RU2191329C1 - Солнечный модуль с концентратором - Google Patents

Солнечный модуль с концентратором Download PDF

Info

Publication number
RU2191329C1
RU2191329C1 RU2001104482/06A RU2001104482A RU2191329C1 RU 2191329 C1 RU2191329 C1 RU 2191329C1 RU 2001104482/06 A RU2001104482/06 A RU 2001104482/06A RU 2001104482 A RU2001104482 A RU 2001104482A RU 2191329 C1 RU2191329 C1 RU 2191329C1
Authority
RU
Russia
Prior art keywords
plane
radiation
radius
concentrator
solar
Prior art date
Application number
RU2001104482/06A
Other languages
English (en)
Inventor
П.П. Безруких
А.Т. Беленов
С.Н. Кивалов
В.И. Поляков
Д.С. Стребков
Э.В. Тверьянович
Original Assignee
Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства filed Critical Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства
Priority to RU2001104482/06A priority Critical patent/RU2191329C1/ru
Application granted granted Critical
Publication of RU2191329C1 publication Critical patent/RU2191329C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Изобретение относится к области гелиотехники, в частности касается создания солнечных модулей с концентраторами солнечного излучения для выработки электричества и тепла. Сущность изобретения заключается в том, что поперечное сечение цилиндрического концентратора выполнено с двумя радиусами, причем окружность радиуса r сопрягается с окружностью большего радиуса R в плоскости, на которой расположены центры обоих радиусов, перпендикулярной плоскости, воспринимающей излучение. Приемник излучения может быть расположен в плоскости радиуса r, совмещенной с плоскостью сопряжения окружностей с радиусами r и R. Изобретение должно обеспечить увеличение концентрации излучения на приемнике излучения. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области гелиотехнике, в частности касается создания солнечных модулей с концентраторами солнечного излучения для выработки электричества и тепла.
Известен солнечный модуль (аналог) для выработки тепла и электричества, в котором приемник излучения, в данном случае солнечные элементы, расположен на поверхности выхода излучения из концентратора, выполненного в виде параболоцилиндрической отражающей поверхности (пат. США 4045246 от 11.08.75, нац. кл. 136/89, 126/270, МКИ H 01 L 35/00).
Солнечное излучение в указанном модуле приходит на воспринимающую поверхность, попадает на стенки концентратора, отражается и приходит на солнечные элементы, расположенные на поверхности выхода излучения, при этом избыточное тепло с солнечных элементов снимается протекающей жидкостью. Такие модули с концентраторами имеют следующие недостатки: они занимают большой объем, т. е. имеют большую материалоемкость при относительно низкой концентрации излучения.
Известен солнечный фотоэлектрический модуль с концентратором (прототип), состоящий из цилиндрического концентратора с воспринимающей солнечное излучение плоскостью, поперечное сечение концентратора выполнено по окружности радиуса r, и приемника излучения с двусторонней рабочей поверхностью, расположенного в плоскости радиуса r (патент Франции 2342558, опубл. 23.09.77, МКИ H 01 L 31/08, G 02 В 5/08). Солнечное излучение приходит на воспринимающую плоскость, на которой установлена часть приемника излучения, выполненная в виде солнечных элементов с двусторонней фоточувствительностью, часть солнечного излучения попадает непосредственно на лицевую сторону приемника излучения, расположенного на воспринимающей плоскости в пределах радиуса r. Через вторую часть воспринимающей плоскости, имеющей также размер r, излучение проходит на концентратор, отражается и попадает на тыльную сторону приемника излучения. Концентрация (геометрическая) излучения на солнечных элементах, равная отношению площади воспринимающей плоскости (2r) к площади солнечных элементов (r) составляет в этом случае 2.
Недостатком известного решения является низкая концентрация излучения на солнечных элементах, которая в идеальном случае равна 2, а в реальных условиях с учетом отражения от цилиндрического концентратора составит 1,5-1,6, что приводит к незначительному изменению как стоимостных характеристик модуля (для фотоэлектрических модулей), так и теплотехнических параметров (для комбинированных модулей для выработки электричества и тепла).
Предложенное изобретение решает следующую техническую задачу: увеличивает концентрацию излучения на приемнике излучения.
Для достижения указанного результата поперечное сечение цилиндрического концентратора выполнено двумя радиусами, причем окружность радиуса r сопрягается с окружностью большего радиуса R в плоскости, на которой расположены центры обоих радиусов, перпендикулярной плоскости, воспринимающей излучение. Приемник излучения может быть расположен в плоскости радиуса r, совмещенной с плоскостью сопряжения окружностей с радиусами r и R.
Признаки, отличающие предложенное техническое решение от наиболее близкого решения по патенту Франции 2342558 заключаются в следующем.
Увеличение площади, воспринимающей солнечное излучение, плоскости происходит за счет того, что часть поперечного сечения цилиндрического концентратора выполнена с радиусом r, а другая часть выполнена с большим радиусом R, а площадь приемника излучения пропорциональна меньшему радиусу r.
Еще больше можно поднять концентрацию на приемнике излучения, если плоскость с приемником излучения совмещена с плоскостью сопряжения окружностей радиусов r и R, расположенной перпендикулярно воспринимающей солнечное излучение плоскостью.
На фиг. 1 и 2 представлены поперечные сечения солнечного модуля с цилиндрическим концентратором и схема прохождения солнечных лучей.
Солнечный модуль с концентратором (фиг.1), состоящий из цилиндрического концентратора 1 с воспринимающей солнечное излучение плоскостью 2, поперечное сечение концентратора выполнено по окружности с радиусом r и приемника излучения 3 с двусторонней рабочей поверхностью, расположенной в плоскости радиуса r. Поперечное сечение цилиндрического концентратора 1 выполнено двумя радиусами r и R, причем окружность радиуса r сопрягается с окружностью большего радиуса R в плоскости 4, на которой расположены центры О1 и O2 обоих радиусов, перпендикулярной плоскости 2, воспринимающей солнечное излучение.
Приемник излучения 3 (фиг.2) может быть расположен в плоскости радиуса r, совмещенной с плоскостью 3 сопряжения окружностей с радиусами r и R.
Кроме того, на фиг.1 и 2 изображено: солнечные лучи l1, l2, l3, l4, l5 и схема их прохождения по концентратору; апертурный угол φ; размер свободной поверхности концентратора L.
Работает модуль следующим образом. Солнечное излучение (фиг.1) приходит на воспринимающую плоскость 2. Часть излучения, например луч l1, непосредственно попадает на лицевую сторону приемника излучения 3 с двусторонней рабочей поверхностью, установленного в плоскости радиуса r с центром O1 на плоскости 4 сопряжения. В качестве приемника могут быть использованы солнечные элементы с двусторонней фоточувствительностью, солнечные коллекторы для получения горячего теплоностителя, а также комбинированные модули на основе солнечных коллекторов с установленными на них солнечными элементами для выработки тепла и электричества. Луч l2 пересекает воспринимающую плоскость 2, отражается от средней части концентратора 1 и попадает на тыльную сторону приемника излучения 3. Луч l3 с периферии концентратора 1 отражается от части концентратора, образованной окружностью R, затем от части концентратора, образованной окружностью r, и попадает на тыльную сторону приемника излучения 3. В варианте модуля, где приемник излучения 3 расположен в плоскости 4 сопряжения окружностей с радиусами r и R (фиг.2), периферийный луч l4 попадает на часть концентратора с радиусом R, затем на часть концентратора с радиусом r, затем на тыльную сторону приемника излучения 3. Луч l5 от концентратора попадает на лицевую сторону приемника излучения 3.
Можно показать, что концентрация (К) излучения по варианту фиг.1 подсчитывается по формуле
K = (L+r)/r, (1)
при φ=60o, L=Rcos30o; R=2r; К=2,7.
В варианте по фиг.2 концентрация подсчитывается следующим образом:
R = L/r, (2)
при L=Rcos30o; φ=60o, R=4r, К=3,46.
Таким образом, предлагаемые модули имеют геометрическую концентрацию солнечного излучения на приемнике излучения от 2,7 до 3,5 (у прототипа 2), что в реальных условиях (при коэффициенте отражения концентратора 0,85) концентрация составит 2,3-2,9 (для прототипа 1,5-1,7). Увеличение концентрации на 50-70% приведет к снижению стоимости модуля на 30-40%, т.к. снижение стоимости не пропорционально увеличению концентрации.
Пример выполнения солнечного модуля с концентратором.
Пример 1. Солнечный модуль имеет зеркальный цилиндрический концентратор (фиг. 1), состоящий из зеркального отражателя радиуса r=0,25 м и зеркального отражателя с радиусом R=0,5 м. Размеры приемника излучения, выполненного в виде солнечных элементов с двусторонней фоточувствительностью: ширина 0,7 м, длина 1,25 м, высота 0,25 м, апертурный угол φ=60o, коэффициент геометрической концентрации 2,8, коэффициент отражения концентратора 0,8, номинальная мощность модуля 75 Вт (при солнечной радиации 1000 Вт/м2), напряжение 12 В.
Пример 2. Солнечный модуль по фиг.2 имеет концентратор, состоящий из отражателя радиусом r= 0,2 м, сопряженный с отражателем радиусом R=0,8 м, размер L= 0,7 м. Приемник 3 выполнен в виде металлического абсорбера с прокачкой жидкого теплоносителя и солнечными элементами, установленными на обеих сторонах абсорбера под защищенными стеклами. Размеры приемника излучения: ширина r=0,4 м, длина 1,25 м, геометрическая концентрация 3,46, коэффициент отражения концентратора 0,8, электрическая мощность модуля 75 Вт (при солнечной радиации 1000 Вт/м2), тепловая мощность 0,5 кВт.

Claims (2)

1. Солнечный модуль с концентратором, состоящий из цилиндрического концентратора с воспринимающей солнечное излучение плоскостью и приемника излучения с двухсторонней рабочей поверхностью, отличающийся тем, что поперечное сечение цилиндрического концентратора выполнено двумя радиусами, причем окружность радиуса r сопрягается с окружностью большего радиуса R в плоскости, на которой расположены центры обоих радиусов, перпендикулярной плоскости, воспринимающей солнечное излучение, а приемник излучения расположен в плоскости радиуса r окружности концентратора.
2. Солнечный модуль с концентратором по п.1, отличающийся тем, что приемник излучения расположен в плоскости радиуса r, совмещенной с плоскостью сопряжения окружностей с радиусами r и R.
RU2001104482/06A 2001-02-20 2001-02-20 Солнечный модуль с концентратором RU2191329C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001104482/06A RU2191329C1 (ru) 2001-02-20 2001-02-20 Солнечный модуль с концентратором

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001104482/06A RU2191329C1 (ru) 2001-02-20 2001-02-20 Солнечный модуль с концентратором

Publications (1)

Publication Number Publication Date
RU2191329C1 true RU2191329C1 (ru) 2002-10-20

Family

ID=20246132

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001104482/06A RU2191329C1 (ru) 2001-02-20 2001-02-20 Солнечный модуль с концентратором

Country Status (1)

Country Link
RU (1) RU2191329C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2502024C2 (ru) * 2012-02-01 2013-12-20 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Солнечный модуль с концентратором

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2502024C2 (ru) * 2012-02-01 2013-12-20 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Солнечный модуль с концентратором

Similar Documents

Publication Publication Date Title
US6717045B2 (en) Photovoltaic array module design for solar electric power generation systems
US4143233A (en) Solar energy collector
CA2442143A1 (en) Conversion of solar energy
US20100012169A1 (en) Energy Recovery of Secondary Obscuration
WO2006041943A2 (en) Asymetric, three-dimensional, non-imaging, light concentrator
CA2564835A1 (en) Concentrating solar collector
RU2133415C1 (ru) Солнечный фотоэлектрический модуль (варианты)
Terao et al. A mirror-less design for micro-concentrator modules
RU2191329C1 (ru) Солнечный модуль с концентратором
RU2282113C1 (ru) Солнечный фотоэлектрический модуль с концентратором
RU2204769C2 (ru) Солнечный модуль с концентратором
Edmonds The performance of bifacial solar cells in static solar concentrators
RU2338128C1 (ru) Солнечная установка с концентратором
JP3184660B2 (ja) 光エネルギー集光器
RU2154778C1 (ru) Солнечный фотоэлектрический модуль с концентратором
AU712237B2 (en) Photovoltaic cell system and an optical structure therefore
RU2135909C1 (ru) Солнечный фотоэлектрический модуль с концентратором
RU2154244C1 (ru) Солнечный фотоэлектрический модуль с концентратором
EP0807230A1 (en) Solar flux enhancer
CN201584928U (zh) 槽式光伏聚光装置
RU2295675C2 (ru) Солнечный модуль с концентратором
KR100353616B1 (ko) 태양열 열전발전 장치의 고집적 집속기
Xuan et al. Optical design and experiment evaluation of a novel asymmetric compound parabolic concentrator (ACPC) integration with PV for building south wall application
KR101217247B1 (ko) 집광형 태양전지
RU2154243C1 (ru) Солнечная энергетическая установка

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20070221

NF4A Reinstatement of patent

Effective date: 20080310

MM4A The patent is invalid due to non-payment of fees

Effective date: 20100221