RU2491323C1 - Деэмульгатор для разрушения водонефтяных эмульсий - Google Patents

Деэмульгатор для разрушения водонефтяных эмульсий Download PDF

Info

Publication number
RU2491323C1
RU2491323C1 RU2012116711/04A RU2012116711A RU2491323C1 RU 2491323 C1 RU2491323 C1 RU 2491323C1 RU 2012116711/04 A RU2012116711/04 A RU 2012116711/04A RU 2012116711 A RU2012116711 A RU 2012116711A RU 2491323 C1 RU2491323 C1 RU 2491323C1
Authority
RU
Russia
Prior art keywords
oil
water
demulsifier
emulsion
destruction
Prior art date
Application number
RU2012116711/04A
Other languages
English (en)
Inventor
Таина Александровна Федущак
Владимир Александрович Кувшинов
Аким Семенович Акимов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии нефти Сибирского отделения Российской академии наук (ИХН СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии нефти Сибирского отделения Российской академии наук (ИХН СО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт химии нефти Сибирского отделения Российской академии наук (ИХН СО РАН)
Priority to RU2012116711/04A priority Critical patent/RU2491323C1/ru
Application granted granted Critical
Publication of RU2491323C1 publication Critical patent/RU2491323C1/ru

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к подготовке нефти и может быть использовано в нефтедобывающей и нефтеперерабатывающей промышленности на стадии подготовки нефти к ее транспортировке и переработке для разделения водонефтяных эмульсий. Изобретение касается деэмульгатора, представляющего собой наноразмерный порошок нитрида алюминия (AlN). Технический результат - улучшение разделения нефтяной и водной фаз (без образования промежуточных слоев) и глубокое обезвоживание нефти (остаточное содержание воды в нефти <0,1%). 1 ил., 5 пр.

Description

Изобретение относится к подготовке нефти и может быть использовано в нефтедобывающей и нефтеперерабатывающей промышленности на стадии подготовки нефти к ее транспортировке и переработке для разделения водонефтяных эмульсий.
Подготовка нефти на промыслах, которая включает разрушение водонефтяных эмульсий, занимает важное положение среди процессов, связанных с добычей, сбором и транспортировкой товарной нефти для ее последующей переработки. Разрушение водонефтяных эмульсий может осуществляться с использованием механических [Пат. US 6165360; US 6214236], физических [Пат. RU 2174857] и химических воздействий. Химический способ разрушения нефтяных эмульсий предполагает традиционное использование реагентов - деэмульгаторов.
Деэмульгаторы - это поверхностно-активные вещества дифильной структуры. Благодаря свойству дифильности деэмульгаторы адсорбируются на межфазных граничных поверхностных слоях частиц дисперсной фазы, за счет чего в глобулах водонефтяных эмульсий происходит снижение межфазного натяжения и разрушение защитного слоя природных стабилизаторов (асфальтены, парафины, смолы и др.) Образующиеся новые слои, ориентированные вокруг глобул и состоящие из молекул деэмульгатора, практически не обладают механической прочностью. Благодаря этому в значительной степени облегчается слияние частиц водной дисперсной фазы, что приводит к последующему разрушению эмульсии с четким разделением водного и нефтяного слоев [Позднышев Г.П., Емков А.А. Современные достижения в области подготовки нефти. М.: Наука. 1979. 253 с.].
По строению и химическому составу деэмульгаторы весьма разнообразны. В основном - это неионогенные вещества, синтезированные на основе окисей этилена и пропилена, как отечественного (дипроксамин 157-65, проксамин 385-65, проксанол 305-65, СНПХ-44 и др.), так и импортного производства (дисолван 4411, дисолван 4490, сепарол WF-41 (ФРГ), оксайд-А, доуфакс-70 (США), R-11, X-2647 (Япония) и др.). Расход реагентов в зависимости от устойчивости эмульсии и температуры деэмульсации колеблется от 15-20 до 100-150 г/т, при этом бесспорно признается более высокая эффективность импортных деэмульгаторов. Учитывая, что состав добываемых нефтей постоянно изменяется, а их плотность растет, как и содержание в них асфальто-смолистых веществ, парафинов, серы, то наблюдаемые тенденции роста научных и технологических разработок в направлении постоянного расширения ассортимента отечественных деэмульгирующих средств, выглядят вполне оправданными.
Например, был предложен деэмульгатор для разрушения водонефтяных эмульсий [Пат. RU 2141502] состава, мас.%: блоксополимер окисей этилена и пропилена на основе глицерина с числом звеньев окиси этилена 1-40 и окиси пропилена 60-99 и мол.м. 3000-6000 у.е. - 20-90; растворитель - остальное. Деэмульгатор обладает повышенной эффективностью при обработке высокообводненных нефтяных эмульсий, содержащих асфальтены, смолы и парафины. Его применение облегчает очистку сточных вод.
Запатентован способ получения деэмульгатора [Пат. RU 2151780] для процессов обезвоживания и обессоливания нефти как на нефтепромыслах, так и на нефтеперерабатывающих предприятиях, на основе блоксополимеров окисей алкиленов, получаемых реакцией оксиалкилирования гликоль-содержащего вещества окисью пропилена и окисью этилена в присутствии щелочного катализатора при высоких температурах и давлении. Гликоль-содержащее вещество дополнительно содержит оксиалкилированный амин и/или многоатомный спирт, взятые в количестве 0,5-50 мас.%. Для такого деэмульгатора прогнозируемый технический результат будет выражаться в высокой степени обезвоживания сернистых и высокосернистых нефтей.
Запатентован состав для разрушения стойких водонефтяных высоковязких эмульсий [Пат. RU 2333927], который содержит нефтерастворимый деэмульгатор LML 4312А и водорастворимый деэмульгатор РИК-1 в соотношении от 1:9 до 9:1, что находит отклик в повышении деэмульгирующей способности композита.
Описан способ деэмульгирования нефти бинарным деэмульгатором с целью экономии дорогостоящего импортного деэмульгатора [Пат. RU 2359994], путем введения в сырьевой поток в дегидратор бинарного деэмульгатора, состоящего из смеси дорогостоящего деэмульгатора - Диссолвана в количестве не более 5 ppm и соли синтетической жирной кислоты - (RCOO)mMn, в зависимости от используемого металла, в количестве 15÷40 ppm, что приводит к дестабилизации водонефтяной эмульсии, снижению прочности сольватных оболочек глобул воды, обеспечивая более легкую коалесценцию мелких глобул воды в наиболее крупные, и последующее осаждение воды из нефти. Степень извлечения воды при этом составляет 90÷95% мас., что соответствует использованию чистого Диссолвана в количестве не менее 10÷30 ppm.
Описан оригинальный способ повышения эффективности деэмульгаторов водонефтяных эмульсий [Пат. SU 2316578] путем их перевода в состояние критической эмульсии посредством использования в процессе приготовления товарных форм деэмульгаторов бинарного растворителя, состоящего из углеводорода и растворимого в нем спирта. Оптимальная концентрация спирта и активная часть реагента в растворителе обеспечивают образование в нефти критической эмульсии с коацерватной фазой, состоящей из высокомолекулярных соединений, присутствующих в деэмульгаторе. При этом повышается эфективность деэмульгирования за счет экстракции содержащихся в нефти природных эмульгаторов коацерватной фазой деэмульгатора, что, в свою очередь сопоровождается повышением деэмульгирующей способности товарных форм деэмульгатора.
Предложен практически аналогичный способ повышения качества разделения водонефтяных эмульсий с использованием лишь иной терминологии, расширяющий перечень товарных жидких деэмульгаторов, способных образовывать коллоидные капли коацервата с размером молекул порядка нескольких нанометров, которые здесь именуются «нанодеэмульгаторами», и которые способны повышать качество разделения водонефтяных эмульсий [Пат. RU 2413754].
Запатентован также деэмульгатор нефтепродуктов [Пат. RU 224250], который используют в виде порошка, растворяющегося затем в водной фазе. В качестве основного ингредиента он содержит озонированную нефтеполимерную смолу, полученную полимеризацией либо пиперилен-амиленовой, либо стирол-инденовой, либо дициклопентадиеновой фракций продуктов пиролиза прямогонного бензина. Озонирование указанной смолы ведут озонокислородной смесью в виде 10% раствора в ксилоле при 5°C. После выделения, сушки и измельчения деэмульгатор используют в виде порошка с размером частиц 200-500 мкм. Деэмульгатор позволяет повысить эффективность разрушения стойких водонефтяных эмульсий при обезвоживании нефти.
Известно, что товарные формы деэмульгаторов преимущественным образом имеют вид жидких продуктов или их растворов, что не является высоко технологичным и уступает по простоте в эксплуатации реагентам в твердом состоянии. Вместе с тем сведения о применении твердофазных наноразмерных деэмульгаторов отсутствуют. Возможно, это связано с тем, что в соответствии с традиционными представлениями о термодинамической устойчивости дисперсных коллоидных водонефтяных систем, в присутствии твердых компонентов должно происходить нежелательное упрочнение межфазных оболочек и слоев, препятствующих легкой коалесценции воды в наиболее крупные глобулы.
По технической сущности, в частности, по признаку использования твердого (а не жидкого) деэмульгатора наиболее близким к заявляемому изобретению является деэмульгатор, описанный в Пат. 2242500 RU. Недостатком предложенного деэмульгатора является отсутствие его на рынке в виде готовой товарной формы, токсичность исходных и конечных продуктов, а также невозможность его многократного использования.
Задача данного изобретения: предложить твердофазный наноразмерный деэмульгатор высокой эффективности для разделения водонефтяных эмульсий.
Технический результат заключается в улучшении разделения нефтяной и водной фаз (без образования промежуточных слоев) и глубоком обезвоживании нефти (остаточное содержание воды в нефти <0,1%), и достигается за счет использования наноразмерного порошка нитрида алюминия AlN. Нанореагент-деэмульгатор представляет собой нанопорошок субмикронных размеров (<100 нм), который, не обладая дифильной структурой в классическом понимании (полярная гидрофильная «головка» и длинный гидрофобный «хвост»), обладает гидрофильно-гидрофобной природой поверхности, которая соответствует мозаичной структуре, за счет чего происходит практически мгновенное перераспределение нанореагента-деэмульгатора на межфазных границах и его одновременное взаимодействие, как с водной, так и с нефтяной фазами, которое, в свою очередь, приводит к разрушению сольватных оболочек глобул воды и нефти. Нитрид алюминия AlN является товарным продуктом, производимьм в качестве сорбента для водных фильтров. После срабатывания его как нанореагента-деэмульгатора, он распределяется только в водной фазе и не вызывает загрязнения нефтяной фазы. Нитрид алюминия AlN диспергируют в воде в течение 1-3 секунд, добавляют к водонефтяной эмульсии в количестве 5-20×10-4 % мас., встряхивают в течение 1-5 сек или перемешивают эмульсию механической мешалкой.
Испытания деэмульгатора выполняли на нефтяных эмульсиях (нефть Герасимовского месторождения, скв.19, плотность 864 кг/м3, содержание смол 5,1% масс., парафинов 5,1%, содержание асфальтенов 2,2% и Усинская нефть, относящаяся по своим свойствам к тяжелому углеводородному сырью: плотность - 966,7 кг/м3, вязкость - 3852,39 мм2/с, содержание смол - 18,0%, асфальтенов - 8,1%, серы - 1,98%), приготовленных путем смешения водной и нефтяной фазы в соотношении 20:80…80:20 на механическом гомогенизаторе (МК-20, 6000 об/мин) в течение 5 минут и при температурах деэмульсации 60-80°C. Одновременно в мерный цилиндр для сравнения помещали 100 мл водонефтяной эмульсии идентичного состава, которую получали в аналогичных условиях, но только без нанореагента-деэмульгатора. В образце сравнения вода самопроизвольно не выделялась при соответствующих температурах эксперимента в отдельную фазу.
Примеры конкретного выполнения.
ПРИМЕР 1. Навеску нанопорошка нитрида алюминия AlN 5 мг помещают в стеклянный маленький стаканчик, добавляют 2 мл воды и обрабатывают в течение 2-3 секунд в ультразвуковом диспергаторе (12 кГц). Затем в большой стеклянный стакан помещают 100 мл свежеприготовленной водонефтяной эмульсии состава (20 мл воды +80 мл нефти Герасимовского месторождения), добавляют к эмульсии суспензию нанореагента-деэмульгатора в воде (концентрация AlN составляет 5×10-4 % мас.) и, опустив в объем лопасти механической мешалки, перемешивают еще 3-5 секунд. Затем эмульсию переливают в мерный цилиндр и выдерживают в термостате при 60°С в течение 1-1,5 часов до полного выделения (22 мл) водной фазы. Наблюдаемая граница раздела - четкая, без промежуточного слоя. Определенное содержание остаточной воды в нефтяной фазе находится на уровне <0,10% (метод определения остаточной воды в нефти с насадкой Дина-Старка согласно ГОСТ 2477-65 и Р 51946-2002). При этом нанореагент-деэмульгатор полностью переходит в водную фазу и в агломерированном виде оседает на дно цилиндра. После извлечения этого осадка, нанореагент-деэмульгатор «очувствляют» в ультразвуковом поле в водной среде в течение 1-3 секунд, обеспечивая обратный его переход в наноразмерное состояние, после чего он готов к повторному применению.
ПРИМЕР 2. Навеску нанопорошка нитрида алюминия вносят в водонефтяную эмульсию состава (50 мл воды +50 мл нефти Герасимовского месторождения) в количестве и в порядке как описано в Примере 1. Затем эмульсию переливают в мерный цилиндр и выдерживают в термостате при 60°C в течение 1-1,5 часов до полного выделения (42 мл) водной фазы. Остаточное содержание воды в нефтяной фазе <0,10%.
ПРИМЕР 3. Навеску нанопорошка нитрида алюминия вносят в водонефтяную эмульсию состава (20 мл воды +80 мл нефти Герасимовского месторождения) в количестве и в том порядке, как описано в Примере 1. Затем эмульсию переливают в мерный цилиндр и выдерживают в термостате при 60°C в течение 1-1,5 часов до полного выделения (22 мл) водной фазы. Остаточное содержание воды в нефтяной фазе <0,10%.
ПРИМЕР 4. Навеску нанопорошка нитрида алюминия вносят в водонефтяную эмульсию состава (80 мл воды +20 мл нефти Герасимовского месторождения) в количестве и в порядке, как описано в Примере 1. Затем эмульсию переливают в мерный цилиндр и выдерживают в термостате при 80°C в течение 0,5-1,0 часов до полного выделения (82 мл) водной фазы. Остаточное содержание воды в нефтяной фазе <0,10%.
ПРИМЕР 5. Навеску нанопорошка нитрида алюминия вносят в водонефтяную эмульсию состава (60 мл воды +40 мл Усинской нефти) в количестве 20×10-4 % мас. и в том порядке, как описано в Примере 1. Затем эмульсию переливают в мерный цилиндр и выдерживают в термостате при 80°C в течение 1-1,5 часов до полного выделения (42 мл) водной фазы. Остаточное содержание воды в нефтяной фазе составляет <0,13%.
Предлагаемый деэмульгатор обладает следующими преимуществами:
Твердый нанореагент-деэмульгатор не нужно предварительно готовить с использованием токсичных растворителей, заявляемый нанореагент-деэмульгатор на основе нитрида алюминия AlN является продуктом товарного производства сорбентов [Лернер М.И. Сваровская Н.В. Псахье С.Г. Российские нанотехнологии. 2009.Т 4 №9. С.6-18. ООО «Передовые порошковые технологии», г.Томск] и получается методом электрического взрыва алюминиевого проводника в атмосфере азота (Фиг.1).
Расход нанореагента-деэмульгатора ниже в области рабочих концентраций по сравнению с прототипом в 500-3000 раз.
Возможно 10-кратное и более многократное использование нанореагента-деэмульгатора до полного его «срабатывания».
Более высокая экологичность нанореагента-деэмульгатора, который по мере многократного использования «срабатывается», и даже если следовые количества этого реагента будут оставаться, то это идентично присутствию обычных минеральных примесей в пластовой воде. В то время как по прототипу необходимо предусматривать стадию утилизации водного слоя, отделившегося после разрушения нефтяных эмульсий, который неизбежно будет содержать сравнительно высокую концентрацию токсичных озонированных полимерных продуктов.
Продолжительность времени, необходимого для равномерного распределения вводимого нанореагента-деэмульгатора в объеме водонефтяной эмульсии, составляет 2-3 секунды, в то время как по протипу - до 120 мин.

Claims (1)

  1. Деэмульгатор для разрушения водонефтяных эмульсий в виде порошка, отличающийся тем, что деэмульгатор представляет собой наноразмерный порошок нитрида алюминия (AlN).
RU2012116711/04A 2012-04-24 2012-04-24 Деэмульгатор для разрушения водонефтяных эмульсий RU2491323C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012116711/04A RU2491323C1 (ru) 2012-04-24 2012-04-24 Деэмульгатор для разрушения водонефтяных эмульсий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012116711/04A RU2491323C1 (ru) 2012-04-24 2012-04-24 Деэмульгатор для разрушения водонефтяных эмульсий

Publications (1)

Publication Number Publication Date
RU2491323C1 true RU2491323C1 (ru) 2013-08-27

Family

ID=49163812

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012116711/04A RU2491323C1 (ru) 2012-04-24 2012-04-24 Деэмульгатор для разрушения водонефтяных эмульсий

Country Status (1)

Country Link
RU (1) RU2491323C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA033942B1 (ru) * 2018-01-11 2019-12-12 Некоммерческое Акционерное Общество "Казахский Национальный Исследовательский Технический Университет Имени К.И. Сатпаева" Способ разрушения нефтешлама
RU2712589C1 (ru) * 2019-07-05 2020-01-29 Общество с ограниченной ответственностью "Центр изучения и исследования нефти" Способ разрушения высокоустойчивых водонефтяных эмульсий
RU2762513C1 (ru) * 2021-03-17 2021-12-21 Федеральное государственное бюджетное образовательное учреждение высшего образования «Тамбовский государственный технический университет» (ФГБОУ ВО «ТГТУ») Состав и способ изготовления деэмульгатора на основе минералов природного происхождения для процесса разделения водонефтяной эмульсии

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2242500C1 (ru) * 2003-09-15 2004-12-20 Институт химии нефти СО РАН Деэмульгатор водонефтяных эмульсий
RU2413754C1 (ru) * 2010-01-18 2011-03-10 Государственное образовательное учреждение высшего профессионального образования "Тюменский государственный университет" Способ повышения качества разделения водонефтяных эмульсий с использованием нанодеэмульгаторов
EP2311926A1 (de) * 2009-10-09 2011-04-20 Rhein Chemie Rheinau GmbH Additive für Schmiermittel zur Verbesserung der tribologischen Eigenschaften, ein Verfahren zu deren Herstellung und deren Verwendung
RU2443754C1 (ru) * 2010-01-28 2012-02-27 Научно-Исследовательский И Проектный Институт Нефти И Газа (Нипинг) Деэмульгатор

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2242500C1 (ru) * 2003-09-15 2004-12-20 Институт химии нефти СО РАН Деэмульгатор водонефтяных эмульсий
EP2311926A1 (de) * 2009-10-09 2011-04-20 Rhein Chemie Rheinau GmbH Additive für Schmiermittel zur Verbesserung der tribologischen Eigenschaften, ein Verfahren zu deren Herstellung und deren Verwendung
RU2413754C1 (ru) * 2010-01-18 2011-03-10 Государственное образовательное учреждение высшего профессионального образования "Тюменский государственный университет" Способ повышения качества разделения водонефтяных эмульсий с использованием нанодеэмульгаторов
RU2443754C1 (ru) * 2010-01-28 2012-02-27 Научно-Исследовательский И Проектный Институт Нефти И Газа (Нипинг) Деэмульгатор

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA033942B1 (ru) * 2018-01-11 2019-12-12 Некоммерческое Акционерное Общество "Казахский Национальный Исследовательский Технический Университет Имени К.И. Сатпаева" Способ разрушения нефтешлама
RU2712589C1 (ru) * 2019-07-05 2020-01-29 Общество с ограниченной ответственностью "Центр изучения и исследования нефти" Способ разрушения высокоустойчивых водонефтяных эмульсий
RU2762513C1 (ru) * 2021-03-17 2021-12-21 Федеральное государственное бюджетное образовательное учреждение высшего образования «Тамбовский государственный технический университет» (ФГБОУ ВО «ТГТУ») Состав и способ изготовления деэмульгатора на основе минералов природного происхождения для процесса разделения водонефтяной эмульсии

Similar Documents

Publication Publication Date Title
AU2009327268B2 (en) Demulsifying of hydrocarbon feeds
JP5714889B2 (ja) 油中水型エマルジョンの処理方法
CA2657844A1 (en) Demulsification of water-in-oil emulsion
Zhang et al. Demulsification of water-in-crude oil emulsion driven by a three-branch structure demulsifier
RU2491323C1 (ru) Деэмульгатор для разрушения водонефтяных эмульсий
Adewunmi et al. Palm oil fuel ash (POFA) as a demulsifier for crude oil emulsions: Performance and mechanism
Yang et al. Preparation of a demulsifier using rice straw as raw materials via a simple acid treatment process
Ding et al. Synthesis of a high efficiency DED-12 demulsifier by a simple two-step method
Ding et al. Synthesis and demulsification performance of a Gemini ionic liquid with dual cationic active centers
Kumar et al. Experimental studies on demulsification of heavy crude oil-in-water emulsions by chemicals, heating, and centrifuging
Ao et al. Amine-functionalized cotton for the treatment of oily wastewater
Tang et al. A low-temperature ionic liquid demulsifier derived from recycled PET waste plastics
Abdurahman et al. Chemical destabilization on water in crude oil emulsions
Feng et al. Synthesis of an ionic liquid demulsifier with double hydrophilic and hydrophobic chains
Lei et al. A gemini ionic liquid and its low-temperature demulsification performance in water-in-crude oil emulsions
Qu et al. Synthesis and demulsification mechanism of an ionic liquid with four hydrophobic branches and four ionic centers
Saad et al. An overview of recent technique and the affecting parameters in the demulsification of crude oil emulsions
Gandomkar et al. Improvement of chemical demulsifier performance using silica nanoparticles
Nadirova et al. Ultrasound-assisted dewatering of crude oil from Kumkol oilfield
Harbottle et al. Particle-stabilized emulsions in heavy oil processing
Adewunmi et al. Assessment of fly ash as a potential demulsifier for highly stable water-in-crude oil emulsion produced in the petroleum industry
Rajamanickam Technologies Involved in the Demulsification of Crude Oil
Adilbekova et al. Evaluation of the effectiveness of commercial demulsifiers based on polyoxyalkylated compounds in relation to oil and water emulsions of the Sarybulak oilfield
Atshan et al. Studying the Factors Affecting De-Emulsification of Crude Oil
Georgewill et al. Utilization of Plant Extract For Treatment Of Emulsions In Crude Oil Production

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170425