RU2485330C1 - Способ генерации энергии - Google Patents

Способ генерации энергии Download PDF

Info

Publication number
RU2485330C1
RU2485330C1 RU2011146309/06A RU2011146309A RU2485330C1 RU 2485330 C1 RU2485330 C1 RU 2485330C1 RU 2011146309/06 A RU2011146309/06 A RU 2011146309/06A RU 2011146309 A RU2011146309 A RU 2011146309A RU 2485330 C1 RU2485330 C1 RU 2485330C1
Authority
RU
Russia
Prior art keywords
fuel
adsorber
products
converter
power plant
Prior art date
Application number
RU2011146309/06A
Other languages
English (en)
Other versions
RU2011146309A (ru
Inventor
Анатолий Яковлевич Столяревский
Original Assignee
Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" filed Critical Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт"
Priority to RU2011146309/06A priority Critical patent/RU2485330C1/ru
Publication of RU2011146309A publication Critical patent/RU2011146309A/ru
Application granted granted Critical
Publication of RU2485330C1 publication Critical patent/RU2485330C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration

Abstract

Изобретение относится к энергетике. Способ генерации энергии, в котором в энергоустановку подают кислородсодержащий окислитель, а также водородсодержащее газообразное топливо, по меньшей мере, часть продуктов окисления топлива, выходящих из энергоустановки, направляют в теплоприемник, в котором продукты нагревают последовательно конвертер, в котором за счет нагрева получают газообразное топливо из смеси исходного горючего с водяным паром, а затем нагревают первую секцию адсорбера, в котором поток горючего увлажняется водяным паром, выходящим из сорбента, после чего продукты направляют на вход во вторую секцию адсорбера, в которой поток продуктов охлаждают с извлечением из него в сорбент водяного пара. Вход горючего в первую и вторую секции адсорбера периодически переключают с режима нагрева на режим охлаждения. Изобретение позволяет снизить расход горючего, улучшить экономические показатели энергоустановок и систем энергообеспечения. 8 з.п. ф-лы, 3 ил.

Description

Изобретение относится преимущественно к способам преобразования энергии горючего (углеводороды, метанол, этанол и другие виды) в механическую (электрическую) энергию, преимущественно к стационарным и транспортным энергетическим установкам и системам энергообеспечения на их основе и предназначено для энергоустановок, снабженных тепловым двигателем или газовой турбиной или электрохимическим генератором.
Известны способы преобразования энергии горючего (углеводороды, метанол, этанол и другие виды) в механическую (электрическую) энергию, в том числе, в транспортных энергоустановках, преобразующих первичную энергию в электрическую. Значительный потенциал имеют электрохимические генераторы, которые выгодно отличаются высокой эффективностью. Из особенностей работы энергогенерирующих систем известна проблема увеличения эффективности энергоисточника за счет утилизации сбросного тепла. Предложены способы генерации энергии, включающие утилизацию сбросного тепла в тепло- или парогенерирующих аппаратах, вырабатывающих дополнительную энергию для сторонних потребителей. В то же время во многих случаях такие способы не могут быть применены в силу ограничений по сторонним потребителям или по экономическим соображениям. Наиболее серьезные ограничения возникают, например, для транспортных энергоустановок или систем автономного энергообеспечения удаленных объектов. Таким образом, возникает задача создания способов преобразования энергии, энергоустановок и систем, способных обеспечивать высокую эффективность генерации энергии вне зависимости от наличия сторонних потребителей тепла и электроэнергии.
Известен, в частности, способ производства электрической энергии из природного газа, с использованием топливного элемента на твердом оксиде, содержащий стадии электрохимического окисления природного газа, прошедшего предварительное расширение и нагрев природного газа выходящим из топливного элемента потоком (патент РФ на изобретение №2199172, дата публикации 20.02.2003). Недостатком данного способа и устройства является низкий КПД.
Предложен также способ генерации энергии в силовой установке, содержащей газотурбинный двигатель. Сущность изобретения: после насоса горючее (метанол, жидкие водород или метан) за счет бросового тепла за основной турбиной в теплообменнике в эндотермической реакции в присутствии катализатора газифицируется (при 250°С) на смесь газов H2 и СО, которая подается на дополнительную турбину, механически связанную с дополнительным компрессором, газы и воздух после которых при из соотношении, близком к стехиометрическому, поступают в камеру сгорания, выполненную в виде полости сопла эжектора, входной патрубок низкого давления которого связан с выходом основного компрессора, как и вход дополнительного компрессора, а выход подключен к входу основной турбины. Часть смеси газов после дополнительной турбины поступает на вход основной турбины и полые ее лопатки, на передних кромках которых выполнены щели для выхода смеси газов в газовоздушный тракт основной турбины (патент РФ на изобретение №2066777, дата публикации 20.09.1996 - прототип). Недостатком данного способа и устройства также является низкий КПД.
В то же время известен каталитический способ осуществления реакции паровой конверсии горючего (этанола) с целью получения синтез-газа или обогащенной водородом газовой смеси, которая может использоваться, например, в качестве топлива для топливных элементов (патент РФ на изобретение №2177366, дата публикации 2000.12.09). Сущность изобретения: способ осуществляется в реакторе с двумя фиксированными слоями катализатора. В качестве катализатора первого слоя используют катализатор, содержащий в качестве активного компонента металл 1Б группы Периодической системы (медь, серебро, золото) и/или благородный металл, выбранный из группы, состоящей из платины, палладия, рутения, родия, иридия, нанесенный на графитоподобный углеродный носитель, катализатор первого слоя содержит активный компонент в количестве не менее 0,05 мас.%. В качестве катализатора второго слоя используют катализатор, содержащий металл VIII группы Периодической системы, выбранный из группы, состоящей из никеля, платины, палладия, рутения, родия, иридия. В реакционную смесь, поступающую на второй слой катализатора, предварительно вводят кислород или двуокись углерода с концентрацией не выше 50 об.%. Изобретение позволяет повысить эффективность процесса паровой конверсии горючего путем расширения видов исходного сырья за счет использования водно-этанольных смесей, содержащих метанол, и предотвращения дезактивации катализаторов и образования побочных продуктов. Недостатком способа является необходимость дополнительного подвода воды к энергоустановке и затраты горючего на покрытие эндотермичности реакции паровой конверсии горючего.
Задача изобретения - создать способ генерации энергии в энергоустановке, в котором расширены функциональные возможности способа, снижен расход горючего, улучшены экономические показатели энергоустановок и систем энергообеспечения.
Поставленная задача решается тем, что в способе генерации энергии, в котором в энергоустановку подают кислородсодержащий окислитель, а также водородсодержащее газообразное топливо, по меньшей мере, часть продуктов окисления топлива, выходящих из энергоустановки, направляют в теплоприемник, в котором продукты окисления топлива нагревают последовательно конвертер, в котором за счет нагрева получают газообразное топливо из смеси исходного горючего с водяным паром, а затем нагревают первую секцию адсорбера, в котором поток горючего увлажняют водяным паром, выходящим из адсорбера, после чего продукты окисления топлива направляют на вход во вторую секцию адсорбера, в которой поток продуктов окисления топлива охлаждают и сорбируют из него водяной пар.
Кроме того:
- вход горючего в первую и вторую секции адсорбера периодически переключают с режима нагрева на режим охлаждения;
- в конвертере реакцию получения газообразного топлива проводят с использованием катализатора;
- исходное горючее выбирают из ряда, содержащего природный газ, углеводороды, диметиловый эфир, метанол, аммиак, этиловый спирт или их смеси;
- теплоприемник при отключенной подаче горючего периодически продувают воздухом или продуктами окисления топлива;
- перед подачей в сорбент горючее нагревают и/или испаряют за счет охлаждения продуктов окисления топлива;
- нагрев конвертера продуктами осуществляют путем прямой прокачки продуктов окисления топлива через конвертер при отключенной подаче горючего;
- охлаждение продуктов окисления топлива, проходящих через адсорбер, осуществляют с помощью водяного теплоносителя, отделенного от продуктов газонепроницаемой поверхностью;
- в конвертере проводят нейтрализацию вредных веществ, содержащихся в продукте окисления топлива;
- в качестве энергоустановки используют тепловой двигатель или газовую турбину или электрохимический генератор;
- в качестве сорбента в адсорбере используют цеолит или силикагель или композитные сорбенты, состоящие из матрицы с открытыми порами и помещенного в эти поры гигроскопичного вещества;
- температурный режим конвертера поддерживают изменением подачи в теплоприемник горючего или продуктов окисления топлива.
На фиг.1 дана схема реализации способа, где 1 - секционированный теплоприемник,
2 - конвертер, 3 - секционированный адсорбер, 4 - воздух, 5 - продукты окисления топлива, 6 - горючее, 7 - газообразное топливо, 8 - первая секция адсорбера, 9 - вторая секция адсорбера, 10 - третья секция адсорбера.
На фиг.2 показана зависимость изменения температуры продуктов окисления топлива 5 и горючего 6 вдоль секционированного теплоприемника 1.
На фиг.3 дан разрез секционированного адсорбера с отдельными секциями 8, 9 и 10, работающими в различных режимах.
Примером реализации изобретения служит способ генерации энергии, описанный ниже.
В излагаемом примере осуществления изобретения в качестве горючего 6 применяется диметиловый эфир, что позволяет охарактеризовать особенности реализации изобретения применительно к процессам применения жидкого горючего в различных транспортных или стационарных энергоустановках, с возможностью предварительной паровой конверсии горючего 6 в конвертере 2 с получением и окислением образующегося при паровой конверсии синтез-газа до смеси водорода и диоксида углерода, составляющих газообразное топливо 7, вступающего в реакцию с окислителем при генерации энергии в энергоустановке.
Способ осуществляется следующим образом.
В качестве энергоустановки могут быть использованы тепловой двигатель или газовая турбина или электрохимический генератор, в которых газообразное топливо 7 окисляется окислителем, например, воздухом 4 с образованием продуктов окисления топлива 5, подаваемых в секционированный теплоприемник 1.
Выходящие из энергоустановки продукты окисления топлива 5 подают на охлаждение в секционированный теплоприемник 1, в котором продукты окисления топлива 5, содержащие водяной пар и диоксид углерода, нагревают последовательно конвертер 2, в котором за счет нагрева на катализаторе из смеси диметилового эфира 6 с водяным паром получают газообразное топливо 7 (смесь водорода и диоксид углерода). Затем продукты 5 нагревают первую секцию 8 секционированного адсорбера 3, насыщенного водяным паром, после чего продукты 5 направляют на вход во вторую секцию 9 секционированного адсорбера 3, в которой поток продуктов 5, содержащий водяной пар и диоксид углерода, охлаждают с извлечением в сорбент водяного пара. Нагрев секционированного адсорбера 3 первой секции 8 вызывает выделение из него ранее адсорбированной воды, которая выходит в поток горючего 6, приводя к образованию смеси диметилового эфира 6 с водяным паром, поступающей на паровую конверсию в конвертер 2, в котором за счет нагрева продуктами 5 (показаны штриховой линией) из диметилового эфира 6 и водяного пара получают газообразное топливо 7 (смесь водорода и диоксида углерода). Во второй секции 9 секционированного адсорбера 3 из продуктов 5 производят извлечение водяного пара путем сорбции, например, в цеолите. Поскольку сорбция вызывает выделение тепла, а нагрев цеолита снижает его сорбционную емкость, секционированный адсорбер 3 второй секции 9 охлаждают. Перед подачей в первую секцию 8 секционированного адсорбера 3 диметиловый эфир 6, подаваемый на энергоустановку, нагревают и испаряют путем его нагрева продуктами 5 при рабочем давлении энергоустановки.
Насыщение сорбента водяным паром и выделение водяного пара производят при периодическом переключении секций секционированного адсорбера 3 в режимы сорбции и десорбции. В то время как в первую секцию 8 секционированного адсорбера 3 подают диметиловый эфир 6, во второй секции 9 секционированного адсорбера 3 из продуктов 5, охлажденных в конвертере 2, производят извлечение водяного пара с одновременным охлаждением, например, за счет окружающего воздуха 4 или водяного теплоносителя, который затем может охлаждаться в воздушном радиаторе. Может в этом режиме использоваться и третья секция 10 секционированного адсорбера 3, в которой производят предварительное охлаждение при отключенных потоках горючего 6 и продуктов 5.
Конверсию диметилового эфира 6 осуществляют при 150-450°C, 1-100 атм (в зависимости, в первую очередь, от типа энергоустановки) и мольном отношении вода / диметиловый эфир (H2O/ДМЭ) 2-10.
Процесс протекает по реакциям:
Figure 00000001
Figure 00000002
Figure 00000003
суммарная реакция:
Figure 00000004
Как видно из примера, получение обогащенной по водороду газовой смеси взаимодействием диметилового эфира (ДМЭ) 6 и водяного пара в присутствии катализатора в конвертере 2 позволяет примерно в два раза увеличить поток водорода в топливе 7 с одновременным увеличением массы и расхода рабочего тела в энергоустановке за счет водяного пара.
В качестве каталитической системы в конвертере 2 может применяться состав, в котором в качестве катализатора гидратации ДМЭ используются гетерополикислоты (ГПК) или их соли, нанесенные на носитель; в качестве катализатора паровой конверсии метанола - известные медьсодержащие катализаторы, например Cu-Zn-Al - катализатор синтеза метанола, Cu-Zn-Al (Cr) или Cu-Mg-катализаторы паровой конверсии CO (Патент РФ N 2165790, дата приоритета: 13.03.2000).
В варианте применения способа в сочетании с двигателем внутреннего сгорания характерной мощностью 80 кВт применение способа позволит полезно использовать почти 100 кВт сбросного тепла продуктов из более чем 200 кВт тепловой энергии, выбрасываемой двигателем в окружающую среду.
Соответствующий расход горючего (диметилового эфира) 6 при номинальном режиме двигателя составит около 2.4 кг/ч, что потребует расхода водяного пара на конверсию около 40 г/мин. При частоте переключения секций секционированного адсорбера 3 около 20 ч-1 такой расход может быть обеспечен насадкой цеолита массой около 600 г и объемом около 2 л.
Помимо снижения необходимого запаса воды на конверсию горючего (диметилового эфира) 6 на 48-60 л в расчете на суточный цикл, применение способа позволит снизить расход горючего (диметилового эфира) 6 примерно на 4-5 т/год в расчете на один двигатель.
В качестве исходного горючего 6 может быть выбрано вещество из ряда, содержащего природный газ, углеводороды, диметиловый эфир, метанол, аммиак, этиловый спирт или их смеси.
В процессе работы энергоустановки в атмосферу выделяется много ядовитых химических веществ, из которых самые опасные - монооксид углерода (СО), несгоревшие углеводороды (СН) и оксиды азота (NO, NO2). Поэтому целесообразно использовать катализатор конвертера 2 для нейтрализации вредных веществ, содержащихся в продукте. Катализатор конвертера 2 может представлять из себя керамический блок, пронизанный продольными порами-сотами, на поверхность которых нанесен активный каталитический слой, например из металлов, содержащих платину, палладий и родий с разветвленной поверхностью площадью до 20-40 тыс.кв.м. Для нейтрализации также необходима относительно высокая температура - около 250°С, а с учетом экзотермической реакции катализатор может разогреваться до рабочих температур от 400 до 800°С, обеспечивающих оптимальные условия для максимальной эффективности. С указанной целью конвертер 2 также может периодически переключаться с режима конверсии горючего 6 на режим нейтрализации, для чего в конвертере поток влажного горючего 6 в режиме нейтрализации заменяется на поток продуктов 5.
В процессе реализации излагаемого способа генерации энергии могут использоваться также возможности нагрева теплоприемника 1 с помощью внешнего подвода тепла, например, продуктами сгорания горючего 5, или за счет электроаккумуляторов.
Таким образом, указанный способ позволит повысить возможности генерации энергии, снизить расход топлива, улучшить экономические показатели энергоустановок и систем энергообеспечения.

Claims (9)

1. Способ генерации энергии, в котором в энергоустановку подают кислородсодержащий окислитель, а также водородсодержащее газообразное топливо, отличающийся тем, что, по меньшей мере, часть продуктов окисления топлива, выходящих из энергоустановки, направляют в теплоприемник, в котором продукты окисления топлива нагревают последовательно конвертер, в котором за счет нагрева получают газообразное топливо из смеси исходного горючего с водяным паром, а затем нагревают первую секцию адсорбера, в котором поток горючего увлажняют водяным паром, выходящим из адсорбера, после чего продукты окисления топлива направляют на вход во вторую секцию адсорбера, в которой поток продуктов окисления топлива охлаждают и сорбируют из него водяной пар, при этом вход горючего в первую и вторую секции адсорбера периодически переключают с режима нагрева на режим охлаждения.
2. Способ по п.1, отличающийся тем, что в конвертере реакцию получения газообразного топлива проводят с использованием катализатора.
3. Способ по п.1, отличающийся тем, что исходное горючее выбирают из ряда, содержащего природный газ, углеводороды, диметиловый эфир, метанол, аммиак, этиловый спирт или их смеси.
4. Способ по п.1, отличающийся тем, что перед подачей в адсорбер горючее нагревают и/или испаряют за счет охлаждения продуктов окисления топлива.
5. Способ по п.1, отличающийся тем, что охлаждение продуктов окисления топлива, проходящих через адсорбер, осуществляют с помощью водяного теплоносителя, отделенного от продуктов газонепроницаемой поверхностью.
6. Способ по п.1, отличающийся тем, что в конвертере проводят нейтрализацию вредных веществ, содержащихся в продукте окисления топлива.
7. Способ по п.1, отличающийся тем, что в качестве энергоустановки используют тепловой двигатель или газовую турбину или электрохимический генератор.
8. Способ по п.1, отличающийся тем, что в качестве сорбента в адсорбере используют цеолит, или силикагель, или композитные сорбенты, состоящие из матрицы с открытыми порами и помещенного в эти поры гигроскопичного вещества.
9. Способ по п.1, отличающийся тем, что температурный режим конвертера поддерживают изменением подачи в теплоприемник горючего или продуктов окисления топлива.
RU2011146309/06A 2011-11-16 2011-11-16 Способ генерации энергии RU2485330C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011146309/06A RU2485330C1 (ru) 2011-11-16 2011-11-16 Способ генерации энергии

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011146309/06A RU2485330C1 (ru) 2011-11-16 2011-11-16 Способ генерации энергии

Publications (2)

Publication Number Publication Date
RU2011146309A RU2011146309A (ru) 2013-05-27
RU2485330C1 true RU2485330C1 (ru) 2013-06-20

Family

ID=48786372

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011146309/06A RU2485330C1 (ru) 2011-11-16 2011-11-16 Способ генерации энергии

Country Status (1)

Country Link
RU (1) RU2485330C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1752163A3 (ru) * 1990-05-08 1994-01-15 Институт высоких температур научного объединения "Ивтан" Способ комбинированного преобразования энергии
RU2066777C1 (ru) * 1992-11-17 1996-09-20 Шевцов Валентин Федорович Двигатель
RU2177366C1 (ru) * 2000-12-09 2001-12-27 Институт катализа им. Г.К. Борескова СО РАН Катализатор и способ получения синтез-газа или обогащенной водородом газовой смеси из водно-спиртовых смесей
RU2280925C2 (ru) * 2000-10-30 2006-07-27 Квестэйр Текнолоджиз Инк. Разделение газов с высоким энергетическим кпд для топливных элементов
US20100080754A1 (en) * 2008-09-29 2010-04-01 Iep Process for producing hydrogen with complete capture of co2 and recycling unconverted methane
US7947120B2 (en) * 2007-05-18 2011-05-24 Exxonmobil Research And Engineering Company Temperature swing adsorption of CO2 from flue gas using a parallel channel contractor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1752163A3 (ru) * 1990-05-08 1994-01-15 Институт высоких температур научного объединения "Ивтан" Способ комбинированного преобразования энергии
RU2066777C1 (ru) * 1992-11-17 1996-09-20 Шевцов Валентин Федорович Двигатель
RU2280925C2 (ru) * 2000-10-30 2006-07-27 Квестэйр Текнолоджиз Инк. Разделение газов с высоким энергетическим кпд для топливных элементов
RU2177366C1 (ru) * 2000-12-09 2001-12-27 Институт катализа им. Г.К. Борескова СО РАН Катализатор и способ получения синтез-газа или обогащенной водородом газовой смеси из водно-спиртовых смесей
US7947120B2 (en) * 2007-05-18 2011-05-24 Exxonmobil Research And Engineering Company Temperature swing adsorption of CO2 from flue gas using a parallel channel contractor
US20100080754A1 (en) * 2008-09-29 2010-04-01 Iep Process for producing hydrogen with complete capture of co2 and recycling unconverted methane

Also Published As

Publication number Publication date
RU2011146309A (ru) 2013-05-27

Similar Documents

Publication Publication Date Title
Amphlett et al. Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells
Mendes et al. Enhancing the production of hydrogen via water–gas shift reaction using Pd-based membrane reactors
Han et al. Purifier-integrated methanol reformer for fuel cell vehicles
Wu et al. Modeling of a novel SOFC-PEMFC hybrid system coupled with thermal swing adsorption for H2 purification: Parametric and exergy analyses
Wang et al. Kinetic and thermodynamic analyses of mid/low-temperature ammonia decomposition in solar-driven hydrogen permeation membrane reactor
Ortiz et al. Optimization of power and hydrogen production from glycerol by supercritical water reforming
RU2561755C2 (ru) Способ работы и устройство газотурбинной установки
Yang et al. Characteristics of methane reforming using gliding arc reactor
El-Shafie et al. Energy and exergy analysis of hydrogen production from ammonia decomposition systems using non-thermal plasma
Zhao et al. Mid/low-temperature solar hydrogen generation via dry reforming of methane enhanced in a membrane reactor
CN110739471B (zh) 基于重整制氢装置与燃料电池的热电联供系统
Hedayati et al. Exergetic study of catalytic steam reforming of bio-ethanol over Pd–Rh/CeO2 with hydrogen purification in a membrane reactor
Basile et al. An experimental investigation on methanol steam reforming with oxygen addition in a flat Pd–Ag membrane reactor
Prigent On board hydrogen generation for fuel cell powered electric cars. A review of various available techniques
CN105720285A (zh) 一种封闭式燃料电池氢源系统
Giunta et al. Simulation of a hydrogen production and purification system for a PEM fuel-cell using bioethanol as raw material
WO2017051610A1 (ja) 内燃機関
RU2485330C1 (ru) Способ генерации энергии
KR101136234B1 (ko) 폐열을 이용한 바이오가스 개질 시스템 및 바이오가스 개질 방법
JP2022076978A (ja) 燃料電池から排出されるオフガスを処理するためのシステムおよび方法。
JP4728837B2 (ja) 水素供給システム
JP4945158B2 (ja) 燃料電池発電システム
CN106374124A (zh) 一种利用甲醇催化氧化进行加热的重整室
Li et al. CO removal by two-stage methanation for polymer electrolyte fuel cell
JPS59224074A (ja) 燃料電池用燃料の処理方法

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20160405

MM4A The patent is invalid due to non-payment of fees

Effective date: 20161117