RU2499961C1 - Способ генерации энергии в гибридной установке - Google Patents

Способ генерации энергии в гибридной установке Download PDF

Info

Publication number
RU2499961C1
RU2499961C1 RU2012118055/11A RU2012118055A RU2499961C1 RU 2499961 C1 RU2499961 C1 RU 2499961C1 RU 2012118055/11 A RU2012118055/11 A RU 2012118055/11A RU 2012118055 A RU2012118055 A RU 2012118055A RU 2499961 C1 RU2499961 C1 RU 2499961C1
Authority
RU
Russia
Prior art keywords
battery
electrolyte
electrode
energy
molten
Prior art date
Application number
RU2012118055/11A
Other languages
English (en)
Inventor
Анатолий Яковлевич Столяревский
Original Assignee
Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" filed Critical Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт"
Priority to RU2012118055/11A priority Critical patent/RU2499961C1/ru
Application granted granted Critical
Publication of RU2499961C1 publication Critical patent/RU2499961C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

Изобретение относится к способам преобразования энергии жидкого или газообразного топлива в электрическую и предназначено для гибридных транспортных средств. Способ заключается в том, что электрическую энергию аккумулируют в выбранные моменты времени в аккумуляторной батарее. Осуществляют обогрев аккумуляторной батареи с использованием продуктов сгорания теплового двигателя. Подвод тепла к аккумуляторной батарее осуществляют с помощью циркуляции расплавленного теплоносителя. В качестве теплоносителя используют материал одного из электродов или электролит. Технический результат заключается в снижении расхода топлива и улучшении генерации энергии. 5 з.п. ф-лы, 1 ил.

Description

Изобретение относится преимущественно к способам преобразования энергии углеводородного топлива (нефтепродукты, природный или синтез-газ, водород) в механическую (электрическую) преимущественно к транспортным энергетическим установкам и системам энергообеспечения на их основе и предназначено для транспортных средств, снабженных электро- или гибридным приводом.
Известны способы преобразования энергии углеводородного топлива (нефтепродукты, природный или синтез-газ, водород) в механическую (электрическую), в том числе, в транспортных энергоустановках, преобразующих первичную энергию в электрическую, которая запасается в электроаккумуляторах и затем по необходимости служит приводом движителя транспортных средств. Значительный потенциал имеют гибридные энергоисточники, которые выгодно использовать при постоянной нагрузке, в то время как транспортное средство движется неравномерно, что требует изменения мощности. Из особенностей работы транспортных энергогенерирующих систем известна проблема увеличения эффективности энергоисточника при работе на переменной мощности. Таким образом, возникает задача создания способов преобразования энергии, энергоаккумулирующих установок и систем, способных обеспечивать высокую эффективность генерации энергии в требуемом по условиям потребления неравномерном режиме вне зависимости от графика выработки первичной энергии.
В частности, предложен способ генерации энергии в гибридной силовой установки, содержащей первый накопитель энергии, работающий для поддержания рабочей мощности по меньшей мере одного мотора с фрикционной передачей; второй накопитель энергии, электрически соединенный с первым накопителем энергии и мотором с фрикционной передачей, при этом второй накопитель энергии работает для поддержания рабочей мощности по меньшей мере одного мотора с фрикционной передачей для пополнения мощности, взятой из первого накопителя энергии; и вспомогательную силовую установку, которая содержит топливный элемент и работает для заряда первого накопителя энергии (патент №2389618, оп. 20.05.2010, заявка РФ на изобретение №2007103167, дата публикации 2008.08.10). Недостатком данного способа и устройства является низкий КПД, связанный с потерями энергии при работе накопителя.
Известна движительная система, содержащая электродвигатель, который действует, чтобы производить механическую мощность для движения и чтобы генерировать электрическую мощность в течение динамического торможения электродвигателя; модуль накопления энергии, который действует, чтобы снабжать электродвигатель мощностью для выработки механической мощности для движения и чтобы получать электрическую мощность от электродвигателя в течение динамического торможения электродвигателя; и переключатель, который действует, чтобы выборочно соединять модуль накопления энергии с электродвигателем на основании рабочего параметра движительной системы (патент №2397076 оп. 20.08.2010 Бюл. №23, заявка РФ на изобретение №2007103196, дата публикации 2008.08.10). Недостатком данного способа и устройства также является низкий КПД.
Известен способ генерации энергии в гибридной силовой установке, содержащей систему электрических аккумуляторных батарей, установленную на внедорожном транспортном средстве с гибридной энергетической установкой, включающем в себя колеса для опоры и перемещения транспортного средства, генератор электрической мощности, двигатель, приводящий в действие генератор электрической мощности, и тяговые электродвигатели для привода этих колес, причем электрическая мощность, сгенерированная на этом транспортном средстве, аккумулируется в выбранные моменты времени в системе электрических аккумуляторных батарей и выдается из системы электрических аккумуляторных батарей для передачи тяговым электродвигателям с целью приведения в движение этого транспортного средства, причем эти транспортное средство и система батарей подвергаются воздействию окружающей среды, при этом система аккумуляторных батарей содержит множество батарей для аккумулирования и высвобождения электрической мощности, причем каждая батарея создает внутреннюю рабочую температуру батареи, которая превышает самую высокую температуру окружающей это транспортное средство среды; и систему охлаждения, отдельную от системы охлаждения двигателя и выполненную с возможностью регулирования температуры упомянутого множества батарей (патент №2388624 оп. 10.05.2010 Бюл. №13 - прототип). Недостатком способа является низкий КПД, связанный с затратами энергии и потерями напряжения батареи при недостаточном ее разогреве, а также сниженные динамические и маневренные возможности генерации энергии и надежность работы, ухудшенные экономические показатели энергоустановки и систем энергообеспечения на ее основе.
Задача изобретения - создать способ генерации энергии в гибридной энергоустановке, в котором повышены динамические и маневренные возможности генерации энергии, ресурс и надежность работы энергоустановки, снижен расход топлива, улучшены экономические показатели энергоустановок и систем энергообеспечения.
Поставленная задача решается тем, что предложен способ генерации энергии в гибридной энергоустановке, включающей тепловой двигатель, приводящий в действие генератор электрической энергии, которую аккумулируют в выбранные моменты времени в аккумуляторной батарее и выдают из них внешнему потребителю, при этом, по меньшей мере, часть продуктов сгорания, выходящих из двигателя, подают для нагрева аккумуляторной батареи.
Кроме того:
- в аккумуляторной батарее, по крайней мере, один из электродов или электролит используют в расплавленном состоянии.
- подвод тепла к аккумуляторной батарее осуществляют с помощью циркуляции расплавленного теплоносителя, в качестве которого используют материал одного из электродов или электролит.
- осуществляют циркуляцию расплавленного электрода или электролита аккумуляторной батареи, удаляя при этом побочные продукты электрохимической реакции.
- в качестве одного из электродов или электролита аккумуляторной батареи используют щелочной металл или его соединение.
- материал электрода или электролита аккумуляторной батареи выбирают из ряда, содержащего литий, калий, натрий или их соединения с серой, фосфором, хлором, фтором, алюминием, кислородом.
- осуществляют циркуляцию расплавленного электрода или электролита аккумуляторной батареи и регулируют циркуляцию электрода или электролита аккумуляторной батареи в зависимости от потребности в энергии или допустимой скорости разогрева топливного элемента.
- осуществляют циркуляцию электрода или электролита аккумуляторной батареи с помощью магнитогидродинамического насоса или естественной циркуляции.
На фигуре дана общая схема выполнения гибридной энергоустановки, где 1 - тепловой двигатель, 2 - генератор, 3 - электрические проводники, 4 - аккумуляторная батарея, 5 - продукты сгорания, 6 - теплообменник, 7 - циркулирующий теплоноситель, 8 - анод, 9 - электролит, 10 - катод, 11 - клемма аккумуляторной батареи, 12 - потребитель энергии.
В излагаемом примере осуществления изобретения в качестве аккумуляторной батареи 4 применяется натрий-серная батарея, что позволяет охарактеризовать особенности реализации изобретения применительно к процессам электрохимического аккумулирования электроэнергии, с возможностью нагрева аккумуляторной батареи продуктами сгорания 5, выходящими из теплового двигателя транспортных или стационарных гибридных энергоустановок.
Способ осуществляется следующим образом.
Тепловой двигатель 1 вырабатывает в электрогенераторе 2 электроэнергию, которая передается по электрическим проводникам 3 аккумуляторной батарее 4. Выходящие из теплового двигателя 1 продукты сгорания 5 подают на охлаждение, которое производится путем нагрева в теплообменнике 6 циркулирующего теплоносителя 7. В аккумуляторной батарее 4 расплавленный жидкий натрий анода 8 отделен электролитом 9 от объема, занимаемого расплавленной жидкой серой катода 10. При подводе по электрическим проводникам 3 электроэнергии к клеммам 11 аккумуляторной батареи 4 производят электрохимическую реакцию, включающую:
На аноде: 2Na0→2Na++2е-
На катоде: S0+2е-→S=
Общая реакция: 2Na0+S0→2 Na++S=
2Na+4S→Na2S4 (расплавленные сера катода 10 и натрий анода 8 на катоде и аноде, соответственно, вступают в реакцию, при которой через твердооксидный электролит 9 идут ионы натрия Na+, что создает ЭДС на клеммах Ecell~2 В). В варианте применения расплавленного электролита 9 создают электрохимические системы, ЭДС которых заведомо больше 1,48 В, т.е. выше напряжения разложения воды.
В режиме разряда аккумуляторной батареи 4 электроэнергия поступает к потребителю 12, а в режиме заряда аккумуляторной батареи 4 электроэнергия запасается в расплавленных сере и натрии на катоде 10 и аноде 8, соответственно.
Для подержания серы, натрия и продуктов их реакции (полисульфидов натрия) в расплавленном состоянии в аккумуляторной батарее 4 поддерживают температуру выше точки плавления наиболее тугоплавкого из этих материалов, как правило, выше 350°C. Температуру в аккумуляторной батарее 4 поддерживают за счет принудительного или естественного перемещения циркулирующего теплоносителя 7, который может нагреваться в теплообменнике 6 или, в режиме выделения в аккумуляторной батарее 4 избыточного тепла, например, в режиме ее заряда, может охлаждаться окружающей средой (на фигуре не показано). При использовании в качестве циркулирующего теплоносителя 7 жидкого металла циркуляцию целесообразно осуществлять с помощью магнитогидродинамического насоса (на фигуре не показан).
В качестве расплавленного теплоносителя 7 могут использовать материал одного из электродов (8, 10) или электролит 9.
В тракте циркуляции электрода (8, 10) или электролита 9 аккумуляторной батареи 4 осуществляют удаление нежелательных побочных продуктов электрохимической реакции (на фигуре не показано), что позволяет повысить эффективность аккумуляторной батареи 4, уменьшить падение ее вольт-амперных характеристик, снизить перенапряжение на катоде и аноде.
В качестве одного из электродов (8, 10) или электролита 9 аккумуляторной батареи 4 используют щелочной металл или его соединение. Могут использоваться вещества из ряда, содержащего литий, калий, натрий или их соединения с серой, фосфором, хлором, фтором, алюминием, кислородом. В частности, на аноде 8 может применяться литий, на катоде 10 - сера, а, в качестве электролита 9 - расплавленная эвтектическая смесь LiCl и KO, при использовании которой возможно реализовать гравитационное разделение активных масс за счет меньшей плотности лития в сравнении с серой.
Возможен вариант аккумуляторной батареи 4 с активными массами на основе литий-алюминиевого сплава (-) и сульфида железа (+). Электролит 9 может содержать смесь пероксида калия K2O2 и LiCl, таким образом создают электрохимическую систему с ЭДС 1,33 В и теоретической удельной энергией 458 Вт·ч/кг. Применение в качестве материала анода интерметаллического сплава лития и алюминия с температурой плавления около 600°C позволяет в области содержания лития в сплаве 10-45% обеспечить поддерживать практически постоянным электрохимический потенциал сплава (+0,3 В против обратимого литиевого электрода), что позволяет иметь пологую разрядную характеристику электрода. Катод может быть изготовлен прессованием на железный токоподвод сульфида железа и графита с добавкой сульфида меди. Применение в качестве материала сепаратора нитрида бора (BN) или окиси иттрия может быть для улучшения смачиваемости добавлением в сепараторную матрицу LiAlCl4. Модификацией описанной аккумуляторной батареи 4 является аккумулятор на базе электрохимической системы
Li4Si+FeS2→2Li2S+Fe+Si
Существенным отличием данной аккумуляторной батареи 4 является более высокая удельная энергия (944 Вт·ч/кг). Реакция электрохимической системы:
Li4Si|KCl-LiCl|FeS2
Поскольку основным препятствием для увеличения электрического ресурса аккумуляторной батареи 4 являются короткие замыкания, например, вследствие механического прорастания железа при заряде и агломерация литий-алюминиевого сплава, а при разряде образуется ряд промежуточных соединений Li2Si, Li2Si8 и т.д., равновесные потенциалы которых сравнительно мало отличаются друг от друга, обусловливая пологую разрядную характеристику аккумуляторной батареи 4, паразитные соединения могут удаляться в тракте циркулирующего теплоносителя 7, если используется, например, в качестве электролита 9 - расплавленная эвтектическая смесь LiCl и KO.
В соответствии с правилом Вальдена-Писаржевского для жидких электролитов 9 произведение вязкости и удельной проводимости является постоянной величиной для данного вещества, не зависящей от растворителя, что является одним из преимуществ изобретения: электропроводность расплавленных солей намного выше проводимости водных растворов и, например, для смеси KCl+TiCl3 при 800°C достигает 100-500 Ом-1·м-1, в то время, как удельная электропроводность водного раствора хлорида калия не превышает 30 Ом-1·м-1. Сопротивление электролита 9 может быть снижено как снижением его толщины, так и повышением температуры за счет снижения вязкости. Например, для натрий-серной аккумуляторной батареи 4 зависимость падения напряжения на электролите 9 имеет следующий характер:
Температура (°C)
350°C 25°C
Толщина (мм) 1.00
Электропроводность (См/см) 0.246 0.004
Удельное сопротивление (Ом·см-2) 0.406 24.82
Падение напряжения, В (7.5 кА/м2) 0.304 18.62
Таким образом, для выхода и поддержания рабочего режима аккумуляторной батареи 4 необходимо достичь требуемой температуры. В известных способах для разогрева аккумуляторной батареи 4 до рабочей температуры электронагревателю требуется около суток, после чего поддерживается температура на рабочем уровне (выше 270°C) за счет энергии аккумуляторной батареи 4. Согласно изобретению часть продуктов сгорания, выходящих из двигателя, подают для нагрева аккумуляторной батареи до рабочей температуры, что снижает потери энергии и уменьшает расход топлива и время запуска гибридной энергоустановки.
Поскольку при разряде выделяется около 10% от выдаваемой энергии, что требует охлаждения аккумуляторной батареи 4 до температуры ниже максимальной рабочей (350°C), то регулируют циркуляцию электрода (8 или 10) или электролита 9 аккумуляторной батареи 4 в зависимости от потребности в энергии гибридной энергоустановки или допустимой скорости разогрева аккумуляторной батареи 4.
Таким образом, указанный способ позволит повысить динамические и маневренные возможности генерации энергии, ресурс и надежность работы энергоустановки, снизить расход топлива, улучшить экономические показатели энергоустановок и систем энергообеспечения - задача изобретения.

Claims (6)

1. Способ генерации энергии в гибридной энергоустановке, включающей тепловой двигатель, приводящий в действие генератор электрической энергии, которую аккумулируют в выбранные моменты времени в аккумуляторной батарее, для обогрева которой используют продукты сгорания, выходящие из двигателя, отличающийся тем, что подвод тепла к аккумуляторной батарее осуществляют с помощью циркуляции расплавленного теплоносителя, в качестве которого используют материал одного из электродов или электролит.
2. Способ по п.1 или 2, отличающийся тем, что осуществляют циркуляцию расплавленного электрода или электролита аккумуляторной батареи и при этом удаляют побочные продукты электрохимической реакции.
3. Способ по п.1 или 2, отличающийся тем, что в качестве одного из электродов или электролита аккумуляторной батареи используют щелочной металл или его соединение.
4. Способ по п.1 или 2, отличающийся тем, что материал электрода или электролита аккумуляторной батареи выбирают из ряда, содержащего литий, калий, натрий или их соединения с серой, фосфором, хлором, фтором, алюминием, кислородом.
5. Способ по п.1 или 2, отличающийся тем, что осуществляют циркуляцию расплавленного электрода или электролита аккумуляторной батареи и регулируют расход циркуляции электрода или электролита аккумуляторной батареи в зависимости от допустимой скорости разогрева аккумуляторной батареи.
6. Способ по п.1 или 2, отличающийся тем, что осуществляют циркуляцию электрода или электролита аккумуляторной батареи с помощью магнитогидродинамического насоса или естественной циркуляции.
RU2012118055/11A 2012-05-03 2012-05-03 Способ генерации энергии в гибридной установке RU2499961C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012118055/11A RU2499961C1 (ru) 2012-05-03 2012-05-03 Способ генерации энергии в гибридной установке

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012118055/11A RU2499961C1 (ru) 2012-05-03 2012-05-03 Способ генерации энергии в гибридной установке

Publications (1)

Publication Number Publication Date
RU2499961C1 true RU2499961C1 (ru) 2013-11-27

Family

ID=49710572

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012118055/11A RU2499961C1 (ru) 2012-05-03 2012-05-03 Способ генерации энергии в гибридной установке

Country Status (1)

Country Link
RU (1) RU2499961C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2679685C1 (ru) * 2018-05-15 2019-02-12 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Система энергоснабжения локальных потребителей

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU364059A1 (ru) * 1971-02-08 1972-12-25 Электромагнитный насос
US20060019132A1 (en) * 2004-05-19 2006-01-26 Lipilin Alexander S Liquid anode electrochemical cell
JP2010208577A (ja) * 2009-03-12 2010-09-24 Toyota Motor Corp 電池温度調整装置
JP2011031672A (ja) * 2009-07-30 2011-02-17 Honda Motor Co Ltd 車両の制御装置
WO2011038233A1 (en) * 2009-09-25 2011-03-31 Lawrence Livermore National Security, Llc High-performance rechargeable batteries with fast solid-state ion conductors
US20110174561A1 (en) * 2010-01-21 2011-07-21 ePower Engine Systems, L.L.C. Hydrocarbon Fueled-Electric Series Hybrid Propulsion Systems
US20110223460A1 (en) * 2010-03-10 2011-09-15 Lawrence Livermore National Security, Llc Low Temperature Sodium-Beta Battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU364059A1 (ru) * 1971-02-08 1972-12-25 Электромагнитный насос
US20060019132A1 (en) * 2004-05-19 2006-01-26 Lipilin Alexander S Liquid anode electrochemical cell
JP2010208577A (ja) * 2009-03-12 2010-09-24 Toyota Motor Corp 電池温度調整装置
JP2011031672A (ja) * 2009-07-30 2011-02-17 Honda Motor Co Ltd 車両の制御装置
WO2011038233A1 (en) * 2009-09-25 2011-03-31 Lawrence Livermore National Security, Llc High-performance rechargeable batteries with fast solid-state ion conductors
US20110174561A1 (en) * 2010-01-21 2011-07-21 ePower Engine Systems, L.L.C. Hydrocarbon Fueled-Electric Series Hybrid Propulsion Systems
US20110223460A1 (en) * 2010-03-10 2011-09-15 Lawrence Livermore National Security, Llc Low Temperature Sodium-Beta Battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2679685C1 (ru) * 2018-05-15 2019-02-12 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Система энергоснабжения локальных потребителей

Similar Documents

Publication Publication Date Title
Bruce et al. Lithium-air and lithium-sulfur batteries
JP5670339B2 (ja) 電池およびエネルギーシステム
JP6077537B2 (ja) レドックスフロー電池システム
JP6177128B2 (ja) 電気エネルギーの大規模な貯蔵のための改善された工業装置
CN101682088B (zh) 用于非水电解质的添加剂以及使用所述添加剂的二次电池
CA1168698A (en) Energy conversion and storage process
US20130130085A1 (en) Alkali metal-cathode solution battery
US4810596A (en) Sulfuric acid thermoelectrochemical system and method
EP3044824B1 (en) High temperature sodium battery with high energy efficiency
US5264298A (en) Lewis acid thermoelectrochemical converter
JP6670247B2 (ja) 電気化学的エネルギー貯蔵装置並びにそれの作動方法
JP2012523068A5 (ru)
Rao et al. Thermal safety and thermal management of batteries
JP2018010855A (ja) 再充電可能なアルミニウム−空気電池
US3419435A (en) Energy conversion process and apparatus
RU2499961C1 (ru) Способ генерации энергии в гибридной установке
CN115149117A (zh) 一种水系电池电解液的添加剂及其应用
Mahlendorf et al. Secondary zinc-air batteries–mechanically rechargeable
US11101485B2 (en) Flow battery
US9786955B1 (en) Assembly methods for liquid metal battery with bimetallic electrode
JP2022547566A (ja) グリッドスケールエネルギー貯蔵のためのシステム及び方法
US3522101A (en) Power module including thermally regenerative battery and fuel cell and method of operation
JP2013105620A (ja) 電源システム
RU2614242C1 (ru) Электрохимический генератор
Jow et al. Challenges in developing high energy density li-ion batteries with high voltage cathodes

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20160405

MM4A The patent is invalid due to non-payment of fees

Effective date: 20160504