RU2494313C1 - Комплексный регенеративный роторный воздухоподогреватель - Google Patents

Комплексный регенеративный роторный воздухоподогреватель Download PDF

Info

Publication number
RU2494313C1
RU2494313C1 RU2012107464/06A RU2012107464A RU2494313C1 RU 2494313 C1 RU2494313 C1 RU 2494313C1 RU 2012107464/06 A RU2012107464/06 A RU 2012107464/06A RU 2012107464 A RU2012107464 A RU 2012107464A RU 2494313 C1 RU2494313 C1 RU 2494313C1
Authority
RU
Russia
Prior art keywords
air heater
flue gas
cleaning
rotary air
cold side
Prior art date
Application number
RU2012107464/06A
Other languages
English (en)
Other versions
RU2012107464A (ru
Inventor
Владимир Сергеевич Ежов
Владимир Ильич Кормилицын
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ)
Priority to RU2012107464/06A priority Critical patent/RU2494313C1/ru
Publication of RU2012107464A publication Critical patent/RU2012107464A/ru
Application granted granted Critical
Publication of RU2494313C1 publication Critical patent/RU2494313C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Treating Waste Gases (AREA)
  • Air Supply (AREA)

Abstract

Изобретение относится к теплоэнергетике и может быть использовано в процессах очистки дымовых газов от вредных примесей. Техническим результатом, на решение которого направлено изобретение, является упрощение конструкции, уменьшение коррозионного износа металлической набивки путем совмещения процесса нагрева воздуха с очисткой дымовых газов от коррозионноактивных примесей (оксидов азота, оксидов серы, оксида углерода, воды (NOx, SOx, CO, H2O) и остатков несгоревшего топлива в самом аппарате, что увеличивает экономическую и экологическую эффективность работы роторного воздухоподогревателя. Технический результат достигается тем, что комплексный регенеративный роторный воздухоподогреватель включает короб, в котором помещен ротор с радиальными ячейками, каждая из которых состоит из расположенной по ходу движения дымовых газов, примыкающей к горячей стороне аккумуляционной секции, заполненной набивкой, выполненной из теплоемкого материала и примыкающей к холодной стороне секции очистки, состоящей из контейнера с перфорированным дном, в котором помещены гранулы пемзы, изготовленной из металлургических шлаков с модулем основности М>1 диаметром от 20 до 40 мм, причем короб снабжен патрубками входа и выхода дымовых газов и воздуха и соединен с холодной стороны газового отсека с патрубком выхода дымовых газов через расширитель, снабженный коническим днищем и каплеотбойником. 4 ил.

Description

Изобретение относится к теплоэнергетике и может быть использовано в процессах охлаждения дымовых газов совместно с очисткой их от вредных примесей в регенеративных роторных воздухоподогревателях котельных установок.
Известен регенеративный вращающийся (роторный) воздухоподогреватель, содержащий корпус, с размещенным внутри ротором и набивкой, выполненной из гофрированных листов, в зазорах между которой на горячей стороне, помещен слой катализатора толщиной 80-100 мм, в котором происходит дожигание несгоревших остатков топлива, приносимых дымовыми газами из топки котла. [А.с. СССР №1476253, МКл4. F23L 15/02, 1987].
Основным недостатком известного воздухоподогревателя является невозможность очистки дымовых газов от вредных коррозионноактивных примесей (оксидов азота, оксидов серы, оксида углерода, воды (NOx, SOx, CO, H2O), что вызывает ускоренный коррозионный износ (особенно на холодной стороне воздухоподогревателя) металлической набивки и, в конечном счете, снижает его экономическую и экологическую эффективность.
Более близким к предлагаемому изобретению является система подогрева воздуха уходящими газами с одновременной очисткой последних, включающая вращающийся роторный воздухоподогреватель, состоящий из короба, снабженного патрубками входа и выхода дымовых газов и воздуха, ротора, заполненного насадкой (набивкой) и устройства очистки дымовых газов от оксидов азота и серы, выполненные в виде дисковых роторов, частично погруженных в ванну с поглотительным раствором и размещенных по ходу движения газа за воздухоподогревателем [А.с. СССР №1041808, МКл. F23L 15/02, 1983].
Основными недостатками известной системы подогрева воздуха является сложность и громоздкость оборудования дополнительных устройств очистки, невозможность утилизации несгоревших остатков топлива и СО, что снижает экономическую и экологическую эффективность работы роторного воздухоподогревателя и котельной установки в целом.
Техническим результатом, на решение которого направлено предлагаемое изобретение, является упрощение конструкции, уменьшение коррозионного износа металлической набивки путем совмещения процесса нагрева воздуха с очисткой дымовых газов от корозионноактивных примесей (оксидов азота, оксидов серы, оксида углерода, воды (NOx, SOx, CO, Н2О) и остатков несгоревшего топлива в самом аппарате, что увеличивает экономическую и экологическую эффективность работы роторного воздухоподогревателя и котельной установки в целом.
Технический результат достигается тем, что комплексный регенеративный роторный воздухоподогреватель включает короб, снабженный патрубками входа и выхода дымовых газов и воздуха, в который помещен ротор с радиальными ячейками, каждая из которых состоит из расположенной по ходу движения дымовых газов, примыкающей к горячей стороне аккумуляционной секции, заполненной набивкой, выполненной из теплоемкого материала (металлических листов, огнеупорного кирпича, колец Рашига и т.д.) и примыкающей к холодной стороне секции очистки, состоящей из контейнера с перфорированным дном, в котором помещены гранулы пемзы, изготовленной из основных металлургических шлаков с модулем основности М>1 диаметром от 20 до 40 мм, причем короб соединен с холодной стороны газового отсека с патрубком выхода дымовых газов через расширитель, снабженный коническим днищем и каплеотбойником.
Предлагаемый комплексный регенеративный роторный воздухоподогреватель представлен на фиг.1-4, где на фиг.1 показан общий вид, на фиг.2, 3, 4 - разрезы ячейки с набивкой.
Предлагаемый комплексный регенеративный роторный воздухоподогреватель включает короб 1, в котором помещен ротор 2 с радиальными ячейками 3, каждая из которых состоит из расположенной по ходу движения дымовых газов, примыкающей к горячей стороне аккумуляционной секции 4, заполненной набивкой 5, выполненной из теплоемкого материала (металлических листов, огнеупорного кирпича, колец Рашига и т.д.) и примыкающей к холодной стороне секции очистки 6, состоящей из контейнера с перфорированным дном 7, в котором помещены гранулы пемзы 8, изготовленной из металлургических шлаков с модулем основности М>1 диаметром от 20 до 40 мм, причем короб 1 соединен с холодной стороны газового отсека с расширителем 9, снабженным коническим днищем 10 и каплеотбойником 11 и снабжен патрубками входа и выхода дымовых газов и воздуха 12, 13, 14, 15, соответственно.
Охлаждение и очистка дымовых газов в комплексном регенеративном роторном воздухоподогревателе осуществляется следующим образом. Горячие дымовые газы из патрубка 12 с горячей стороны в газовом отсеке распределяются по ячейкам 3, вращающимся с ротором 2, проходят через аккумуляционные секции 4, где охлаждаются до температуры близкой к температуре конденсации водяных паров, одновременно нагревая теплоемкий материал набивки 5 и далее поступают в секции очистки 6, заполненные гранулами пемзы 8 диаметром от 20 до 40 мм, изготовленной из основных металлургических шлаков (диаметр гранул 8 назначен из условий обеспечения минимального аэродинамического сопротивления секций очистки 6 и номенклатуры размеров гранул металлургической пемзы). Основная металлургическая пемза представляет собой материал с высокопористой механически прочной структурой (прочность на сдавливание до 2,7 МПа), состоящий из окиси кальция, окиси кремния, окиси алюминия и частично из окиси магния (CaO, SiO2, Al2O3, MnO) с модулем основности М>1 и высоким значением коэффициента теплоемкости [Строительные материалы.. Справочник. Под ред. Болдырева А. С. и др. - М.: Стройизд., 1989, с.423; Домокеев А. К. Строительные материалы. - М.: Высш. школа, 1989, с.163]. Высокое значение модуля основности придает гранулам 8 основные свойства, позволяющие сорбировать на их поверхности вещества, обладающие кислыми свойствами, к которым относятся и вредные примеси в охлаждаемых дымовых газах (NOx, SOx, CO). Кроме того, исходя из своего состава, металлургические шлаки устойчивы к коррозионному воздействию кислых компонентов дымовых газов, широко доступны и относительно дешевы. Дымовые газы, двигаясь сверху вниз через гранулы 8, также аккумулирующие тепло, охлаждаются до температуры конденсации находящихся в них водяных паров с образованием конденсата и проникают в их поры, в которых за счет предыдущего цикла остаются капли кислого конденсата. Адсорбированные оксиды азота и серы в порах гранул 9 обладают повышенной реакционной способностью, обусловленной их взаимодействием с поверхностью адсорбента-гранул шлаковой пемзы [Неницеску К. Общая химия - М.: Мир, 1968, с.298], поэтому окисляются кислородом со скоростью большей, чем в газовой фазе с образованием легко растворимых в воде NO2 и SO3, которые, в свою очередь, взаимодействуют с каплями свежего и кислого конденсата с образованием соответствующих кислот HNO3 и H2SO4, которые за счет сил тяжести и динамического воздействия потока газа выносятся из секции очистки 6 в расширитель 9. В расширителе 9 скорость дымовых газов резко уменьшается, в результате чего капли кислого конденсата под действием силы тяжести опускаются в коническое днище 10, куда также стекают капли конденсата, задержанные каплеотбойником 11, после чего охлажденные и очищенные от вредных веществ выбрасываются в атмосферу, а кислый конденсат направляется на очистку от кислотных компонентов для их дальнейшей утилизации. Ячейки 3 с горячей набивкой 5. в результате вращения ротора 2 поступают в воздушный отсек воздухоподогревателя, в который через патрубок 14 поступает дутьевой воздух. Нагреваемый воздух в секциях очистки 6 ячеек 3, двигаясь снизу вверх, охлаждает гранулы 8, также окисляя оставшиеся адсорбированные оксиды азота и серы в их порах с образованием легко растворимых в воде NO2 и SO3, которые взаимодействуют с каплями свежего и кислого конденсата с образованием соответствующих кислот, капли которых остаются на поверхности гранул 8 и в их капиллярах. Из секций очистки 6 воздух поступает в аккумуляционные секции 4, где окончательно нагревается и подается в топку котла. При этом, оставшиеся в секциях очистки 6 оксиды азота и серы, оксид углерода (который окисляется значительно труднее), остатки топлива (CH4, капли мазута, угольная пыль), частично уносятся потоком дутьевого воздуха, поступая, в конечном счете, в топку котла на сжигание, уменьшая тем самым потери тепла за счет снижения химического и механического недожога. Кроме того, очистка гранул пемзы 8 от осажденных твердых примесей регулярно проводится во время режимных мероприятий очистки всей набивки 5 при промывке ее водой.
Время замены гранул 8 металлургической пемзы определяют по увеличению содержания вредных примесей в дымовых газах на выходе из воздухоподогревателя и увеличению его аэродинамического сопротивления (режимную продолжительность работы секций очистки 6 устанавливают на основании экспериментальных исследований для данного предприятия и вида металлургического шлака).
Замена отработанных гранул 8 металлургической пемзы в секциях очистки 6 проводится по мере необходимости или во время планового ремонта через специальные люки в бортовой стенке короба 1 (на фиг.1-4 не показаны) путем извлечения контейнеров 7 с отработанными гранулами 8 из ячеек 3 и установки на их место аналогичных контейнеров 7, заполненных свежими гранулами 8.
Высота секции очистки 6 предварительно определяется, исходя из основных двух факторов:
1. степени очистки дымовых газов от вредных примесей (NOx, SOx, CO);
2. температуры конденсации водяных паров, находящихся в дымовых газах и соответственно, начала коррозии теплоемкого материала гранул 5 аккумуляционной секции 4.
Таким образом, предлагаемый комплексный регенеративный роторный воздухоподогреватель позволяет нагревать дутьевой воздух, одновременно проводить охлаждение и очистку дымовых газов от оксидов азота, серы, паров воды (NOx, SOx, Н2О) и частично утилизировать оксид углерода (CO), несгоревшие остатки топлива (СН4 и др.) путем подачи их с дутьевым воздухом для сжигания непосредственно в топку котла, уменьшить коррозионный износ металлической набивки и тем самым увеличить срок ее эксплуатации, что позволяет увеличить экологическую и экономическую эффективность процесса нагрева воздуха, а также увеличить коэффициент полезного действия котельной установки.

Claims (1)

  1. Комплексный регенеративный роторный воздухоподогреватель, включающий вращающийся роторный воздухоподогреватель, состоящий из короба, снабженного патрубками входа и выхода дымовых газов и воздуха, ротора, заполненного насадкой, и устройства очистки дымовых газов от оксидов азота и серы, отличающийся тем, что ротор выполнен с радиальными ячейками, каждая из которых состоит из расположенной по ходу движения дымовых газов, примыкающей к горячей стороне аккумуляционной секции, заполненной набивкой, выполненной из теплоемкого материала и примыкающей к холодной стороне секции очистки, состоящей из контейнера с перфорированным дном, в котором помещены гранулы пемзы, изготовленной из металлургических шлаков с модулем основности М>1 и диаметром от 20 до 40 мм, причем короб соединен с холодной стороны газового отсека с патрубком выхода дымовых газов через расширитель, снабженный коническим днищем и каплеотбойником.
RU2012107464/06A 2012-02-28 2012-02-28 Комплексный регенеративный роторный воздухоподогреватель RU2494313C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012107464/06A RU2494313C1 (ru) 2012-02-28 2012-02-28 Комплексный регенеративный роторный воздухоподогреватель

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012107464/06A RU2494313C1 (ru) 2012-02-28 2012-02-28 Комплексный регенеративный роторный воздухоподогреватель

Publications (2)

Publication Number Publication Date
RU2012107464A RU2012107464A (ru) 2013-09-10
RU2494313C1 true RU2494313C1 (ru) 2013-09-27

Family

ID=49164482

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012107464/06A RU2494313C1 (ru) 2012-02-28 2012-02-28 Комплексный регенеративный роторный воздухоподогреватель

Country Status (1)

Country Link
RU (1) RU2494313C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2556645C1 (ru) * 2014-02-18 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) Способ и устройство для эффективной утилизации органических компонентов городских и промышленных отходов
RU2556648C1 (ru) * 2014-04-01 2015-07-10 Федеральное государственное бюджетное ообразовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Устройство для очистки дымовых газов, полученных при сжигании бытовых отходов
RU2616430C1 (ru) * 2015-10-20 2017-04-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Универсальный регенеративный роторный воздухоподогреватель
RU2762974C1 (ru) * 2021-04-01 2021-12-24 Федеральное государственное бюджетное образовательное учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ) (RU) Воздухоочиститель для помещений

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1041808A1 (ru) * 1980-07-09 1983-09-15 Предприятие П/Я А-3513 Система подогрева воздуха уход щими газами с одновременной очисткой последних
EP0469593A1 (en) * 1990-08-01 1992-02-05 Haldor Topsoe A/S Process for the removal of nitrogen oxides from flue gases
RU2121867C1 (ru) * 1993-01-23 1998-11-20 Аппаратебау Ротемюле Брандт унд Критцлер ГмбХ Способ обработки газообразных отходов, содержащих вредные вещества для регенеративного теплообменника, и устройство для его осуществления
RU2264593C1 (ru) * 2004-05-17 2005-11-20 Военная академия Ракетных войск стратегического назначения им. Петра Великого Регенеративный теплообменник
RU2362091C1 (ru) * 2007-11-26 2009-07-20 Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" Комплексное устройство для нагрева воздуха и очистки дымовых газов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1041808A1 (ru) * 1980-07-09 1983-09-15 Предприятие П/Я А-3513 Система подогрева воздуха уход щими газами с одновременной очисткой последних
EP0469593A1 (en) * 1990-08-01 1992-02-05 Haldor Topsoe A/S Process for the removal of nitrogen oxides from flue gases
RU2121867C1 (ru) * 1993-01-23 1998-11-20 Аппаратебау Ротемюле Брандт унд Критцлер ГмбХ Способ обработки газообразных отходов, содержащих вредные вещества для регенеративного теплообменника, и устройство для его осуществления
RU2264593C1 (ru) * 2004-05-17 2005-11-20 Военная академия Ракетных войск стратегического назначения им. Петра Великого Регенеративный теплообменник
RU2362091C1 (ru) * 2007-11-26 2009-07-20 Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" Комплексное устройство для нагрева воздуха и очистки дымовых газов

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2556645C1 (ru) * 2014-02-18 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) Способ и устройство для эффективной утилизации органических компонентов городских и промышленных отходов
RU2556648C1 (ru) * 2014-04-01 2015-07-10 Федеральное государственное бюджетное ообразовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Устройство для очистки дымовых газов, полученных при сжигании бытовых отходов
RU2616430C1 (ru) * 2015-10-20 2017-04-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Универсальный регенеративный роторный воздухоподогреватель
RU2762974C1 (ru) * 2021-04-01 2021-12-24 Федеральное государственное бюджетное образовательное учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ) (RU) Воздухоочиститель для помещений

Also Published As

Publication number Publication date
RU2012107464A (ru) 2013-09-10

Similar Documents

Publication Publication Date Title
CN202024338U (zh) 可实现二噁英零排放的垃圾焚烧炉及烟气净化处理设备
CN109022015B (zh) 一种废旧轮胎热裂解废气污染近零排放处理工艺及成套设备
RU2494313C1 (ru) Комплексный регенеративный роторный воздухоподогреватель
TW201414534A (zh) 製程氣體的脫硫及冷卻
KR101365116B1 (ko) 액체금속을 이용한 가스 정제 장치
CN106268178A (zh) 一种用于湿法脱硫系统的除尘‑雾一体化装置及方法
JP2006501062A (ja) 合成汚染物質の全体的な回収にあたって、煙霧或いはガスを超清浄化させる工程及びプラント
CN105063273A (zh) 一种转炉一次烟气低能耗半干法除尘系统
KR20160116771A (ko) 백연 저감을 위한 배기가스의 처리시스템
US6640752B1 (en) Boiler and regenerative air preheater arrangement to enhance SO3 capture
CN109289475A (zh) 一种高效烟气顺流除尘脱硫消白处理方法及其装置
CN102597626A (zh) 处理废气的方法和设备
CN102809168A (zh) 一种空气预热器及其应用
CN105327602A (zh) 浮法玻璃熔窑烟气废热利用及脱硝净化处理装置
CN209138324U (zh) 一种高效烟气顺流除尘脱硫消白装置
US4874585A (en) Economic recovery and utilization of boiler flue gas pollutants
JP6530222B2 (ja) 排気ガス後処理システムおよび排気ガス後処理のための方法
JPH11210489A (ja) ガス化発電方法及びガス化発電設備
RU2616430C1 (ru) Универсальный регенеративный роторный воздухоподогреватель
CN205007834U (zh) 浮法玻璃熔窑烟气废热利用及脱硝净化处理装置
CN202195584U (zh) 一体化锅炉
CN104324602B (zh) 一种烟尘废气污染源控制装置及工艺方法
RU2656498C1 (ru) Коррозионноустойчивая шахтная мультиблочная установка для очистки и утилизации дымовых газов
CN104084031A (zh) 一种用烟煤为燃料的石灰竖窑烟气净化装置
CN205796946U (zh) 燃煤烟气湿式脱硫脱硝及除尘组合一体化装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140301