RU2502024C2 - Солнечный модуль с концентратором - Google Patents

Солнечный модуль с концентратором Download PDF

Info

Publication number
RU2502024C2
RU2502024C2 RU2012103256/06A RU2012103256A RU2502024C2 RU 2502024 C2 RU2502024 C2 RU 2502024C2 RU 2012103256/06 A RU2012103256/06 A RU 2012103256/06A RU 2012103256 A RU2012103256 A RU 2012103256A RU 2502024 C2 RU2502024 C2 RU 2502024C2
Authority
RU
Russia
Prior art keywords
receiver
solar
concentrator
facet
edge
Prior art date
Application number
RU2012103256/06A
Other languages
English (en)
Other versions
RU2012103256A (ru
Inventor
Анатолий Евгеньевич Иродионов
Дмитрий Семенович Стребков
Всеволод Павлович Тарасов
Original Assignee
Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) filed Critical Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии)
Priority to RU2012103256/06A priority Critical patent/RU2502024C2/ru
Publication of RU2012103256A publication Critical patent/RU2012103256A/ru
Application granted granted Critical
Publication of RU2502024C2 publication Critical patent/RU2502024C2/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

Изобретение относится к гелиотехнике, в частности к солнечным энергетическим модулям с концентраторами для получения электричества и/или тепла. Солнечный модуль с концентратором состоит из приемника солнечного излучения и цилиндрического солнечного концентратора, отражающая поверхность которого образована прямоугольными зеркально отражающими пластинами - фацетами. Фацеты установлены так, что солнечный луч L1, лежащий в плоскости поперечного сечения концентратора и идущий с отклонением от прицельного направления на Солнце, равным точности следящей системы α, после отражения на ближней к приемнику кромке фацеты, попадает на дальнюю от нее границу зоны концентрированного солнечного излучения на поверхности приемника, а ширина фацет такова, что луч L2, симметричный первому лучу L1 относительно прицельного направления, после отражения на противоположной кромке фацеты попадает на ближнюю границу зоны концентрированного излучения. Изобретение обеспечивает более равномерное распределение солнечной радиации по поверхности приемника, повышение оптической эффективности концентратора и, в результате, увеличение среднегодовой выработки энергии и снижение ее себестоимости. 2 з.п. ф-лы, 6 ил.

Description

Изобретение относится к гелиотехнике, в частности к солнечным энергетическим модулям с концентраторами для получения электричества и/или тепла.
Известна технология EUCLIDES, по которой изготовлены линейно-фокусирующие зеркальные параболоцилиндрические концентраторы для фотоэлектрической солнечной электростанции номинальной мощностью 480 кВт. Оптическая эффективность концентратора 90% при точности слежения за Солнцем ±0,2° (G. Sala, N.B. Mason, et al. «480 kWpeak EUCLIDES Concentrator Power Plant Using Parabolic Troughs», Proc. 2nd World Conf. PVSEC, Vienna 1998, 1963-8).
Недостатком известного технического устройства является значительная неравномерность распределения солнечной радиации по поверхности фотоэлектрического приемника, что может привести к локальному перегреву, росту омических потерь и, в конечном итоге, к снижению номинальной мощности модуля (A. Luque, G. Sala, J.С. Arboiro «Electric and thermal model for non-uniformly illuminated concentration cells», Solar Energy Materials and Solar Cells, 51 (1998), 269-290).
Наиболее близким к предлагаемому устройству является фотоэлектрический модуль с солнечным концентратором фирмы Poulek Solar Ltd., отражающая поверхность которого состоит из плоских зеркальных фацет одинаковой ширины, расположенных по профилю параболоцилиндра - солнечный концентратор TRAXLE 5Х (www.solar-trackers.com).
Известное техническое решение (прототип) по сравнению с известным аналогом повышает равномерность солнечного излучения на поверхности приемника.
Основным недостатком прототипа, имеющего солнечный концентратор, образованный плоскими зеркальными фацетами, расположенными по профилю параболы, является низкий оптический кпд концентратора из-за замены оптически эффективной поверхности параболоцилиндра плоскими прямоугольными зеркалами-фацетами - в результате часть солнечных лучей, отраженных от фацет, проходит мимо приемника.
Задачей предлагаемого изобретения является получение на поверхности приемника более равномерной освещенности при сохранении высокого оптического кпд зеркальной системы. Вышеуказанный технический результат достигается тем, что в солнечном модуле с концентратором, содержащем приемник солнечного излучения и цилиндрический солнечный концентратор, отражающая поверхность концентратора образована прямоугольными зеркально отражающими пластинами - фацетами, которые установлены так, что солнечный луч L1, лежащий в плоскости поперечного сечения концентратора и идущий с отклонением от прицельного направления на Солнце равным точности следящей системы а, после отражения на ближней к приемнику кромке фацеты, попадает на дальнюю от нее границу заданной на плоскости приемника зоны концентрированного солнечного излучения, при этом луч L2, симметричный первому лучу L1 относительно прицельного направления, отражаясь от той же кромки фацеты, попадает в зону концентрированного солнечного излучения, а ширина фацет такова, что луч L2 после отражения на противоположной кромке фацеты, попадает на ближнюю границу зоны концентрированно излучения на плоскости приемника.
При этом ближайшие к приемнику фацеты установлены так, что солнечный луч L1 прежде чем попасть на ближайшую к приемнику кромку фацеты проходит через кромку приемника.
В варианте конструкции солнечного модуля с фотоэлектрическим приемником электрически последовательно соединены только те солнечные элементы, центры которых лежат на одной прямой, параллельной образующей цилиндрического солнечного концентратора, и каждый ряд последовательно соединенных солнечных элементов содержит блокирующий диод.
Сущность изобретения поясняется фиг.1, 2, 3, 4, 5 и 6.
На фиг.1 показано поперечное сечение солнечного модуля с концентратором.
На фиг.2 представлена схема прохождения солнечных лучей.
На фиг.3 приведен вариант размещения зеркальных фацет, ближайших к приемнику солнечного излучения.
На фиг.4 представлена электрическая схема фотоэлектрического приемника из последовательно соединенных солнечных элементов с блокирующими диодами.
На фиг.5 представлен расчетный профиль (поперечное сечение) симметричного солнечного концентратора 5Х с заданной точностью слежения за Солнцем ±5°.
На фиг.6 представлен расчетный профиль (поперечное сечение) несимметричного солнечного концентратора 10Х с заданной точностью слежения за Солнцем ±0,1°.
Солнечный модуль с концентратором (фиг.1) состоит из приемника солнечного излучения 13 и цилиндрического солнечного концентратора, отражающая поверхность которого образована прямоугольными зеркально отражающими пластинами - фацетами 1-12 (n).
Фацеты установлены так, что солнечный луч L1 (фиг.2), лежащий в плоскости поперечного сечения концентратора и идущий с отклонением от прицельного направления на Солнце 14 равным точности следящей системы а, после отражения на ближней к приемнику кромке фацеты А, попадает на дальнюю от нее границу С зоны концентрированного солнечного излучения CD, а ширина фацет такова, что луч L2, симметричный первому лучу L1 относительно прицельного направления 14, после отражения на противоположной кромке фацеты В, попадает на ближнюю границу D зоны концентрированно излучения на плоскости приемника.
Ближайшие к приемнику фацеты 1 (фиг.3) преимущественно установлены так, что солнечный луч L1 прежде чем попасть на ближайшую к приемнику кромку фацеты М проходит через кромку приемника F.
В варианте конструкции солнечного модуля с фотоэлектрическим приемником 13 (фиг.4) электрически последовательно соединены только те солнечные элементы 15, центры которых лежат на одной прямой, параллельной образующей цилиндрического солнечного концентратора 17, и каждый ряд последовательно соединенных солнечных элементов 15 содержит блокирующий диод 16.
Солнечный модуль с концентратором работает следующим образом.
Луч L1 (фиг.2), идущий с отклонением от прицельного направления на Солнце 14 равным точности следящей системы а и приходящий на кромку А зеркальной фацеты, после отражения попадает на дальнюю границу С заданной на плоскости приемника 13 зоны концентрированного солнечного излучения CD. При смещении направления солнечного луча от L1 к L2 (другой границе предельного отклонения от прицельного положения), отраженный луч смещается по поверхности приемника к его ближней кромке, но не выходит за пределы заданной зоны концентрированного излучения CD, поскольку ширина фацеты АВ такова, что луч L2, даже отражаясь на ее противоположной кромке В, попадает на границу заданной зоны D.
В свою очередь, солнечные лучи в интервале направлений L1-L2, отражаясь на кромке фацеты В, смещаются, вслед за увеличением угла падения, к дальней кромке приемника 13, но не переходят за заданную границу С, так как максимальное смещение отраженного луча соответствует направлению L1, а этот луч, достигает крайней границы заданной зоны С только отражаясь на противоположной кромке фацеты А.
Таким образом, при любых возможных отклонениях солнечных лучей от прицельного положения, отраженные от фацет лучи не выходят за пределы заданной области концентрированного солнечного излучения CD на поверхности приемника 13.
Рассчитаны профили солнечных модулей с цилиндрическими фацетными концентраторами для заданных коэффициентов концентрации, размеров приемника и точности слежения за Солнцем.
На фиг.5 представлен расчетный профиль симметричного солнечного концентратора с геометрическим коэффициентом концентрации 5 и заданной точностью слежения за Солнцем ±5°.
На фиг.6 - несимметричный солнечный концентратор с геометрическим коэффициентом концентрации 10 и заданной точностью слежения ±0,1°. Плоскость приемника повернута относительно прицельного направления (в данном случае угол 75°) для уменьшения среднего угла падения отраженных солнечных лучей на его поверхность, что повышает оптическую эффективность приемника излучения.
В таблице приведены ширина каждой зеркальной фацеты и угол относительно прицельного направления. Ширина преемника в солнечном модуле с симметричным концентратором (фиг.5) равна 540 мм, а в модуле с несимметричным (фиг.6) - 270 мм.
Геометрия отражателя зависит, в том числе, от заданной точности слежения за Солнцем и чем она выше, тем выше равномерность освещения приемника излучения - при точности слежения выше ±0,1° освещение приемника практически равномерно, что позволит использовать в качестве приемника не только тепловые коллекторы, но и фотоэлектрические преобразователи без снижения эффективности и без риска образования горячих пятен и локального перегрева.
Кроме того, применение разработанного солнечного концентратора позволяет повысить оптический кпд модуля на 20-30% по сравнению с прототипом.
Номер пластины Концентрация 5Х Y=1617 мм; Х=128 мм Концентрация 10Х Y=2183 мм; Х=258 мм
Ширина пластины, мм Угол наклона, градус Ширина пластины, мм Угол наклона, градус
1 249 85,6 238 86,8
2 229 81,5 241 83,8
3 200 77,9 242 80,7
4 169 75,0 242 77,7
5 138 72,6 239 74,9
6 109 70,8 235 72,2
7 86 69,4 228 69,7
8 67 68,3 222 67,3
9 214 65,1
10 206 63,2
11 197 61,4
12 189 59,7
Предлагаемое устройство может быть реализовано в солнечных энергосистемах для выработки электроэнергии и/или тепла.

Claims (3)

1. Солнечный модуль с концентратором, содержащий приемник солнечного излучения и цилиндрический солнечный концентратор, отличающийся тем, что отражающая поверхность концентратора образована прямоугольными зеркально отражающими пластинами - фацетами, которые установлены так, что солнечный луч L1, лежащий в плоскости поперечного сечения концентратора и идущий с отклонением от прицельного направления на Солнце, равным точности следящей системы α, после отражения на ближней к приемнику кромке фацеты попадает на дальнюю от нее границу заданной на плоскости приемника зоны концентрированного солнечного излучения, при этом луч L2, симметричный первому лучу L1 относительно прицельного направления, отражаясь от той же кромки фацеты, попадает в зону концентрированного солнечного излучения, а ширина фацет такова, что луч L2 после отражения на противоположной кромке фацеты, попадает на ближнюю границу зоны концентрированного излучения на плоскости приемника.
2. Солнечный модуль с концентратором по п.1, отличающийся тем, что ближайшие к приемнику фацеты установлены так, что солнечный луч L1, прежде чем попасть на ближайшую к приемнику кромку фацеты, проходит через кромку приемника.
3. Солнечный модуль с концентратором по п.1, отличающийся тем, что в фотоэлектрическом приемнике электрически последовательно соединены только те солнечные элементы, центры которых лежат на одной прямой, параллельной образующей цилиндрического солнечного концентратора, и каждый ряд последовательно соединенных солнечных элементов содержит блокирующий диод.
RU2012103256/06A 2012-02-01 2012-02-01 Солнечный модуль с концентратором RU2502024C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012103256/06A RU2502024C2 (ru) 2012-02-01 2012-02-01 Солнечный модуль с концентратором

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012103256/06A RU2502024C2 (ru) 2012-02-01 2012-02-01 Солнечный модуль с концентратором

Publications (2)

Publication Number Publication Date
RU2012103256A RU2012103256A (ru) 2013-08-10
RU2502024C2 true RU2502024C2 (ru) 2013-12-20

Family

ID=49159153

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012103256/06A RU2502024C2 (ru) 2012-02-01 2012-02-01 Солнечный модуль с концентратором

Country Status (1)

Country Link
RU (1) RU2502024C2 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4281640A (en) * 1977-09-26 1981-08-04 Wells David N Electromagnetic radiation collector system
RU2027120C1 (ru) * 1991-07-29 1995-01-20 Головное конструкторское бюро научно-производственного объединения "Энергия" им.акад.С.П.Королева Концентрирующее устройство
RU2168679C1 (ru) * 2000-01-24 2001-06-10 Всероссийский научно-исследовательский институт электрификации сельского хозяйства Солнечный фотоэлектрический модуль с концентратором
RU2191329C1 (ru) * 2001-02-20 2002-10-20 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Солнечный модуль с концентратором
JP2005114190A (ja) * 2003-10-03 2005-04-28 Tomohiro Omura 集光調理器具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4281640A (en) * 1977-09-26 1981-08-04 Wells David N Electromagnetic radiation collector system
RU2027120C1 (ru) * 1991-07-29 1995-01-20 Головное конструкторское бюро научно-производственного объединения "Энергия" им.акад.С.П.Королева Концентрирующее устройство
RU2168679C1 (ru) * 2000-01-24 2001-06-10 Всероссийский научно-исследовательский институт электрификации сельского хозяйства Солнечный фотоэлектрический модуль с концентратором
RU2191329C1 (ru) * 2001-02-20 2002-10-20 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Солнечный модуль с концентратором
JP2005114190A (ja) * 2003-10-03 2005-04-28 Tomohiro Omura 集光調理器具

Also Published As

Publication number Publication date
RU2012103256A (ru) 2013-08-10

Similar Documents

Publication Publication Date Title
CA2783457C (en) Concentrated photovoltaic and thermal system
US20120192922A1 (en) Solar collector
US20110132457A1 (en) Concentrating solar collector with shielding mirrors
US9905718B2 (en) Low-cost thin-film concentrator solar cells
US9059352B2 (en) Solar energy systems using external reflectors
US20100012169A1 (en) Energy Recovery of Secondary Obscuration
CN103236463A (zh) 一种太阳能聚光分频光伏光热综合利用装置
KR101997761B1 (ko) 집광형 및 평판형 하이브리드 태양전지를 이용한 태양광 및 태양열 복합발전시스템 및 발전방법
CN115540367A (zh) 一种分段式cpc太阳能聚光器及其设计方法
AU2012344705A1 (en) Solar collector having a pivotable concentrator arrangement
US20130319506A1 (en) Solar concentrator assembly
US10153726B2 (en) Non-concentrated photovoltaic and concentrated solar thermal hybrid devices and methods for solar energy collection
RU2502024C2 (ru) Солнечный модуль с концентратором
KR100861567B1 (ko) 타워형 태양열 발전기
US20150207455A1 (en) Dense-Array Concentrator Photovoltaic System Utilising Non-Imaging Dish Concentrator And Array Of Crossed Compound Parabolic Concentrators
CN201937509U (zh) 一种聚光光伏系统
KR20130038457A (ko) 렌즈를 이용한 태양광 집광모듈 시스템
CN103580601A (zh) 一种高效波长分光式太阳能综合利用系统
RU2456515C2 (ru) Солнечный модуль с концентратом (варианты)
RU2496181C1 (ru) Фотоэлектрический концентраторный субмодуль
CN102608742B (zh) 太阳能条形平行光超薄聚光器
CN202532735U (zh) 太阳能直线型超薄光热利用聚光器
KR101217247B1 (ko) 집광형 태양전지
KR101043237B1 (ko) 집광형 태양전지 모듈
RU128398U1 (ru) Теплофотоэлектрический модуль с концентратором солнечного излучения

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150202