RU2490476C2 - Направляющая ступень компрессора газотурбинного двигателя с лопатками с изменяемым углом установки и газотурбинный двигатель - Google Patents

Направляющая ступень компрессора газотурбинного двигателя с лопатками с изменяемым углом установки и газотурбинный двигатель Download PDF

Info

Publication number
RU2490476C2
RU2490476C2 RU2008135297/06A RU2008135297A RU2490476C2 RU 2490476 C2 RU2490476 C2 RU 2490476C2 RU 2008135297/06 A RU2008135297/06 A RU 2008135297/06A RU 2008135297 A RU2008135297 A RU 2008135297A RU 2490476 C2 RU2490476 C2 RU 2490476C2
Authority
RU
Russia
Prior art keywords
blade
axis
ring
turbine engine
external
Prior art date
Application number
RU2008135297/06A
Other languages
English (en)
Other versions
RU2008135297A (ru
Inventor
Ивон КЛОАРЕК
Original Assignee
Снекма
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Снекма filed Critical Снекма
Publication of RU2008135297A publication Critical patent/RU2008135297A/ru
Application granted granted Critical
Publication of RU2490476C2 publication Critical patent/RU2490476C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/162Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for axial flow, i.e. the vanes turning around axes which are essentially perpendicular to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/102Shaft sealings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/56Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/563Fluid-guiding means, e.g. diffusers adjustable specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05D2250/312Arrangement of components according to the direction of their main axis or their axis of rotation the axes being parallel to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/50Kinematic linkage, i.e. transmission of position
    • F05D2260/56Kinematic linkage, i.e. transmission of position using cams or eccentrics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Направляющая ступень компрессора газотурбинного двигателя включает ряд лопаток с изменяемым углом установки. Каждая лопатка содержит лопасть, внешнюю цилиндрическую цапфу, являющуюся поворотной осью лопатки и заходящую в гнездо внешнего картера, и внутреннюю цилиндрическую цапфу, установленную в посадочном месте внутреннего кольца. Внутренняя цапфа каждой лопатки размещена параллельно поворотной оси лопатки и на расстоянии от этой оси и установлена в посадочном месте кольца с помощью шаровой шарнирной системы. Шарнирная система содержит шаровую муфту, посаженную на внутреннюю цапфу лопатки и установленную в посадочное место кольца. Шаровая муфта содержит внутренний элемент, установленный с возможностью осевого сдвига в сторону на внутренней цапфе лопатки, и внешний элемент, заходящий в посадочное место кольца. Внешний элемент содержит внешний круговой выступ, предназначенный для размещения между радиально внутренним концом лопасти лопатки и кольцевым выступом внутреннего кольца. Изобретение позволяет обеспечить возможность осевого перемещения внутреннего кольца для регулирования расположенного на нем лабиринтного уплотнения. 2 н. и 3 з.п. ф-лы, 4 ил.

Description

Настоящее изобретение касается лопатки с изменяемым углом установки, а также выпрямляющей ступени с лопатками с изменяемым углом установки для газотурбинного двигателя, такого как турбореактивный, двигатель или авиационный турбовинтовой двигатель.
В газотурбинном двигателе ступени с выпрямляющими лопатками с изменяемым углом установки установлены между подвижными колесами компрессора. Эти лопатки с изменяемым углом установки закреплены на картере статора и их положение регулируется вокруг их осей для оптимизации потока газа в моторе газотурбинного двигателя.
В известном уровне техники лопатка с изменяемым углом установки содержит, по существу, цилиндрическую опору на каждом из своих концов, эти опоры определяют поворот лопатки. Радиально внешняя опора, называемая управляющей опорой, установлена в посадочное место направляющей втулки, по существу радиальной или слегка наклонно расположенной в картере газотурбинного двигателя и связанной рычагом с управляющим кольцом, приводимым в движение гидроцилиндром, электродвигателем или тому подобным. Вращение управляющего кольца передается рычагами на внешние опоры лопаток и заставляет их поворачиваться вокруг своих осей (US 6984105).
Радиально внутренняя опора, называемая управляемой опорой, установлена в, практически радиальное или слегка наклонное посадочное место внутреннего кольца, установленного на кольцевой обечайке, несущей блоки из истираемого материала. Эти блоки из истираемого материала предназначены для взаимодействия с тонкими кольцевыми выступами, размещенными на роторе газотурбинного двигателя, для ограничения рециркуляции воздуха с входа на выход и с выхода на вход в радиальном направлении внутри кольца.
Цикл работы газотурбинного двигателя включает переходные режимы, сопровождающиеся относительными перемещениями в аксиальном и радиальном направлениях между ротором и статором, что приводит к значительному износу истираемых блоков вследствие трения тонких кольцевых выступов ротора об эти блоки.
Например, в процессе фазы разгона ротор перемещается в радиальном направлении к статору, и тонкие кольцевые выступы глубоко проникают в блоки из истираемого материала, образуя кольцевые канавки в этих блоках. При нормальном режиме работы тонкие кольцевые выступы радиально отведены от этих блоков и находятся напротив образованных ими канавок, что создает значительные радиальные зазоры между вершинами тонких кольцевых выступов и истираемыми блоками, и, таким образом, имеют малую эффективность лабиринтного уплотнения, образованного тонкими кольцевыми выступами.
Однако, относительные перемещения в аксиальном направлении между ротором и статором трудно предусмотреть. Для исключения контакта ротора со статором в нормальном режиме работы, обычно увеличивают осевые зазоры между ротором и статором. Однако это решение не является приемлемым, так как оно приводит к увеличению аксиального размера мотора и массы газотурбинного двигателя.
Задачей настоящего изобретения является простое, эффективное и экономичное устранение указанных недостатков.
Для решения этой задачи согласно изобретению предложена направляющая ступень компрессора газотурбинного двигателя, содержащая кольцевой ряд лопаток с изменяемым углом установки, при этом каждая лопатка содержит внешнюю цилиндрическую цапфу, являющуюся поворотной осью лопатки и заходящую в практически радиальное гнездо внешнего картера, и внутреннюю цилиндрическую цапфу, установленную в соответствующем посадочном месте внутреннего кольца, характеризующаяся тем, что внутренняя цапфа каждой лопатки размещена вдоль оси, по существу параллельной поворотной оси лопатки и на расстоянии от этой поворотной оси, и установлена в посадочном месте кольца с помощью шаровой шарнирной системы, при этом шарнирная система содержит шаровую муфту, посаженную на внутреннюю цапфу лопатки и установленную в посадочное место кольца.
Каждая лопатка направляющей ступени отличается от известного уровня техники тем, что ось внутренней цапфы не находится на одной линии и не совпадает с поворотной осью, задаваемой внешней цапфой лопатки. Эта несоосность цапф позволяет аксиально перемещать внутреннее кольцо, установленное на внутренней цапфе лопатки при угловом перемещении этой лопатки вокруг ее оси вращения.
Действительно, каждая лопатка действует как рычаг или кривошип, и содержит на своих концах практически параллельные цилиндрические цапфы, при этом внешняя цапфа размещена в картере статора, а внутренняя цапфа установлена на внутреннем кольце. Поворот лопатки вокруг оси внешней опоры приводит к вращательному перемещению внутренней опоры вокруг этой оси и соответствующему перемещению кольца, это перемещение кольца содержит, но меньшей мере, одну аксиальную составляющую. Аксиальный ход внутреннего кольца зависит, в частности, от максимального углового отклонения лопатки и от аксиального расстояния между осями внутренней и внешней опор этой лопатки.
Данное изобретение обладает множеством преимуществ:
- аксиальное перемещение внутреннего кольца вынуждает при работе изменить взаимное относительное положение блоков из истираемого материала и тонких кольцевых выступов. Возможно также, например, в нормальном режиме работы аксиально переместить блоки из истираемого материала в сторону входа или выхода для того, чтобы эти тонкие кольцевые выступы были расположены не напротив канавок блока, а напротив неизношенных или менее изношенных поверхностей этого блока. Радиальные зазоры между тонкими кольцевыми выступами и блоками из истираемого материала, таким образом, могут быть лучше оптимизированы и отрегулированы в зависимости от различных режимов работы газотурбинного двигателя;
- аксиальные перемещения внутреннего кольца можно также контролировать путем отслеживания аксиальных перемещений ротора газотурбинного двигателя в различных режимах работы. Это позволяет оптимизировать аксиальные зазоры между внутренним кольцом и ротором и уменьшить аксиальный размер и массу газотурбинного двигателя. Хороший контроль зазоров позволяет также уменьшить количество тонких кольцевых выступов ротора, например, с трех до двух на ступень, так как эти кольцевые выступы очень дороги.
В соответствии с вариантом осуществления изобретения внутренняя ось лопатки размещена в плоскости, проходящей практически по оси вращения лопатки и по передней кромке и/или задней кромке лопатки. Ось внутренней цапфы может быть расположена между осью вращения лопатки и задней кромкой лопатки. Как вариант, ось внутренней цапфы размещается между осью вращения лопатки и передней кромкой лопатки.
Такие различные конфигурации позволяют перемещать внутреннее кольцо аксиально вперед или назад в газотурбинном двигателе путем поворота лопаток. В общем, положение оси внутренней цапфы по отношению к оси внешней цапфы лопатки определяется в зависимости от необходимого аксиального перемещения внутреннего кольца. В некоторых случаях для заданного углового отклонения лопаток вокруг их осей вращения угловое кольцо может принимать два крайних входное - (или выходное) - положения, и промежуточное выходное положение (или, соответственно, входное).
Поворот лопатки приводит к перемещению внутреннего кольца, которое может иметь аксиальную составляющую или тангенциальную составляющую. В некоторых случаях может оказаться необходимым поднять внутреннюю цапфу лопатки в посадочном месте внутреннего кольца с помощью шаровой связи для обеспечения аксиального перемещения кольца и исключения появления напряжений на уровне внутренней цапфы лопатки.
Шаровая шарнирная система содержит, например, шаровую втулку, выполненную из материала с оптимальным коэффициентом трения, определяемым в зависимости от условий использования, причем, эта шаровая втулка надета на внутреннюю цапфу лопатки и установлена в посадочном месте кольца.
Предпочтительно, внутренняя цапфа лопатки установлена с возможностью аксиального перемещения в шаровой втулке.
Изобретение касается также газотурбинного двигателя, такого как турбореактивный двигатель или авиационный турбовинтовой двигатель, характеризующегося тем, что содержит, по меньшей мере, одну выпрямляющую ступень с лопатками с изменяемым углом установки упомянутого типа.
В дальнейшем изобретение поясняется нижеследующим описанием, не являющимся ограничительным, со ссылками на сопровождающие чертежи, на которых:
фиг.1 изображает аксиальный полуразрез ступени компрессора высокого давления газотурбинного двигателя с лопатками с изменяемым углом установки в соответствии с известным уровнем техники;
фиг.2 - вид сбоку лопатки с изменяемым углом установки согласно изобретению;
фиг.3 - вид внутренней опоры лопатки на фиг.2 согласно изобретению;
фиг.4 - вид снизу другой лопатки с изменяемым углом установки согласно изобретению.
На фиг.1 изображена выпрямляющая ступень известного компрессора высокого давления газотурбинного двигателя с лопатками 10, распределенными вокруг оси газотурбинного двигателя и размещенными между внутренним кольцом 12 и внешним картером 14 газотурбинного двигателя.
Каждая лопатка 10 содержит лопасть 16, связанную на каждом из своих радиально внутреннем и внешнем концах с цилиндрической радиальной цапфой 18, 20, которая размещена на поворотной оси 22 лопатки.
Внешняя цилиндрическая цапфа 18, или управляющая цапфа, вставлена в посадочное место цилиндрической направляющей втулки 24 картера, и центрируется и направляется при повороте в этой направляющей втулке посредством цилиндрической втулки 26, установленной на цапфе 18.
Радиально внешний конец 27 внешней цапфы 18 закреплен с помощью гайки 28 на конце управляющего рычага 30. На другом конце управляющего рычага 30 установлен палец 32, который приводится во вращение управляющим кольцом 34, которое размещено вокруг оси газотурбинного двигателя снаружи картера 14. Угловое перемещение управляющего кольца 34 вокруг оси газотурбинного двигателя происходит вследствие поворота управляющих рычагов 30 вокруг осей 22 и путем обеспечения поворота лопаток 10 с управляемым углом установки вокруг этих осей.
Внутренняя цилиндрическая цапфа 20, или приводимая цапфа, установлена в цилиндрическом посадочном месте внутреннего кольца 12 и центрируется путем поворота в этом посадочном месте цилиндрической втулкой 36, которая содержит на своем радиально внешнем конце внешнюю кольцевую реборду 38, размещенную между радиально внутренним концом лопасти 16 лопатки и кольцевым плечиком кольца 12.
Внутреннее кольцо 12 разделено на сектора, которые удерживаются радиально на внутренних цапфах 20 лопаток с помощью соответствующих средств. Кольцо 12 несет на своем радиальном внутреннем кольце кольцевую обечайку 40, также разделенную на сектора, по внутренней периферии которой закреплены блоки 42 из истираемого материала. Блоки 42 предназначены для взаимодействия с тонкими радиальными кольцевыми выступами 44 ротора газотурбинного двигателя для ограничения аксиального прохода воздуха с входа на выход и с выхода на вход внутри внутреннего кольца.
Как вариант, внутреннее кольцо 12 может быть выполнено в виде единой детали и может нести непосредственно на своей внутренней периферии кольцевой моноблочный элемент 42 из истираемого материала.
В процессе работы газотурбинного двигателя относительные аксиальные и радиальные перемещения между ротором и статором двигателя вызывают трение между вершинами тонких кольцевых выступов 44 и внутренними поверхностями блоков 42 из истираемого материала, что приводит к образованию кольцевых канавок 46 в блоках вследствие увеличения радиальных зазоров R между вершинами тонких кольцевых выступов и ухудшения рабочих характеристик газотурбинного двигателя.
Изобретение позволяет решить, по меньшей мере, часть этих проблем благодаря аксиальному перемещению внутреннего кольца 12 к входу или выходу таким образом, чтобы вершины тонких кольцевых выступов 44 были расположены напротив неизношенных или менее изношенных поверхностей блока 42, обеспечивая, таким образом, оптимальные радиальные зазоры R' и меньшие радиальные рециркуляции воздуха внутри кольца 12. Этот результат обеспечивается смещением внутренней 20 и наружной 18 осей цапф одной относительно другой, при этом ось внешней цапфы 22 является поворотной осью лопатки.
На фиг.2-4 представлены примеры осуществления изобретения.
В примере осуществления, изображенном на фиг.2, ось 150 внутренней цапфы 120 размещена практически параллельно и на небольшом аксиальном расстоянии D от поворотной оси 122 лопатки 110. В этом примере оси 122 и 150 размещены в плоскости (которая является плоскостью чертежа), проходящей через ребро 154 атаки и заднюю кромку 152 лопатки.
Ось 150 внутренней цапфы размещена в упомянутой плоскости между осью 152 внешней цапфы и задней кромкой 152. При угловом повороте лопатки 10 внутренняя цапфа 120 вращается вокруг поворотной оси 122 лопатки, что вызывает аксиальные перемещения внутреннего кольца. В промежуточном положении установки лопатки внутреннее кольцо находится в заднем или максимально отодвинутом назад положениях, а в каждом из крайних положений отклонения это кольцо имеет переднее положение или максимально сдвинуто вперед. Как указано выше, аксиальный ход кольца 12 зависит, в частности, от максимального углового отклонения лопатки и от расстояния D между осями 122 и 150.
В варианте, изображенном на фиг.4, ось 250 внутренней цапфы находится, практически, в плоскости Р', проходящей через заднюю кромку 252 и ребро 254 атаки лопатки, и между поворотной осью 222 лопатки и ребром 254 атаки. Оси 250 и 222 расположены на небольшом расстоянии D' одна от другой. В этом варианте реализации в промежуточном угловом положении лопатки внутреннее кольцо имеет переднее положение или максимально сдвинутое вперед, и в каждом из крайних положений отклонения это кольцо имеет заднее положение или максимально сдвинуто назад.
Расстояния D и D' между осями внутренней и внешней цапф составляют около нескольких миллиметров, поэтому внутреннее кольцо может перемещаться на расстояние, например, в несколько миллиметров. Значения величин этих расстояний D и D' зависят, в частности, от размеров газотурбинного двигателя.
В процессе угловой установки лопаток внутреннее кольцо может перемещаться в аксиальном направлении и в тангенциальном направлении на небольшие расстояния. Чтобы обеспечить эти перемещения и помешать появлению напряжений на уровне внутренней цапфы каждой лопатки, предпочтительно заменить цилиндрическую втулку 36 из известного уровня техники на шарнирную втулку.
В примере, представленном на фиг.3, шарнирная муфта 160 содержит первый шарнирный элемент, внутренний, установленный с возможностью осевого сдвига в сторону на внутренней цапфе 120 лопатки, и второй элемент, внешний, входящий в соответствующее посадочное место кольца. Этот второй элемент содержит внешнюю кольцевую реборду, предназначенную для размещения между радиально внутренним кольцом лопасти 116 лопатки и кольцевым плечиком кольца 12 (фиг.1).
Само собой разумеется, изобретение не ограничивается вариантами осуществления, описанными выше и изображенными на приложенных чертежах. Ось 150, 250 нижней цапфы лопатки может, например, находиться вне плоскости, проходящей через поворотную ось 122 лопатки и переднюю кромку и/или заднюю кромку этой лопатки.

Claims (5)

1. Направляющая ступень компрессора газотурбинного двигателя, содержащая кольцевой ряд лопаток (110) с изменяемым углом установки, при этом каждая лопатка содержит лопасть и внешнюю цилиндрическую цапфу (118), являющуюся поворотной осью (122) лопатки и заходящую в практически радиальное гнездо (24) внешнего картера (14), и внутреннюю цилиндрическую цапфу (120), установленную в соответствующем посадочном месте внутреннего кольца (12), отличающаяся тем, что внутренняя цапфа (120) каждой лопатки размещена вдоль оси (150), по существу, параллельно поворотной оси (122) лопатки и на расстоянии от этой поворотной оси и установлена в посадочном месте кольца с помощью шаровой шарнирной системы (160), при этом шарнирная система содержит шаровую муфту, посаженную на внутреннюю цапфу (120) лопатки и установленную в посадочное место кольца, причем шаровая муфта содержит первый элемент, внутренний, установленный с возможностью осевого сдвига в сторону на внутренней цапфе лопатки, и второй элемент, внешний, заходящий в посадочное место, соответствующее внутреннему кольцу, причем второй элемент содержит внешний круговой выступ, предназначенный для размещения между радиально внутренним концом лопасти лопатки и кольцевым выступом внутреннего кольца.
2. Направляющая ступень по п.1, отличающаяся тем, что ось (150) внутренней цапфы (120) каждой лопатки находится в плоскости, проходящей, по существу, через поворотную ось (122) лопатки и через переднюю кромку (154) лопатки и/или заднюю кромку (152) лопатки.
3. Направляющая ступень по п.2, отличающаяся тем, что ось (150) внутренней цапфы (120) каждой лопатки находится между поворотной осью (122) лопатки и задней кромкой (152) лопатки.
4. Направляющая ступень по п.2, отличающаяся тем, что ось (150) внутренней цапфы (120) каждой лопатки находится между поворотной осью (122) лопатки и передней кромкой (154) лопатки.
5. Газотурбинный двигатель, такой как турбореактивный или авиационный турбовинтовой двигатель, отличающийся тем, что содержит, по меньшей мере, одну направляющую ступень с лопатками с изменяемым углом установки по п.1.
RU2008135297/06A 2007-08-30 2008-08-29 Направляющая ступень компрессора газотурбинного двигателя с лопатками с изменяемым углом установки и газотурбинный двигатель RU2490476C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0706074A FR2920469A1 (fr) 2007-08-30 2007-08-30 Aube a calage variable de turbomachine
FR0706074 2007-08-30

Publications (2)

Publication Number Publication Date
RU2008135297A RU2008135297A (ru) 2010-03-10
RU2490476C2 true RU2490476C2 (ru) 2013-08-20

Family

ID=39269326

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008135297/06A RU2490476C2 (ru) 2007-08-30 2008-08-29 Направляющая ступень компрессора газотурбинного двигателя с лопатками с изменяемым углом установки и газотурбинный двигатель

Country Status (6)

Country Link
US (1) US8206090B2 (ru)
EP (1) EP2031254B1 (ru)
CA (1) CA2639181C (ru)
DE (1) DE602008002506D1 (ru)
FR (1) FR2920469A1 (ru)
RU (1) RU2490476C2 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8858165B2 (en) * 2010-09-30 2014-10-14 Rolls-Royce Corporation Seal arrangement for variable vane
FR2988787B1 (fr) * 2012-04-03 2016-01-22 Snecma Redresseur a calage variable pour compresseur de turbomachine comprenant deux anneaux internes
EP3019715B1 (en) * 2013-07-12 2020-01-15 United Technologies Corporation Method to repair variable vanes
GB2556054A (en) * 2016-11-16 2018-05-23 Rolls Royce Plc Compressor stage
CN106930965B (zh) * 2017-02-10 2019-05-24 中国航发沈阳发动机研究所 一种多角度角规块
US11415016B2 (en) * 2019-11-11 2022-08-16 Rolls-Royce Plc Turbine section assembly with ceramic matrix composite components and interstage sealing features
FR3106632B1 (fr) 2020-01-24 2022-01-07 Safran Aircraft Engines Aubage de stator pour une turbomachine d’aeronef
CN113623271A (zh) * 2020-05-06 2021-11-09 中国航发商用航空发动机有限责任公司 燃气轮机、可调导叶调节机构及其联动环限位装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU317824A1 (ru) * Г. В. Никольский , В. Ф. Дорошенко Регулируемый направляющий аппарат осевого
US3558237A (en) * 1969-06-25 1971-01-26 Gen Motors Corp Variable turbine nozzles
US4950129A (en) * 1989-02-21 1990-08-21 General Electric Company Variable inlet guide vanes for an axial flow compressor
US5796199A (en) * 1995-12-20 1998-08-18 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Pivoting vane internal extremity bearing
EP1120546A2 (en) * 2000-01-24 2001-08-01 Mitsubishi Heavy Industries, Ltd. Variable-capacity turbine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB755527A (en) * 1953-10-15 1956-08-22 Power Jets Res & Dev Ltd Mounting of swivelling guide vane elements in axial flow elastic fluid turbines
CH661772A5 (de) * 1983-05-31 1987-08-14 Escher Wyss Ag Axiale turbomaschine.
FR2556410B1 (fr) * 1983-12-07 1986-09-12 Snecma Dispositif de centrage de l'anneau interieur d'un stator a ailettes a calage variable
FR2582720B1 (fr) * 1985-05-29 1989-06-02 Snecma Procede de realisation de pivot d'aube de turbomachine et aube de stator le comportant
GB9203168D0 (en) * 1992-02-13 1992-04-01 Rolls Royce Plc Guide vanes for gas turbine engines
EP0844369B1 (en) * 1996-11-23 2002-01-30 ROLLS-ROYCE plc A bladed rotor and surround assembly
SE512085C2 (sv) * 1998-05-28 2000-01-24 Abb Ab Rotormaskininrättning
DE59910772D1 (de) * 1998-11-11 2004-11-11 Siemens Ag Verfahren zum betrieb einer strömungsmaschine
GB9904032D0 (en) * 1999-02-23 1999-04-14 Rolls Royce Plc Operating arrangements for stator vanes
US6481960B2 (en) * 2001-03-30 2002-11-19 General Electric Co. Variable gas turbine compressor vane structure with sintered-and-infiltrated bushing and washer bearings
ES2286054T3 (es) * 2001-04-12 2007-12-01 Siemens Aktiengesellschaft Turbina de gas con piezas de la carcasa axialmente desplazables.
GB2400416B (en) * 2003-04-12 2006-08-16 Rolls Royce Plc Improvements in or relating to control of variable stator vanes in a gas turbine engine
EP1669548A1 (de) * 2004-12-08 2006-06-14 ABB Turbo Systems AG Leitapparat für Abgasturbine
US7543992B2 (en) * 2005-04-28 2009-06-09 General Electric Company High temperature rod end bearings
FR2902822B1 (fr) * 2006-06-21 2008-08-22 Snecma Sa Palier pour aube de stator a calage variable
US7549835B2 (en) * 2006-07-07 2009-06-23 Siemens Energy, Inc. Leakage flow control and seal wear minimization system for a turbine engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU317824A1 (ru) * Г. В. Никольский , В. Ф. Дорошенко Регулируемый направляющий аппарат осевого
US3558237A (en) * 1969-06-25 1971-01-26 Gen Motors Corp Variable turbine nozzles
US4950129A (en) * 1989-02-21 1990-08-21 General Electric Company Variable inlet guide vanes for an axial flow compressor
US5796199A (en) * 1995-12-20 1998-08-18 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Pivoting vane internal extremity bearing
EP1120546A2 (en) * 2000-01-24 2001-08-01 Mitsubishi Heavy Industries, Ltd. Variable-capacity turbine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Конструкция и проектирование авиационных газотурбинных двигателей. /Под ред. Д.В. Хронина. - М.: Машиностроение, 1989, с.5-10. *

Also Published As

Publication number Publication date
RU2008135297A (ru) 2010-03-10
US8206090B2 (en) 2012-06-26
EP2031254B1 (fr) 2010-09-15
DE602008002506D1 (de) 2010-10-28
EP2031254A1 (fr) 2009-03-04
CA2639181A1 (fr) 2009-02-28
FR2920469A1 (fr) 2009-03-06
US20090060722A1 (en) 2009-03-05
CA2639181C (fr) 2015-11-24

Similar Documents

Publication Publication Date Title
RU2490476C2 (ru) Направляющая ступень компрессора газотурбинного двигателя с лопатками с изменяемым углом установки и газотурбинный двигатель
US11022145B2 (en) Bushing arranged between a body and a shaft, and connected to the shaft
EP2116694B1 (en) Turbocharger with variable nozzle having vane sealing surfaces
KR101146641B1 (ko) 가변 노즐 기구를 구비한 가변 용량형 배기 터보 과급기
RU2341660C2 (ru) Лопатка двойной кривизны для направляющего аппарата турбомашины
JP4118041B2 (ja) 入口案内羽根とシュラウド支持体との接触構造
US8038387B2 (en) Bearing for variable pitch stator vane
KR100814169B1 (ko) 가스 터빈 엔진용 베어링 조립체 및 토크 튜브 조립체
JP3977482B2 (ja) ガスタービン・サブアセンブリ
US20120230818A1 (en) Airfoil and corresponding guide vane, blade, gas turbine and turbomachine
JP5498671B2 (ja) ターボ機械用の可変ピッチ翼の段
JP2017521588A (ja) 可変ピッチブレードを有するタービンエンジンコンプレッサ
WO2014011379A1 (en) Radial compressor blade clearance control system
JP6669484B2 (ja) ガスタービンにおける流路境界及びロータ組立体
KR20160147014A (ko) 가변 구조 터빈 조립체
JP2016125493A (ja) ガスタービンにおける流路境界及びロータ組立体
CA2660368A1 (en) Arrangement for optimizing the running clearance for turbomachines
US20160108737A1 (en) Blade system, and corresponding method of manufacturing a blade system
US11852021B2 (en) Variable vane and method for operating same
US10871076B2 (en) Rotating unit and steam turbine including the same
EP3748135B1 (en) Bushing for variable vane in a gas turbine engine
US9091179B2 (en) Variable geometry turbine and assembly thereof
GB2542950A (en) Turbine engine compressor, in particular for an aircraft turboprop engine or turbojet engine
GB2440346A (en) Bearing assembly for a variable vane
EP3862536A1 (en) Rounded radial snap configuration for a gas turbine engine cover plate

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner