RU2486274C1 - Способ изготовления листов из алюминиевых сплавов - Google Patents

Способ изготовления листов из алюминиевых сплавов Download PDF

Info

Publication number
RU2486274C1
RU2486274C1 RU2011141874/02A RU2011141874A RU2486274C1 RU 2486274 C1 RU2486274 C1 RU 2486274C1 RU 2011141874/02 A RU2011141874/02 A RU 2011141874/02A RU 2011141874 A RU2011141874 A RU 2011141874A RU 2486274 C1 RU2486274 C1 RU 2486274C1
Authority
RU
Russia
Prior art keywords
stage
temperature
sheets
hours
ingot
Prior art date
Application number
RU2011141874/02A
Other languages
English (en)
Other versions
RU2011141874A (ru
Inventor
Николай Иванович Колобнев
Владислав Валерьевич Антипов
Владимир Владимирович Махсидов
Дмитрий Константинович Рябов
Лариса Багратовна Хохлатова
Валерий Иванович Попов
Михаил Сергеевич Оглодков
Original Assignee
Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) filed Critical Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России)
Priority to RU2011141874/02A priority Critical patent/RU2486274C1/ru
Publication of RU2011141874A publication Critical patent/RU2011141874A/ru
Application granted granted Critical
Publication of RU2486274C1 publication Critical patent/RU2486274C1/ru

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Metal Rolling (AREA)

Abstract

Изобретение относится к области металлургии сплавов на основе алюминия, в частности сплавов систем Al-Mg-Si и Al-Zn-Mg, используемых в качестве конструкционных и обшивочных листов в авиакосмической технике, судостроении и транспортном машиностроении, в том числе и в сварных конструкциях. Способ включает гомогенизацию слитка, нагрев до температуры 360-450°С, горячую прокатку, холодную прокатку со степенью деформации 45-70% и промежуточным отжигом и окончательную термическую обработку, включающую трехступенчатое искусственное старение по режиму: первая ступень при температуре 80-125°С в течение 8-24 ч, вторая ступень при температуре 130-180°С в течение 4-30 ч и третья ступень при температуре 145-180°С в течение 2-18 ч или двухступенчатое старение, включающее первую и вторую, или вторую и третью, или первую и третью ступени. Применение предлагаемой технологии позволит получать катаные полуфабрикаты с повышенными эксплуатационными свойствами за счет получения мелкозернистой рекристаллизованной структуры и изотропности свойств. 2 з.п. ф-лы, 5 пр., 8 табл., 1 ил.

Description

Изобретение относится к области металлургии сплавов на основе алюминия, а именно к способам изготовления листов из алюминиевых термически упрочняемых сплавов различных систем легирования, например, Al-Mg-Li, Al-Zn-Mg, Al-Mg-Si, Al-Cu-Li, Al-Cu-Mg (с различными легирующими добавками), используемых в качестве конструкционных и обшивочных листов в авиакосмической технике, судостроении и транспортном машиностроении, в том числе и в сварных конструкциях.
Высокие требования к комплексу свойств и структуре, предъявляемые к конструкционным и обшивочным листам, определяют сложность проблемы их получения. Листы должны иметь высокие характеристики вязкости разрушения и отличаться изотропностью свойств. Изотропность свойств может быть достигнута получением в листах полностью или преимущественно рекристаллизованной структуры.
Известен способ получения листов из алюминиевых сплавов системы Al-Mg-Li, включающий гомогенизацию слитка, горячую прокатку, закалку, гетерогенизационный отжиг и холодную прокатку с промежуточными отжигами, в котором гомогенизационный отжиг проводят при температуре 475-520°С в течение 3-8 ч, закалку проводят при температуре 490-520°С, гетерогенизационный отжиг проводят при температуре 385-410°С в течение 1-2 ч, холодную прокатку с промежуточными отжигами при температуре 385-410°С в течение 5-30 мин через каждые 30-55% деформации, причем охлаждение после гетерогенизационного отжига и промежуточных отжигов проводят со скоростью, равной 350-750°С/с (патент РФ №1529750).
Для обшивки современных транспортных средств необходимы листы шириной более 1500 мм (2000-3000 мм). Недостатком известного способа является то, что способ позволяет изготавливать только узкие листы шириной не более 1200 мм из-за растрескивания боковых кромок. При прокатке листов из современных сильнолегированных сплавов после гетерогенизационного отжига возможно выделение грубых интерметаллидов, что приводит к понижению технологической пластичности.
Известен способ получения листов из алюминиевых сплавов, содержащих литий, включающий нагрев сплава до температуры горячей прокатки, горячую прокатку до промежуточной толщины заготовки, затем холодную прокатку до второй промежуточной толщины заготовки, нагрев и горячую прокатку до окончательной толщины листа, избегая при этом прохождение рекристаллизации, обработку на твердый раствор, закалку и старение, в котором горячую прокатку проводят при температуре не более 495°С, холодную и горячую прокатку проводят со степенью деформацией не более 50% (патент США №4921548).
Однако этот способ в результате получения нерекристаллизованной волокнистой структуры в листах не обеспечивает изотропность их механических свойств.
Известен также способ получения плакированных листов из алюминиевых сплавов, включающий операцию получения биметаллической заготовки путем многократного соединения прокаткой материалов покрытия и подложки, в котором соединение материалов покрытия и подложки осуществляют многократным горячим привариванием плакирующего материала с одновременной калибровкой заплакированной подложки по толщине (патент РФ №2025238).
Недостатком этого способа являются низкие механические свойства листов из-за повышенной толщины плакировки, а также большие энергозатраты при многократной горячей прокатке.
Наиболее близким аналогом, принятым за прототип, является способ изготовления листов из алюминиевых сплавов, включающий гомогенизацию слитка, горячую прокатку, отжиг горячекатаной заготовки, холодную прокатку и окончательную термическую обработку, в котором после гомогенизации слиток охлаждают со скоростью 5-50°С/ч до температуры 100-150°С и нагревают до температуры горячей прокатки 360-450°С, перед холодной прокаткой листовую заготовку отжигают при температуре минимальной устойчивости пересыщенного твердого раствора в течение 1-6 ч и охлаждают со скоростью 20-750°С/ч до температуры 100-150°С, причем горячую и холодную прокатку осуществляют в один или несколько этапов, при этом прокатку проводят в продольном и/или в поперечном направлении по отношению к оси слитка, причем перед вторым и каждым последующим этапом горячей прокатки листы нагревают до 360-450°С, холодную прокатку проводят со степенью деформации 15-40% на каждом этапе, а окончательную термическую обработку на твердый раствор проводят при 450-540°С с последующим охлаждением со скоростью 0,3-1000°С/с до 20-40°С и искусственным старением, или окончательная термическая обработка включает отжиг при 280-395°С с последующим охлаждением со скоростью 20-750°С/ч до 100-150°С (патент РФ №2158783).
Недостатком этого способа является формирование в листах полигонизованной, как правило, волокнистой структуры, которая не всегда обеспечивает минимальную анизотропию и соответственно высокие прочностные свойства. Наиболее надежный способ обеспечения максимальной изотропности свойств является способ изготовления листов с мелкозернистой рекристаллизованной структурой.
Технической задачей изобретения является разработка способа изготовления листов из термически упрочняемых алюминиевых сплавов с мелкозернистой рекристаллизованной структурой, с изотропностью свойств, с повышенными прочностными свойствами при сохранении высокой вязкости разрушения.
Поставленная задача достигается тем, что предложен способ изготовления листов из термически упрочняемых алюминиевых сплавов, включающий гомогенизацию слитка, нагрев до температуры 360-450°С, горячую прокатку, холодную прокатку и окончательную термическую обработку, отличающийся тем, что холодную прокатку проводят со степенью деформации 45-70% и промежуточным отжигом, а окончательная термическая обработка включает трехступенчатое искусственное старение по режиму: первая ступень при температуре 80-125°С в течение 8-24 ч, вторая ступень при температуре 130-180°С в течение 4-30 ч и третья ступень при температуре 145-180°С в течение 2-18 ч или двухступенчатое старение по режиму, включающему первую и вторую, или вторую и третью, или первую и третью ступени трехступенчатого режима.
Холодная прокатка со степенью деформации 45-70% и промежуточный отжиг создают большое количество центров рекристаллизации, которые при обработке на твердый раствор обеспечивают формирование мелкозернистой рекристаллизованной структуры. Такая структура в термоупрочненном состоянии обеспечивает изотропность свойств.
Применение многоступенчатых режимов искусственного старения позволяет в сложнолегированных сплавах, в которых при старении выделяются упрочняющие фазы в различных температурно-временных интервалах, выбрать оптимальную температуру каждой ступени многоступенчатого старения, что обеспечивает комплексное суммарное упрочнение за счет высокой плотности, дисперсности и однородности распределения в матрице сплава различных метастабильных фаз. Высокая плотность и однородность распределения упрочняющих фаз позволяет повысить прочностные свойства при сохранении высоких характеристик вязкости разрушения.
Гомогенизацию слитка проводят по двухступенчатому режиму: первая ступень при температуре на 50-110°С выше температуры наименьшей устойчивости твердого раствора в течение 5-15 ч, вторая ступень при температуре на 15-75°С ниже температуры солидуса в течение 10-25 час.
Предложенный режим двухступенчатой гомогенизации позволяет на первой ступени растворить легкоплавкие неравновесные эвтектики и избежать пережога, а на второй ступени при высокой температуре, близкой к температуре солидуса сплавов, более полно растворить избыточные фазы. При этом выравнивается химический состав по сечению слитка и повышается технологичность при последующей пластической деформации в процессе горячей прокатки.
Перед нагревом под горячую прокатку на слиток, по крайней мере с одной стороны, накладывают плакировочный планшет толщиной 6-10% от толщины слитка. Толщина плакировочных планшет 6-10% от толщины слитка обеспечивает толщину плакировки на листах не более 1,5-2,5% от толщины листа, что является достаточным для улучшения декоративного вида листов, особенно из сплавов с магнием и литием, и защиты от коррозии при сохранении достаточно высокой прочности. Большая толщина планшетов приведет к увеличению толщины плакировки на листах и к снижению прочностных свойств и характеристик малоцикловой усталости. Меньшая толщина плакировки не будет обеспечивать коррозионной защиты при эксплуатации в условиях морского и субтропического климата.
Примеры осуществления
Пример 1
Из сплавов 1424 системы Al-Mg-Li было отлито по пять слитков. Из одного слитка изготавливали листы по технологии прототипа (№1), а из четырех слитков (№2-5) - по заявленному способу (таблица 1). Слитки после гомогенизации, горячей и холодной прокатки подвергали закалке и искусственному старению. Для сплава 1424 температура солидуса составляет 590°С, температура минимальной устойчивости твердого раствора - 300°С, температура нагрева под закалку листов - 530°С.
При изготовлении листов по технологии прототипа перед холодной прокаткой листы отжигали при температуре минимальной устойчивости твердого раствора сплава и прокатывали в холодную со степенью деформации 40%.
При изготовлении листов по заявленному способу листы не подвергали отжигу перед холодной прокаткой, а подвергали промежуточному отжигу при температуре 300°С. Из полученных листов изготавливали образцы и проводили испытания с определением механических свойств при растяжении и ударную вязкость в продольном (Д, ДП) и поперечном (П, ПД) направлениях (таблица 2).
Пример 2
Из сплава 1913 системы Al-Zn-Mg-Si изготавливали листы по аналогичной технологической схеме, используемой при изготовлении листов из сплава 1370 (таблица 3). Для сплава 1913 температура солидуса составляла 595°С, температура минимальной устойчивости твердого раствора - 275°С, температура нагрева под закалку - 465°С. Результаты испытаний приведены в таблице 4.
Пример 3
Из сплава 6013 системы Al-Mg-Si-Cu изготавливали листы по аналогичной технологической схеме (таблица 5). Для данного сплава температура солидуса составляла 569°С, температура минимальной устойчивости твердого раствора - 325°С, температура нагрева под закалку листов - 560°С. Результаты испытаний приведены в таблице 6.
Пример 4
Из сплава 1461 системы Al-Cu-Li изготавливали листы по аналогичной технологической схеме (таблица 7). Для данного сплава температура солидуса составляла 580°С, температура минимальной устойчивости твердого раствора - 380°С, температура нагрева под закалку листов - 530°С. Результаты испытаний приведены в таблице 8.
Пример 5
Из сплава 1190 системы Al-Cu-Mg изготавливали листы по аналогичной технологической схеме (таблица 9). Для данного сплава температура солидуса составляла 515°С, температура минимальной устойчивости твердого раствора - 320°С, температура нагрева под закалку листов - 500°С. Результаты испытаний приведены в таблице 10.
Из данных таблиц видно, что применение предложенного способа изготовления листов из всех сплавов обеспечило получение полностью или преимущественно рекристаллизованной структуры (фиг.1), повышение уровня прочностных свойств, особенно предела текучести, и характеристик вязкости разрушения.
Рекристаллизованная структура формируется при обработке на твердый раствор в результате создания большого количества центров рекристаллизации в результате холодной прокатки со степенью деформации 45-70%, что обеспечило изотропность свойств.
Повышение уровня прочностных свойств, особенно в поперечном направлении на 10-30%, и характеристик вязкости на 22-40%, обеспечило комплексное суммарное упрочнение упрочняющими фазами, выделяющимися в различных температурно-временных интервалах, регулированием их дисперсности и равномерности распределения в матрице.
Применение предлагаемой технологии позволит получать катаные полуфабрикаты с повышенными эксплуатационными свойствами и изотропностью свойств, что обеспечит повышение ресурса и надежности элементов конструкции авиакосмической техники.
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008

Claims (3)

1. Способ изготовления листов из термически упрочняемых алюминиевых сплавов, включающий гомогенизацию слитка, нагрев до температуры 360-450°С, горячую прокатку, холодную прокатку и окончательную термическую обработку, отличающийся тем, что холодную прокатку проводят со степенью деформации 45-70% и промежуточным отжигом, а окончательная термическая обработка включает трехступенчатое искусственное старение по режиму: первая ступень при температуре 80-125°С в течение 8-24 ч, вторая ступень при температуре 130-180°С в течение 4-30 ч и третья ступень при температуре 145-180°С в течение 2-18 ч или двухступенчатое старение по режиму, включающему первую и вторую, или вторую и третью, или первую и третью ступени трехступенчатого режима.
2. Способ изготовления листов из термически упрочняемых алюминиевых сплавов по п.1, отличающийся тем, что гомогенизацию слитка проводят по двухступенчатому режиму: первая ступень при температуре на 50-110°С выше температуры наименьшей устойчивости твердого раствора в течение 5-15 ч, вторая ступень при температуре на 15-75°С ниже температуры солидуса в течение 10-25 ч.
3. Способ изготовления листов из термически упрочняемых алюминиевых сплавов по п.1, отличающийся тем, что перед нагревом под горячую прокатку на слиток, по крайней мере, с одной стороны, накладывают плакировочный планшет толщиной 6-10% от толщины слитка.
RU2011141874/02A 2011-10-17 2011-10-17 Способ изготовления листов из алюминиевых сплавов RU2486274C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011141874/02A RU2486274C1 (ru) 2011-10-17 2011-10-17 Способ изготовления листов из алюминиевых сплавов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011141874/02A RU2486274C1 (ru) 2011-10-17 2011-10-17 Способ изготовления листов из алюминиевых сплавов

Publications (2)

Publication Number Publication Date
RU2011141874A RU2011141874A (ru) 2013-04-27
RU2486274C1 true RU2486274C1 (ru) 2013-06-27

Family

ID=48702234

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011141874/02A RU2486274C1 (ru) 2011-10-17 2011-10-17 Способ изготовления листов из алюминиевых сплавов

Country Status (1)

Country Link
RU (1) RU2486274C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2542183C2 (ru) * 2013-07-09 2015-02-20 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Способ производства прессованных изделий из алюминиевого сплава серии 6000

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2158783C1 (ru) * 1999-07-02 2000-11-10 Всероссийский научно-исследовательский институт авиационных материалов Способ изготовления листов из алюминиевых сплавов
EP0473122B9 (en) * 1990-08-27 2005-04-06 Alcoa Inc. Method of producing an aluminium base alloy sheet product
RU2255135C1 (ru) * 2004-03-01 2005-06-27 Чухин Борис Дмитриевич Способ деформационно-термической обработки алюминиевых сплавов
JP2007262484A (ja) * 2006-03-28 2007-10-11 Kobe Steel Ltd ヘム曲げ性およびベークハード性に優れる自動車パネル用6000系アルミニウム合金板の製造方法
EP1392877B1 (en) * 2001-05-03 2011-08-31 Novelis Inc. Process for making aluminum alloy sheet having excellent bendability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473122B9 (en) * 1990-08-27 2005-04-06 Alcoa Inc. Method of producing an aluminium base alloy sheet product
RU2158783C1 (ru) * 1999-07-02 2000-11-10 Всероссийский научно-исследовательский институт авиационных материалов Способ изготовления листов из алюминиевых сплавов
EP1392877B1 (en) * 2001-05-03 2011-08-31 Novelis Inc. Process for making aluminum alloy sheet having excellent bendability
RU2255135C1 (ru) * 2004-03-01 2005-06-27 Чухин Борис Дмитриевич Способ деформационно-термической обработки алюминиевых сплавов
JP2007262484A (ja) * 2006-03-28 2007-10-11 Kobe Steel Ltd ヘム曲げ性およびベークハード性に優れる自動車パネル用6000系アルミニウム合金板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2542183C2 (ru) * 2013-07-09 2015-02-20 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Способ производства прессованных изделий из алюминиевого сплава серии 6000

Also Published As

Publication number Publication date
RU2011141874A (ru) 2013-04-27

Similar Documents

Publication Publication Date Title
JP5068654B2 (ja) 高強度、高靱性Al−Zn合金製品およびそのような製品の製造方法
Wang et al. A review on superplastic formation behavior of Al alloys
CA2908196C (en) High strength, high formability, and low cost aluminum-lithium alloys
JP2008516079A5 (ru)
US5938867A (en) Method of manufacturing aluminum aircraft sheet
US10501835B2 (en) Thin sheets made of an aluminium-copper-lithium alloy for producing airplane fuselages
JP2004505176A (ja) アルミニウムベース合金とその加工物の生成方法
JP2013525608A5 (ru)
CN105838927A (zh) 高强度铝合金板
RU2326181C2 (ru) Способ производства высокоустойчивого к повреждениям алюминиевого сплава
KR102547038B1 (ko) 피로 파괴 내성이 개선된 7xxx-시리즈 알루미늄 합금 판 제품의 제조 방법
CN114351012A (zh) 铝合金产品和制备方法
KR20090127185A (ko) 합금 조성물 및 그 제조방법
JP6182490B2 (ja) アルミニウム合金鍛造材
JP2017534757A (ja) 航空機胴体製造用のアルミニウム‐銅‐リチウム合金製の等方性シートメタル
KR20210078537A (ko) 7xxx-시리즈 알루미늄 합금 제품
CN113061820B (zh) 一种zl205a铝合金的强韧化处理工艺
WO2019206826A1 (en) 6xxx aluminum alloy for extrusion with excellent crash performance and high yield strength and method of production thereof
JP2017002388A (ja) 高強度アルミニウム合金熱間鍛造材
CN109844151A (zh) 用于航空航天应用的由铝-镁-钪合金制成的薄板
US20040140025A1 (en) Method for shortening production time of heat treated aluminum alloys
RU2486274C1 (ru) Способ изготовления листов из алюминиевых сплавов
RU2571993C1 (ru) Способ деформационно-термической обработки объемных полуфабрикатов из al-cu-mg сплавов
US20050098245A1 (en) Method of manufacturing near-net shape alloy product
RU2238997C1 (ru) Способ изготовления полуфабрикатов из алюминиевого сплава и изделие, полученное этим способом

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20131018

NF4A Reinstatement of patent

Effective date: 20160110