную кислоту, с мольным соотношением церия с гадолинием и стабилизатора 1:1÷4. При этом золь диоксида церия, допированного гадолинием, мутнеет, затем pH золя доводят водным раствором аммиака до значения 7÷8, после чего золь становится прозрачным. Полученный золь хранят в прохладном месте до момента использования.
Ниже приведены примеры реализации заявляемого изобретения. Примеры иллюстрируют, но не ограничивают предложенный способ.
Пример 1
Для приготовления коллоидных растворов диоксида церия, допированного гадолинием, из расчета 0.01 моля редкоземельных элементов на литр растворителя, 0.412 г нитрата церия (III) и 0.023 г нитрата гадолиния (мольное соотношение церий: гадолиний равно 19:1) растворяли в 100 мл дистиллированной воды, к полученному раствору добавляли анионообменную смолу Amberlite IRA 410 CL, предварительно переведенную в OH-форму, до достижения pH=10.0. Сформировавшиеся золи отделяли от смолы фильтрованием, незамедлительно переносили в политетрафторэтиленовые автоклавы объемом 100 мл (степень заполнения - 50%) и подвергали гидротермально-микроволновой обработке при 210°C в течение 1.5 ч. По окончании экспериментов автоклавы извлекали из печи и охлаждали до комнатной температуры на воздухе. К полученным водным золям твердого раствора оксидов редкоземельных элементов добавляли лимонную кислоту, концентрация которой в золе составила 0.01 молей на литр растворителя.
Параметр кристаллической ячейки для образца Ce0,95Gd0,05O2-δ, определенный при уточнении кристаллической структуры твердых растворов по методу Ритвельда, составил 0.54144(5) нм. Согласно полученным результатам ПЭМ (см. Фиг.1), средний диаметр частиц диоксида церия, допированного гадолинием составил 4.47±0.52 нм. По данным динамического светорассеяния, средний гидродинамический диаметр частиц диоксида церия, допированного гадолинием и стабилизированного лимонной кислотой составил 25 нм. Кроме того, гидродинамический диаметр в течение 6 месяцев изменяется не более чем на 5 нм, что свидетельствует об агрегативной стабильности получаемого золя.
Пример 2
Для приготовления коллоидных растворов диоксида церия, допированного гадолинием, из расчета 0.01 моля редкоземельных элементов на литр растворителя, 0.391 г нитрата церия, 0.045 г нитрата гадолиния (мольное соотношение церий: гадолиний равно 9:1) растворяли в 100 мл дистиллированной воды, к полученному раствору добавляли анионообменную смолу Amberlite IRA 410 CL, предварительно переведенную в OH-форму, до достижения pH=10.0. Сформировавшиеся золи отделяли от смолы фильтрованием, незамедлительно переносили в политетрафторэтиленовые автоклавы объемом 100 мл (степень заполнения - 50%) и подвергали гидротермально-микроволновой обработке при 190°C в течение 1.5 ч. По окончании экспериментов автоклавы извлекали из печи и охлаждают до комнатной температуры на воздухе. К полученным водным золям твердого раствора оксидов редкоземельных элементов добавляли лимонную кислоту, концентрация которой в золе составила 0.01 молей на литр растворителя.
Согласно данным рентгенофазового анализа параметр кристаллической ячейки для образца Ce0,90Gd0.10C2-δ, определенный при уточнении кристаллической структуры твердых растворов по методу Ритвельда, составил 0.54174(4) нм. Согласно полученным результатам ПЭМ (см. Фиг.2), средний диаметр частиц диоксида церия, допированного гадолинием составил 3.0±0.84 нм. По данным динамического светорассеяния, средний гидродинамический диаметр частиц диоксида церия, допированного гадолинием и стабилизированного лимонной кислотой составил 15 нм. Кроме того, гидродинамический диаметр в течение 6 месяцев меняется не более, чем на 5 нм, что свидетельствует об агрегативной стабильности получаемого золя.
Пример 3
Для приготовления коллоидных растворов диоксида церия, допированного гадолинием, из расчета 0.01 моля редкоземельных элементов на литр растворителя, 0.369 г нитрата церия и 0.068 г нитрата гадолиния (мольное соотношение церий: гадолиний равно 16:3) растворяли в 100 мл дистиллированной воды, к полученному раствору добавляли анионообменную смолу Amberlite IRA 410 CL, предварительно переведенную в OH-форму, до достижения pH=10.0. Сформировавшиеся золи отделяли от смолы фильтрованием, незамедлительно переносили в политетрафторэтиленовые автоклавы объемом 100 мл (степень заполнения - 50%) и подвергали гидротермально-микроволновой обработке при 190°C в течение 2 ч. По окончании экспериментов автоклавы извлекали из печи и охлаждали до комнатной температуры на воздухе. К полученным водным золям твердого раствора оксидов редкоземельных элементов добавляли лимонную кислоту, концентрация которой в золе составила 0.01 молей на литр растворителя.
Согласно данным рентгенофазового анализа параметр кристаллической ячейки для образца Ce0,85Gd0,15O2-δ, определенный при уточнении кристаллической структуры твердых растворов по методу Ритвельда, составил 0.54198(6) нм. Согласно полученным результатам ПЭМ (см. Фиг.3), средний диаметр частиц диоксида церия, допированного гадолинием составил 3.310.42 нм. По данным динамического светорассеяния, средний гидродинамический диаметр частиц диоксида церия, допированного гадолинием и стабилизированного лимонной кислотой составил 11 нм. Кроме того, гидродинамический диаметр в течение 6 месяцев меняется не более, чем на 5 нм, что свидетельствует об агрегативной стабильности получаемого золя.
Пример 4
Для приготовления коллоидных растворов диоксида церия, допированного гадолинием из расчета 0.01 моля редкоземельных элементов на литр растворителя, 0.347 г нитрата церия (III) и 0.090 г нитрата гадолиния растворяли в 100 мл дистиллированной воды (мольное соотношение церий: гадолиний равно 4: 1), к полученному раствору добавляли анионообменную смолу Amberlite IRA 410 CL, предварительно переведенную в OH-форму, до достижения pH=10.0. Сформировавшиеся золи отделяли от смолы фильтрованием, незамедлительно переносили в политетрафторэтиленовые автоклавы объемом 100 мл (степень заполнения - 50%) и подвергали гидротермально-микроволновой обработке при 120°C в течение 4 ч. По окончании экспериментов автоклавы извлекали из печи и охлаждают до комнатной температуры на воздухе. К полученным водным золям твердого раствора оксидов редкоземельных элементов добавляли лимонную кислоту, концентрация которой в золе составила 0.01 молей на литр растворителя.
Согласно данным рентгенофазового анализа параметр кристаллической ячейки для образца Ce0,80Gd0,20O2-δ, определенный при уточнении кристаллической структуры твердых растворов по методу Ритвельда, составил 0.54205(7) нм. Согласно полученным результатам ПЭМ средний диаметр частиц составил 3.3±0.64 нм (см. Фиг.4). По данным динамического светорассеяния средний гидродинамический диаметр частиц диоксида церия, допированного гадолинием и стабилизированного лимонной кислотой составил 21 нм. Кроме того, гидродинамический диаметр в течение 6 месяцев меняется не более, чем на 5 нм, что свидетельствует об агрегативной стабильности получаемого золя.
Материалы и методы
Для синтеза коллоидных растворов оксидов редкоземельных элементов используют следующие исходные реагенты: гадолиния нитрат гексагидрат (Gd(NO3)3·6H2O, ч.д.а., Aldrich), церия нитрат гексагидрат (Ce(NO3)3·6H2O, ч.д.а., Aldrich), лимонная кислота (C6H8O7, ч., Химмед), Amberlite IRA 410 CL resin (Aldrich), гидроксид натрия (NaOH, ч.д.а., Aldrich). Синтез проводят следующим образом: анионообменную смолу Amberlite IRA 410 CL, предварительно переведенную в OH-форму, постепенно добавляют к смешанным водным растворам нитрата церия(III) и нитрата гадолиния до достижения pH=9.0÷10.0 с суммарной концентрацией 0.0025÷0.1 моль на литр растворителя, а мольное соотношение Ce:Gd составляет 19:1÷4:1. Сформировавшиеся золи отделяют от смолы фильтрованием, незамедлительно переносят в политетрафторэтиленовые автоклавы объемом 100 мл и подвергают гидротермальной обработке при 120÷210°C в течение 1.5÷4 ч. По окончании экспериментов автоклавы извлекают из печи и охлаждают до комнатной температуры на воздухе. К полученным водным золям твердых растворов редкоземельных элементов добавляют лимонную кислоту концентрация, которой в золе составила 0.01÷0.1 молей на литр растворителя. После добавления лимонной кислоты, необходимо добавить водный раствор аммиака до pH=7÷8.
Анализ полученных коллоидных растворов производят с использованием методов просвечивающей электронной микроскопии (на просвечивающем электронном микроскопе Leo 912АВ с последующим определением из фотографий размера 200-300 частиц и определением среднего размера частиц). Рентгенофазовый анализ (РФА) проводят на дифрактометре Rigaku D/MAX 2500 (CuKα-излучение). Размеры областей когерентного рассеяния (ОКР) образцов диоксида церия рассчитывают по формуле Шеррера. Уточнение параметров элементарной ячейки образцов допированного диоксида церия по методу Ритвельда проводят с использованием программного обеспечения JANA2000. Профиль рентгеновских пиков описывают псевдо-функциями Фойгта в интервале 15÷90°2θ с учетом немонохроматичности излучения (CuKα1 и CuKα2). Линии фона аппроксимируют полиномами Чебышева 15 степени. Размеры частиц методом динамического светорассеяния (ДСР) измеряют на анализаторе Malvern Zetasizer Nano ZS.
Результаты и выводы
Согласно результатам РФА все полученные продукты по примерам 1÷4 являются однофазными и обладают кристаллической структурой флюорита (пространственная группа Fm3m). Дифракционные максимумы, отвечающие оксо- или гидроксосоединениям церия и гадолиния, на дифрактограммах отсутствуют. По мере уменьшения мольного соотношения церия к гадолинию от 19:1 до 4:1 наблюдается смещение положения дифракционных максимумов в сторону меньших углов, что свидетельствует о вхождении ионов гадолиния в кристаллическую решетку диоксида церия. Анализ уширений дифракционных максимумов (111) и (200) свидетельствует о том, что полученные при центрифугировании золей порошки действительно являются нанокристаллическими. На основании данных рентгенофазового анализа были рассчитаны размеры частиц твердых растворов Ce1-xGdxO2-δ. При увеличении содержания гадолиния в твердом растворе Ce1-xGdxO2-δ размер частиц уменьшается от 9 до 4 нм. Завышение размера частиц твердых растворов Ce1-xGdxO2-δ, определяемого по данным РФА, по сравнению с данными ПЭМ (размер частиц 4.5÷3 нм), связано, в том числе, с особенностями рассеяния рентгеновского излучения на кристаллических полидисперсных порошках.
Исследование зависимости параметра кристаллической решетки образцов Ce1-xGdxO2-δ от номинального содержания гадолиния, определенной при уточнении кристаллической структуры твердых растворов по методу Ритвельда, показало, что полученная зависимость является линейной, то есть соответствует правилу Вегарда для твердых растворов. Этот результат является прямым доказательством вхождения ионов гадолиния в кристаллическую решетку диоксида церия. По данным ДСР, размеры агрегатов в золях твердых растворов Ce1-xGdxO2-δ, содержащих гадолиний, составляют 25÷11 нм, что свидетельствует о низкой степени агрегированности наночастиц.
Предложенное изобретение позволяет получить стабильный водный золь нанокристаллического диоксида церия, допированного гадолинием, устойчивый при хранении в течение более 6 месяцев.

Claims (5)

1. Способ получения стабилизированного водного золя нанокристаллического диоксида церия, допированного гадолинием, характеризующегося высокой агрегативной устойчивостью, заключающийся в том, что готовят водный раствор солей церия и гадолиния, в котором суммарная концентрация редкоземельных элементов составляет 0,005÷0,02 моля на литр воды, а мольное соотношение Ce:Gd составляет от 19:1 до 4:1, к полученному раствору солей церия и гадолиния добавляют анионообменную смолу в OH-форме до достижения pH 9,0÷10,0, сформировавшийся коллоидный раствор отделяют от анионообменной смолы фильтрованием и подвергают гидротермальной обработке при 120÷210°C в течение 1,5÷4 ч, после чего охлаждают до комнатной температуры, отличающийся тем, что полученный неустойчивый золь нанокристаллического диоксида церия, допированного гадолинием, дополнительно стабилизируют солью многоосновной кислоты путем добавления многоосновной кислоты с мольным соотношением редкоземельных элементов к кислоте, равным 1:1÷4, и последующим медленным по каплям добавлением водного раствора аммиака до достижения pH 7÷8.
2. Способ по п.1, отличающийся тем, что в качестве многоосновной кислоты используют лимонную или полиакриловую кислоту.
3. Способ по п.1, отличающийся тем, что в качестве соли церия используют водорастворимые соли церия с растворимостью не менее 6·10-3 моль церия в 1 л воды, а в качестве соли гадолиния используют водорастворимые соли гадолиния с растворимостью также не менее 6·10-3 моль гадолиния в 1 л воды.
4. Способ по п.1, отличающийся тем, что в качестве анионообменной смолы используют смолу марки Amberlite IRA 410 CL, которую предварительно переводят в ОН-форму взаимодействием со щелочью.
5. Способ по п.1, отличающийся тем, что гидротермальную обработку проводят с использованием микроволнового нагрева.
RU2012120059/05A 2012-05-16 2012-05-16 Способ получения стабилизированного водного золя нанокристаллического диоксида церия, допированного гадолинием RU2503620C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012120059/05A RU2503620C1 (ru) 2012-05-16 2012-05-16 Способ получения стабилизированного водного золя нанокристаллического диоксида церия, допированного гадолинием

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012120059/05A RU2503620C1 (ru) 2012-05-16 2012-05-16 Способ получения стабилизированного водного золя нанокристаллического диоксида церия, допированного гадолинием

Publications (2)

Publication Number Publication Date
RU2012120059A RU2012120059A (ru) 2013-11-27
RU2503620C1 true RU2503620C1 (ru) 2014-01-10

Family

ID=49624826

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012120059/05A RU2503620C1 (ru) 2012-05-16 2012-05-16 Способ получения стабилизированного водного золя нанокристаллического диоксида церия, допированного гадолинием

Country Status (1)

Country Link
RU (1) RU2503620C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2688852C2 (ru) * 2014-11-12 2019-05-22 Родиа Операсьон Частицы оксида церия и способ их получения
RU2798099C1 (ru) * 2022-11-25 2023-06-15 Александр Евгеньевич Баранчиков Способ получения золя диоксида церия в неводной среде

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7166263B2 (en) * 2002-03-28 2007-01-23 Utc Fuel Cells, Llc Ceria-based mixed-metal oxide structure, including method of making and use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7166263B2 (en) * 2002-03-28 2007-01-23 Utc Fuel Cells, Llc Ceria-based mixed-metal oxide structure, including method of making and use

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GODINHO M.J. et al. Room temperature co-precipitation of nanocrystalline CeO 2 and Ce 0,8 Gd 0,2 O 1,9-& powder, Materials Letters, 2007, vol.61, no.8, 9, p.p.1904-1907. *
GODINHO M.J. et al. Room temperature co-precipitation of nanocrystalline CeOand CeGdOpowder, Materials Letters, 2007, vol.61, no.8, 9, p.p.1904-1907. *
ГАСЫМОВА Г.А. и др. Синтез водных золей нанокристаллического диоксида церия, допированного гадолинием. Наносистемы: Физика, Химия, Математика, 2011, 2(3), с.113-120. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2688852C2 (ru) * 2014-11-12 2019-05-22 Родиа Операсьон Частицы оксида церия и способ их получения
RU2798099C1 (ru) * 2022-11-25 2023-06-15 Александр Евгеньевич Баранчиков Способ получения золя диоксида церия в неводной среде

Also Published As

Publication number Publication date
RU2012120059A (ru) 2013-11-27

Similar Documents

Publication Publication Date Title
Tok et al. Hydrothermal synthesis and characterization of rare earth doped ceria nanoparticles
Ludi et al. Zinc oxide nanoparticles: chemical mechanisms and classical and non-classical crystallization
Djuričić et al. Nanostructured cerium oxide: preparation and properties of weakly-agglomerated powders
Tok et al. Hydrothermal synthesis of CeO2 nano-particles
Patil et al. Synthesis techniques and applications of rare earth metal oxides semiconductors: A review
Wang et al. Characterization of samarium-doped ceria powders prepared by hydrothermal synthesis for use in solid state oxide fuel cells
Khorasani-Motlagh et al. Chemical synthesis and characterization of perovskite NdFeO3 nanocrystals via a co-precipitation method
Speghini et al. Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: the garnet family
Bitenc et al. Synthesis and characterization of crystalline hexagonal bipods of zinc oxide
Musić et al. Influence of synthesis route on the formation of ZnO particles and their morphologies
Li et al. Synthesis of yttria nano-powders by the precipitation method: the influence of ammonium hydrogen carbonate to metal ions molar ratio and ammonium sulfate addition
US9868885B2 (en) Polishing material particles, method for producing polishing material, and polishing processing method
Palma-Ramírez et al. Microwave-assisted hydrothermal synthesis of CePO4 nanostructures: correlation between the structural and optical properties
JP5464840B2 (ja) ジルコニア微粒子の製造方法
Huang et al. A facile solvothermal method for high-quality Gd2Zr2O7 nanopowder preparation
JP5645015B2 (ja) 酸化イットリウム安定化酸化ジルコニウムゾルの製造方法
Liqin et al. Nanocrystalline Nd2O3: Preparation, phase evolution, and kinetics of thermal decomposition of precursor
Liu et al. Supercritical hydrothermal synthesis of nano-ZrO2: Influence of technological parameters and mechanism
Ramasamy et al. Synthesis and characterization of ceria quantum dots using effective surfactants
Cai et al. Homogeneous (Lu1− xInx) 2O3 (x= 0− 1) solid solutions: Controlled synthesis, structure features and optical properties
Li et al. A facile hydrothermal approach to the synthesis of nanoscale rare earth hydroxides
Zhou et al. Facile synthesis of high surface area nanostructured ceria-zirconia-yttria-lanthana solid solutions with the assistance of lauric acid and dodecylamine
RU2503620C1 (ru) Способ получения стабилизированного водного золя нанокристаллического диоксида церия, допированного гадолинием
Ge et al. Optimizing the photocatalysis in ferromagnetic Bi 6 Fe 1.9 Co 0.1 Ti 3 O 18 nanocrystal by morphology control
RU2506228C1 (ru) Способ получения мезопористого наноразмерного порошка диоксида церия (варианты)

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200517