RU2483830C1 - Способ непрерывной разливки металлов - Google Patents

Способ непрерывной разливки металлов Download PDF

Info

Publication number
RU2483830C1
RU2483830C1 RU2011148463/02A RU2011148463A RU2483830C1 RU 2483830 C1 RU2483830 C1 RU 2483830C1 RU 2011148463/02 A RU2011148463/02 A RU 2011148463/02A RU 2011148463 A RU2011148463 A RU 2011148463A RU 2483830 C1 RU2483830 C1 RU 2483830C1
Authority
RU
Russia
Prior art keywords
mold
water
cooling
metal
channels
Prior art date
Application number
RU2011148463/02A
Other languages
English (en)
Inventor
Александр Валентинович Куклев
Дмитрий Рудольфович Ганин
Шамиль Борисович Манюров
Виктор Анатольевич Капитанов
Миннегаяз Миндарович Мустафин
Original Assignee
Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" filed Critical Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина"
Priority to RU2011148463/02A priority Critical patent/RU2483830C1/ru
Application granted granted Critical
Publication of RU2483830C1 publication Critical patent/RU2483830C1/ru

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

Изобретение относится к металлургии, в частности к охлаждению кристаллизатора установки непрерывного литья заготовок. Способ включает разливку расплавленного металла в кристаллизатор, отвод тепла от металла протекающей в каналах кристаллизатора водой, прошедшей одновременную ультразвуковую и магнитную обработку, вытягивание из кристаллизатора затвердевающего слитка. Достигается снижение выделений накипи на поверхности каналов кристаллизатора, выравнивание теплоотвода от металла к стенкам кристаллизатора, экономия расхода воды на охлаждение кристаллизатора, увеличение эффективности охлаждения слитка и его качества. 3 пр., 3 табл.

Description

Изобретение относится к металлургии, в частности к охлаждению кристаллизатора при получении непрерывнолитых заготовок из высокотемпературных металлов.
Известен способ непрерывного литья металла в кристаллизатор, предложенный в 1840 г. В. Селлерсом, предусматривающий охлаждение кристаллизатора циркулирующей водой [патент США №1908].
Известен способ непрерывной разливки металла в кристаллизатор, включающий разливку расплавленного металла в кристаллизатор, отвод тепла протекающей в каналах кристаллизатора водой от подаваемого в его полость металла, вытягивание из кристаллизатора затвердевающего слитка [DE 51217, 30.07.1889].
Данный способ по совокупности технических признаков и назначению является наиболее близким аналогом (прототипом) к предлагаемому изобретению.
К недостаткам данного способа относятся: выделение на поверхности водоохлаждаемых каналов в кристаллизаторе слоев накипи, отложение солей, увеличивающих гидравлическое сопротивление и ухудшающих распределение воды в кристаллизаторе, приводящих к неравномерному теплообмену между разливаемым металлом и стенками кристаллизатора, снижающих эффективность охлаждения слитка и ухудшающих его качество, сокращающих срок службы кристаллизатора; создание предпосылок к аварийным ситуациям, связанным с прорывами металла. Так, слой накипи толщиной 2,4 мм уменьшает тепловой поток на 50%.
Задачей, на решение которой направлено предлагаемое изобретение, является разработка эффективного способа непрерывной разливки металлов улучшающего охлаждение слитка и его качество, снижающего предпосылки к возможным аварийным ситуациям.
Технический результат, достигаемый в заявленном изобретении, заключается в снижении выделений на поверхности водоохлаждаемых каналов в кристаллизаторе слоев накипи, отложений солей, в выравнивании теплоотвода от разливаемого металла к стенкам кристаллизатора, в экономии расхода воды на охлаждение кристаллизатора, в увеличении срока службы кристаллизатора и улучшении качества непрерывнолитых слитков.
Указанный технический результат достигается тем, что в способе непрерывной разливки металлов, включающем разливку расплавленного металла в кристаллизатор, отвод тепла протекающей в каналах кристаллизатора водой от подаваемого в его полость металла, вытягивание из кристаллизатора затвердевающего слитка, согласно изобретению, отвод тепла от металла осуществляется водой, прошедшей ультразвуковую и одновременно магнитную обработку.
Диаметр каналов блочных и сборных кристаллизаторов из плит колеблется в пределах 20÷22 мм, иногда 12 мм, расстояние каналов до рабочей стенки составляет 25÷55 мм, шаг между ними 40÷60 мм, скорость протекания воды в каналах 4÷10 м/с.В гильзовых кристаллизаторах толщина гильзы составляет 5÷19 мм, размеры щели 4÷7×18÷25 мм, скорость протекания воды 4,2÷15 м/с, иногда даже 1,3÷1,6 м/с. К характеристикам, подаваемой для охлаждения кристаллизатора воды, предъявляют следующие требования: водородный показатель рН=7÷9; карбонатная жесткость (СаСО3)≤50 мг/л; жесткость Mg(CaCO3)≤20 мг/л; щелочность (СаСО3)≤20÷200 мг/л; взвешенные твердые частицы ≤20 мг/л; максимальная крупность взвешенных частиц ≤200 мкм; растворенные твердые частицы ≤300 мг/л; общее содержание солей ≤500 мг/л; сульфаты (SO4)2-≤150 мг/л; хлориды (Cl)≤100 мг/л; силикаты (SiO2)≤40 мг/л; масло ≤2 мг/л; удельная электрическая проводимость ≤600 См/м [Куклев А.В., Лейтес А.В. Практика непрерывной разливки стали. - М.: Металлургиздат, 2011. - 432 с.].
В литературе по непрерывной разливке металлов встречаются указания, что «следует повысить требования к качеству воды, используемой для охлаждения», но реально можно использовать только имеющуюся в данном районе воду определенного качества. Применение химических способов очистки, промывание специальным раствором поверхностей каналов для подачи охлаждающей воды улучшает работу кристаллизаторов. Но химическая очистка воды требует высоких денежных затрат и ухудшает экологическую ситуацию. Кроме того, если через кристаллизатор циркулирует ограниченное количество охлаждающей воды с постоянным объемом, в него вводят добавки полимеров с целью использования «эффекта Б.Томса», так как добавка полиокса может снизить гидравлическое сопротивление на 50%. Но это также требует значительных денежных затрат.
Отложения различных солей на стенках каналов для охлаждения кристаллизатора приводят к резкому снижению эффективности их работы, а недостаточный отвод тепла часто влияет на весь процесс непрерывного литья и отрицательно сказывается на качестве получаемых слитков. Общий механизм отложения накипи и других инкрустаций заключается в возникновении и дальнейшем росте на твердых поверхностях кристаллов веществ, находящихся в растворе. Выделение кристаллов на стенках каналов происходит в том случае, если вблизи них находится пересыщенный раствор. Магнитная обработка (омагничивание) воды позволяет устранить пересыщение, поскольку выделение растворенных солей провоцируется в объеме воды. При магнитной обработке воды ускоряется процесс растворения неорганических солей. В большинстве случаев магнитная обработка эффективна при определенном солевом составе воды, то есть воды с определенной кальциевой карбонатной жесткостью. При использовании омагниченной воды значительно замедляется образование накипи. В системах охлаждения образование накипи происходит при температуре выше 30°С, что связано с понижением растворимости солей жесткости и интенсивным расходом бикарбонатов при температуре выше 40°С.
Несмотря на успехи в разработке систем охлаждения кристаллизаторов недостаточное внимание уделяется вопросам повышения эффективности охлаждения, в частности экономии воды. Не достаточно обеспечить эффективное охлаждение стенок или гильзы кристаллизатора, надо обеспечить такое охлаждение при минимально возможном расходе воды. Для интенсификации теплообмена в кристаллизаторах необходимо уменьшать расстояния от поверхности охлаждения до поверхности контакта со слитком. Это позволяет реализовать теплообмен при больших величинах удельного теплового потока при относительно низких величинах перепада температур по толщине стенки кристаллизатора. При этом будут меньше термические напряжения, которые обычно ускоряют износ кристаллизаторов и их деформации. Установлена прямая связь пораженности слябов поверхностными дефектами «продольные трещины по широким граням» и «продольные трещины по узким граням вблизи ребер» с состоянием кристаллизатора и его охлаждением. Одинаковое охлаждение стенок кристаллизатора должно быть обеспечено по всему периметру. Если вода не протекает в один или несколько каналов, могут образовываться продольные трещины. Угловые продольные трещины иногда становятся причиной прорывов жидкого металла.
Наряду с выравниванием распределения воды по отдельным каналам, целесообразно также увеличивать коэффициент теплоотдачи за счет турбулизации потока. Вода проходит через кристаллизатор за время менее 0,1 с. Необходимо обеспечить максимальную турбулизацию потока воды в каналах кристаллизатора, так как нельзя признать удовлетворительным процесс теплообмена, происходящий для каждого участка воды за это время, в котором успевает участвовать лишь незначительный объем воды, а остальной объем проходит через кристаллизатор без нагрева. За счет турбулизации потока воды, ее интенсивного перемешивания с тем, чтобы в теплообмене за время прохождения кристаллизатора успевал принять участие значительный объем воды, а не только ее поверхностный слой, можно увеличить коэффициент теплоотдачи. При турбулизации можно экономить воду уменьшением ее расхода.
При протекании воды через магнитное поле, либо в изменяющемся во времени магнитном поле достоверно изменяются следующие свойства воды: плотность, электрическая проводимость, вязкость, поверхностное натяжение, диэлектрическая проницаемость, магнитная восприимчивость, растворимость газов, скорость растворения солей, скорость фазовых переходов, адсорбция из раствора, проявляются изменения теплопроводности, водородного показателя рН, теплоты растворения солей. Наиболее вероятным механизмом действия магнитного поля на воду считают турбулизацию ее потоков, связанное с ней уменьшение степени гидратации микровзвесей и пузырьков газов, их коагуляцию и коалесценцию. Если благодаря большой скорости поток становится турбулентным, то эффект от магнитной обработки воды возрастает.
Турбулизация (наряду с рядом иных процессов) также возникает при ультразвуковой обработке водных растворов, тогда в них происходит кавитация. Поэтому возможно использование ультразвука для турбулизации потока и более эффективного охлаждения стенок и гильз кристаллизаторов. Известно, что под действием ультразвука происходит изменение ряда физико-химических свойств воды, таких как водородный показатель рН, электропроводность, окислительно-восстановительный потенциал и др. Акустическая кавитация вызывает также ряд эффектов: разрушение и диспергирование твердых тел, очистку, которые обязаны своим происхождением ударам при захлопывании кавитационных полостей и микропотокам вблизи пузырьков, ускорение химических реакций.
Оба вида обработки воды (ультразвуковая и магнитная) приводят к во многом схожим результатам. Одновременная обработка потока воды магнитным и ультразвуковым полем создает эффект больший, чем сумма эффектов от каждого вида воздействия порознь.
На уменьшение образования отложения солей жесткости влияют состав воды, напряженность магнитного поля, скорость движения воды, время нахождения воды в зоне магнитного поля. При циркуляции через каналы кристаллизатора обычной водопроводной воды эффект магнитной обработки заметен даже в не очень сильных магнитных полях, например с индукцией B = 0,1 Т л
Figure 00000001
. При этом линейная скорость протекания охлаждающей воды по каналам кристаллизатора имеет немаловажное значение. Наибольшие эффекты имеют место при скоростях потока 2,0÷2,5 м/с, а при существенно меньших скоростях эффекты, как правило, малы. Оптимальной должна быть не только скорость потока V
Figure 00000002
, но и индукция B
Figure 00000003
. Оптимальный диапазон значений
Figure 00000004
, при больших и меньших значениях B
Figure 00000003
эффекты, как правило, малы. Анализ экспериментальных данных показывает, что важны не сами по себе значения B
Figure 00000005
и V
Figure 00000006
, сколько их произведение B V
Figure 00000007
.
Предлагаемый способ осуществляют следующим образом. Расплавленный металл разливают в кристаллизатор. Отвод тепла протекающей в каналах кристаллизатора водой от подаваемого в его полость металла осуществляют водой, прошедшей ультразвуковую и одновременно магнитную обработку. Из кристаллизатора вытягивают затвердевающий слиток.
Пример 1.
Медь с добавками фосфора, серебра разливали в медный, хромированный кристаллизатор диаметром 200 мм. Отвод тепла протекающей в каналах кристаллизатора водой от подаваемого в его полость металла осуществляли водой с расходом 12 м3/ч, прошедшей ультразвуковую и одновременно магнитную обработку со следующими режимами: частотой 18 кГц и
Figure 00000008
. Скорость разливки составляла 0,5-0,6 м/мин. Далее из кристаллизатора вытягивали затвердевающий слиток и разрезали его на заготовки.
В результате снизились выделения на поверхности водоохлаждаемых каналов в кристаллизаторе слоев накипи и отложений солей, выровнялся теплоотвод от разливаемого металла к стенкам кристаллизатора, была достигнута экономия расхода воды на охлаждение кристаллизатора. При этом улучшилось охлаждение слитка и его качество, снизились предпосылки к возможным аварийным ситуациям, увеличился срок службы кристаллизатора, а прорывы металла отсутствовали. Количественные показатели достигаемого при реализации изобретения эффекта приведены в таблице 1 в сравнении со способом разливки того же металла при охлаждении его в кристаллизаторе водой без ультразвуковой и магнитной обработки.
Таблица 1
Обработка воды кристаллизатора Снижение образования накипи и отложений солей в каналах кристаллизатора, % Выравнивание теплоотвода от расплавленного металла к стенкам кристаллизатора, % Экономия расхода воды на охлаждение кристаллизатора, % Увеличение срока службы кристаллизатора, количество плавок Снижение продольных трещин на слитках, %
Магнитная 5 5,2 5,1 6 5
Ультразвуковая 4 4,3 3,9 5 4
Ультразвуковая и магнитная одновременно 20 20,5 19,1 18 9,8
Пример 2.
Сталь 09Г2С разливали в гильзовый кристаллизатор, из сплава меди с серебром (0,08-0,12%) и фосфором (0,06-0,012%) с температурой разупрочнения 250-360°С, для отливки заготовок сечением 125×125 мм со скоростью разливки 4,0 м/мин. Отвод тепла протекающей в каналах кристаллизатора водой от подаваемого в его полость металла осуществляли водой с расходом 1280 л/мин и давлением на входе 760 кПа, прошедшей ультразвуковую и одновременно магнитную обработку со следующими режимами: частотой 200 кГц и
Figure 00000009
. Далее из кристаллизатора вытягивали затвердевающий слиток и разрезали его на заготовки.
В результате снизились выделения на поверхности водоохлаждаемых каналов в кристаллизаторе слоев накипи и отложений солей, выровнялся теплоотвод от разливаемого металла к стенкам кристаллизатора, была достигнута экономия расхода воды на охлаждение кристаллизатора. При этом улучшилось охлаждение слитка и его качество, снизились предпосылки к возможным аварийным ситуациям, увеличился срок службы кристаллизатора, а прорывы металла отсутствовали. Количественные показатели достигаемого при реализации изобретения эффекта приведены в таблице 2 в сравнении со способом разливки того же металла при охлаждении его в кристаллизаторе водой без ультразвуковой и магнитной обработки.
Таблица 2
Обработка воды кристаллизатора Снижение образования накипи и отложений солей в каналах кристаллизатора, % Выравнивание теплоотвода от расплавленного металла к стенкам кристаллизатора, % Экономия расхода воды на охлаждение кристаллизатора, % Увеличение срока службы кристаллизатора, количество плавок Снижение продольных трещин на слитках, %
Магнитная 4,9 5 4,8 31 5,2
Ультразвуковая 4,2 4,1 4 24 4,8
Ультразвуковая и магнитная одновременно 16,9 15,8 12,8 54 8,9
Пример 3.
Сталь 17Г2СФ с содержанием алюминия 0,008%, содержанием (мас.%): С 0,15-0,20; Mn 1,2-1,6; Si 0,4-0,6 и V 0,05-0,12) разливали в составной из 4 плит кристаллизатор, из сплава меди с серебром и температурой рекристаллизации выше 350°С, на слябы сечением 240×1730 мм со скоростью разливки 1,0 м/мин. Отвод тепла протекающей в каналах кристаллизатора водой от подаваемого в его полость металла осуществляли водой, прошедшей ультразвуковую и одновременно магнитную обработку со следующими режимами: частотой 20 кГц и
Figure 00000010
. Далее из кристаллизатора вытягивали затвердевающий слиток и разрезали его на заготовки.
В результате снизились выделения на поверхности водоохлаждаемых каналов в кристаллизаторе слоев накипи и отложений солей, выровнялся теплоотвод от разливаемого металла к стенкам кристаллизатора, была достигнута экономия расхода воды на охлаждение кристаллизатора. При этом улучшилось охлаждение слитка и его качество, снизились предпосылки к возможным аварийным ситуациям, увеличился срок службы кристаллизатора, а прорывы металла отсутствовали. Количественные показатели достигаемого при реализации изобретения эффекта приведены в таблице 3 в сравнении со способом разливки того же металла при охлаждении его в кристаллизаторе водой без ультразвуковой и магнитной обработки.
Таблица 3
Обработка воды кристаллизатора Снижение образования накипи и отложений солей в каналах кристаллизатора, % Выравнивание теплоотвода от расплавленного металла к стенкам кристаллизатора, % Экономия расхода воды на охлаждение кристаллизатора, % Увеличение срока службы кристаллизатора, количество плавок Снижение продольных трещин на слитках, %
Магнитная 4,8 4,9 4,3 27 4,8
Ультразвуковая 4,4 4,2 4,1 22 4,5
Ультразвуковая и магнитная одновременно 15,2 13,8 10,1 45 9,1
Изобретение позволяет снизить выделения на поверхности водоохлаждаемых каналов в кристаллизаторе слоев накипи, отложений солей, выравнивать теплоотвод от разливаемого металла к стенкам кристаллизатора, экономить расход воды на охлаждение кристаллизатора, улучшить охлаждение слитка и его качество, увеличить срок службы кристаллизатора, снизить предпосылки к возможным аварийным ситуациям.

Claims (1)

  1. Способ непрерывной разливки металлов, включающий разливку расплавленного металла в кристаллизатор, отвод тепла протекающей в каналах кристаллизатора водой от подаваемого в его полость металла, вытягивание из кристаллизатора затвердевающего слитка, отличающийся тем, что отвод тепла от металла осуществляется водой, прошедшей ультразвуковую и одновременно магнитную обработку.
RU2011148463/02A 2011-11-29 2011-11-29 Способ непрерывной разливки металлов RU2483830C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011148463/02A RU2483830C1 (ru) 2011-11-29 2011-11-29 Способ непрерывной разливки металлов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011148463/02A RU2483830C1 (ru) 2011-11-29 2011-11-29 Способ непрерывной разливки металлов

Publications (1)

Publication Number Publication Date
RU2483830C1 true RU2483830C1 (ru) 2013-06-10

Family

ID=48785464

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011148463/02A RU2483830C1 (ru) 2011-11-29 2011-11-29 Способ непрерывной разливки металлов

Country Status (1)

Country Link
RU (1) RU2483830C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2742999C1 (ru) * 2018-09-27 2021-02-12 Кме Спешл Продактс Гмбх Плита кристаллизатора

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE51217C (de) * R. M. DAELEN in Düsseldorf, Kurfürstenstrafse 9 Schalen mit Wasserkühlung und beweglichem Boden für Güsse von Metallen
SU945081A1 (ru) * 1981-01-14 1982-07-23 Предприятие П/Я В-8772 Устройство дл обработки воды в магнитном поле
SU1579907A1 (ru) * 1988-08-09 1990-07-23 Всесоюзный Межотраслевой Научно-Исследовательский Институт По Защите Металлов От Коррозии Способ защиты от накипеобразовани поверхностей труб, теплообменников и емкостей в водных средах
RU2136603C1 (ru) * 1999-04-22 1999-09-10 Суханов Владислав Георгиевич Способ магнитной активации и деионизации воды
EP1029824A2 (en) * 1999-02-15 2000-08-23 Antonio Olivieri Physical system for the treatment of water and/or other liquids and/or hydrocarbons, gases, suited for preventing the formation of incrustations
RU74911U1 (ru) * 2008-03-27 2008-07-20 Закрытое акционерное общество "Максмир-М" Устройство для безреагентной обработки водных систем

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE51217C (de) * R. M. DAELEN in Düsseldorf, Kurfürstenstrafse 9 Schalen mit Wasserkühlung und beweglichem Boden für Güsse von Metallen
SU945081A1 (ru) * 1981-01-14 1982-07-23 Предприятие П/Я В-8772 Устройство дл обработки воды в магнитном поле
SU1579907A1 (ru) * 1988-08-09 1990-07-23 Всесоюзный Межотраслевой Научно-Исследовательский Институт По Защите Металлов От Коррозии Способ защиты от накипеобразовани поверхностей труб, теплообменников и емкостей в водных средах
EP1029824A2 (en) * 1999-02-15 2000-08-23 Antonio Olivieri Physical system for the treatment of water and/or other liquids and/or hydrocarbons, gases, suited for preventing the formation of incrustations
RU2136603C1 (ru) * 1999-04-22 1999-09-10 Суханов Владислав Георгиевич Способ магнитной активации и деионизации воды
RU74911U1 (ru) * 2008-03-27 2008-07-20 Закрытое акционерное общество "Максмир-М" Устройство для безреагентной обработки водных систем

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2742999C1 (ru) * 2018-09-27 2021-02-12 Кме Спешл Продактс Гмбх Плита кристаллизатора

Similar Documents

Publication Publication Date Title
JP6625065B2 (ja) 非接触式の溶融金属流れの制御
JP2010110765A (ja) 鋼の連続鋳造用装置
Cao et al. Research status and prospects of melt refining and purification technology of magnesium alloys
EP0401504B1 (en) Apparatus and method for continuous casting
RU2483830C1 (ru) Способ непрерывной разливки металлов
CN113231611B (zh) 一种低过热度等温共熔法确定连铸喂钢带工艺参数的方法
Miyazawa Continuous casting of steels in Japan
JP2008200732A (ja) 鋼の連続鋳造方法及び溶融亜鉛めっき鋼板の製造方法
CN201217067Y (zh) 连铸结晶器流场电磁控制装置
JP3593328B2 (ja) 溶鋼の鋳型内流動制御方法並びにそのための電磁場形成装置
JP2003164947A (ja) 鋼の連続鋳造法
JP4757661B2 (ja) 厚鋼板用大断面鋳片の垂直型連続鋳造方法
CN101244450A (zh) 一种制造空心铜合金铸锭的方法及其装置
Fan et al. Effect of holding pressure on density and cooling rate of cast Al-Si alloy during additive pressure casting
Hackl et al. Innovative Flow Control Refractory Products for the Continuous Casting Process
EP3238856B1 (en) A method of controlling the solidification process of continuously cast metals and alloys and a device for implementing the method
EP4212264A1 (en) Device for ultrasonic treatment and transfer of molten metal and method thereof
Zhu et al. The Design of New Submerged Entry Nozzles for Beam-Blank Continuous Casting
JP3538967B2 (ja) 連続鋳造方法
JP2000015404A (ja) 介在物欠陥の少ない連続鋳造鋳片の製造方法
Komarov et al. A novel ultrasonic casting process using controlled cavitation and melt flow in hot top molds
RU2349413C2 (ru) Способ непрерывной разливки стали
Yamada et al. Simulation of coagulation of non-metallic inclusions in tundish and their trapping into solidified shell in continuous casting mould
Li et al. A review of electromagnetic stirring on solidification characteristics of molten metal in continuous casting
JPS62130752A (ja) ブル−ムもしくはビレツトの連続鋳造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20141130