RU2483314C1 - Способ аэродиагностики высоковольтной линии электропередачи - Google Patents

Способ аэродиагностики высоковольтной линии электропередачи Download PDF

Info

Publication number
RU2483314C1
RU2483314C1 RU2011147003/28A RU2011147003A RU2483314C1 RU 2483314 C1 RU2483314 C1 RU 2483314C1 RU 2011147003/28 A RU2011147003/28 A RU 2011147003/28A RU 2011147003 A RU2011147003 A RU 2011147003A RU 2483314 C1 RU2483314 C1 RU 2483314C1
Authority
RU
Russia
Prior art keywords
uav
line
aircraft
magnetic field
power line
Prior art date
Application number
RU2011147003/28A
Other languages
English (en)
Inventor
Владимир Егорович Качесов
Дмитрий Евгеньевич Лебедев
Original Assignee
Ооо Научно-Производственное Предприятие "Энергоконсалт"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ооо Научно-Производственное Предприятие "Энергоконсалт" filed Critical Ооо Научно-Производственное Предприятие "Энергоконсалт"
Priority to RU2011147003/28A priority Critical patent/RU2483314C1/ru
Application granted granted Critical
Publication of RU2483314C1 publication Critical patent/RU2483314C1/ru

Links

Images

Abstract

Изобретение относится к электроэнергетике и может быть использовано для диагностики и локации дефектов в изоляции линий электропередачи, дефектов монтажа фазных проводов и арматуры, набросов на провода и т.д. Сущность: способ заключается в регистрации электрических высокочастотных импульсов вблизи линии электропередачи с помощью электромагнитного датчика и подключенного к нему цифрового осциллографа при вдольтрассовом облете линии. Измерительную аппаратуру перемещают вдоль трассы линии электропередачи с помощью автоматически управляемого маломерного беспилотного летательного аппарата (БЛА). В процессе полета измеряют напряженности магнитного поля с помощью датчиков, расположенных по концам крыльев летательного аппарата, вычисляют среднее значение напряженности поля Нср=(Нпл)/2 и используют его для автоматического поддержания вертикального расположения летательного аппарата относительно проводов линии электропередачи, воздействуя на его руль высоты. Вдольтрассовое положение летательного аппарата автоматически поддерживают, воздействуя на киль, на основе разности измеренных напряженностей магнитного поля. Измерительную информацию и текущие координаты летательного аппарата, получаемые с помощью GPS- или ГЛОНАСС-навигаторов, записывают в память портативного компьютера, расположенного на БЛА. Технический результат: надежность навигации в условиях повышенной влажности окружающего воздуха. 2 ил.

Description

Изобретение относится к электроэнергетике и может быть использовано для локации дефектов в изоляции воздушных высоковольтных линий электропередачи (ЛЭП): дефектов монтажа проводов и арматуры, набросов на провода и т.д.
Известен способ диагностики высоковольтной воздушной линии электропередачи, основанный на измерении интенсивности электромагнитного излучения в видимой части спектра (Овсянников А.Г., Левичев В.Ю., Сибиряков В.Г. Электронно-оптический дефектоскоп «Филин-3» // Приборы и техника эксперимента. - 1987, №2). Для этого в темное время суток измеряют интенсивность свечения, создаваемого короной на дефектной изоляции высоковольтной линии электропередачи, и сопоставляют с интенсивностью свечения на неповрежденной изоляции. Недостаток такого способа - трудоемкость диагностики, требующая обхода всей линии электропередачи, а также необходимость выполнения измерений в темное время суток.
Известен также способ диагностики высоковольтной воздушной линии электропередачи (принятый в качестве прототипа), который осуществляется путем вдольтрассового облета линии электропередачи беспилотным летательным аппаратом (БЛА) с измерительной аппаратурой, измеряющей (и записывающей) интенсивность электромагнитного излучения (высокочастотных импульсов) в области частот от сотен кГц до десятков МГц путем вдольтрассового облета линий электропередачи (Патент 2421746 (от 10.02.2010), МПК G01R 31/08 . Способ диагностики высоковольтной линии электропередачи / Качесов В.Е., Лебедев Д.Е.// БИ №17, 2011). Диагностика и локация повреждений (дефектов) выполняется путем сопоставления (временной привязки) осциллограммы интенсивности электромагнитного высокочастотного излучения с одновременно записываемыми в портативный компьютер географическими координатами ЛЭП, получаемыми с помощью GPS- или ГЛОНАСС-навигации. Для измерения напряженности электрического поля ЛЭП, которое используется для пилотирования БЛА, применяются датчики, которые формируют сигнал, поступающий с обкладок электрического конденсатора (находящегося в электрическом поле ЛЭП). В случае диагностирования ВЛ при высокой влажности воздуха чувствительность датчиков падает, они могут вносить заметную погрешность измерения электрического поля ЛЭП из-за появления между измерительными электродами конденсаторов значительной активной проводимости. Последнее ограничивает надежную навигацию БЛА во влажной воздушной среде, что является недостатком этого способа. Кроме того, датчики электрического поля, находящиеся на концах крыльев, для минимизации искажения электрического поля должны иметь гальваническую развязку с измерительными цепями управления беспилотным летательным аппаратом, что усложняет его конструкцию.
Таким образом, анализ современного состояния уровня техники показывает, что задачей изобретения является создание более надежного способа навигации беспилотного летательного аппарата в условиях влажной окружающей воздушной среды.
Эта задача достигается тем, что в известном способе диагностики высоковольтной воздушной линии электропередачи, основанном на регистрации электрических высокочастотных импульсов вблизи линии электропередачи с помощью измерительной аппаратуры (электромагнитного датчика и подключенного к нему цифрового запоминающего осциллографа) путем вдольтрассового облета линии электропередачи, измерительную аппаратуру перемещают вдоль трассы линии с помощью автоматически управляемого маломерного беспилотного летательного аппарата (БЛА). Для управления беспилотным летательным аппаратом измеряют напряженность магнитного поля линии (H) с помощью электромагнитных датчиков, расположенных на концах крыльев БЛА, нормируют ее по отношению к току в линии (I л). Для этого на одном из концов линии измеряют ток, кодируют его значение и вводят эту информацию в высокочастотный канал связи, организованный по фазному проводу или грозозащитному тросу диагностируемой линии электропередачи. На борту летательного аппарата с помощью радиоприемника принимают высокочастотный сигнал, декодируют его, и получают текущее значение тока линии. Измеренные действующие значения напряженности магнитного поля на левом (H л.изм) и правом (H п.изм) концах крыльев нормируют по отношению к некоторому заданному базисному току линии (I баз) H л= H л.изм I л/I баз, H п= H п.изм I л/I баз, вычисляют среднее значение напряженности магнитного поля H ср=(H п+H л)/2 и сравнивают его с наперед заданным значением H 0, определяющим вертикальное положение летательного аппарата относительно проводов линии электропередачи. При пилотировании БЛА под проводами линии электропередачи и выполнении условия Н ср<Н 0 посредством системы автоматического пилотирования, находящейся на БЛА, воздействуют на руль высоты и увеличивают ее (т.е. уменьшают расстояние от провода до БЛА), при Н ср>Н 0 высоту уменьшают (увеличивают расстояние от провода до БЛА). Вдольтрассовое положение БЛА автоматически поддерживают, воздействуя на киль на основе разности измеренных напряженностей магнитного поля (ΔН=Н п-Н л): при положительном значении ΔН воздействуют на киль и смещают БЛА вправо, при отрицательном значении ΔН направляют летательный аппарат влево. В случае пилотирования БЛА над проводами линии электропередачи и изменении Н ср и ΔН действуют соответственно на руль высоты и киль БЛА обратным образом по отношению к способу пилотирования БЛА под проводами линии электропередачи. Измерительную информацию, поступающую от цифрового осциллографа, и текущие координаты БЛА, получаемые во время полета посредством GPS- или ГЛОНАСС-навигаторов, записывают в долговременную память портативного компьютера, расположенного на БЛА.
На фиг.1 показаны провода линии электропередачи (1), кривые равной напряженности магнитного поля (2) и области (3) и (5) возможного расположения автоматически управляемого маломерного БЛА (4) в процессе диагностического облета высоковольтной воздушной ЛЭП; на фиг.2 - пример трассы ЛЭП (1) с прямолинейными участками I и II и участками (пунктирные стрелки), где управление БЛА (2) выполняется в ручном (радиоуправляемом) режиме.
Способ осуществляется следующим образом. На БЛА устанавливают измерительную аппаратуру: электромагнитный датчик высокочастотного излучения и цифровой осциллограф и радиоприемник, GPS- или ГЛОНАСС-навигаторы, на концах крыльев устанавливают датчики (устройства) измерения магнитного поля линии промышленной частоты. На одном из концов линии измеряют ток, кодируют его и вводят эту информацию в высокочастотный канал связи, организованный (по фазным проводам или тросам) на диагностируемой линии электропередачи. С помощью устройства радиоуправления (в ручном режиме) располагают БЛА под или над проводами воздушной ЛЭП, выполненной на опорах портального типа, и по радиоканалу включают устройство автоматического пилотирования, задавая расстояние до провода (высоту полета S) величиной напряженности магнитного поля H 0. Измеренное на концах крыльев значение напряженности магнитного поля нормируют по отношению к току линии Iл. Если в процессе облета ЛЭП беспилотный летательный аппарат располагают под проводами ЛЭП, то при уменьшении в процессе полета средней (по двум датчикам) напряженности магнитного поля Н ср вырабатывается сигнал, воздействующий на руль высоты и приводящий к ее увеличению относительно земли (т.е. к уменьшению расстояния от летательного аппарата до провода). Увеличение средней напряженности поля Н ср, наоборот, используют для уменьшения высоты полета (увеличения расстояния до проводов).
При расположении летательного аппарата под проводами (в областях 3 - фиг.1) напряженность магнитного поля, измеряемая на концах крыльев, имеет одинаковое значение, и система автоматического пилотирования не воздействует на киль летательного аппарата. При превышении напряженности поля, измеряемой на конце правого (по отношению к направлению движения) крыла БЛА (Н п), над напряженностью на конце левого крыла Н л, разностное значение ΔН положительно (ΔН>0), и вырабатывается сигнал, воздействующий на киль и заставляющий выполнять смещение БЛА вправо. Когда ΔН<0, вырабатывается сигнал для смещения БЛА влево. Таким образом, БЛА в полете находится (автоматически пилотируется) в области 3 (фиг.1).
В случае пилотирования БЛА над проводами ЛЭП (в зоне 5 - фиг.1) воздействуют на руль высоты и киль БЛА обратным образом по отношению к случаю пилотирования под проводами ЛЭП: при снижении Н ср воздействуют на руль высоты и уменьшают ее; при ΔН>0 вырабатывают сигнал и воздействуют на киль для смещения БЛА влево.
Полет БЛА вдоль участков, где направление линии мало отличается от прямолинейного, выполняется в полностью автоматическом режиме. На участках, где линия резко изменяет свое направление от прямолинейного и у системы автоматического управления недостаточна чувствительность, для верного изменения траектории полета БЛА оператор, находящийся на участке резкого изменения направления линии, отключает по радиоуправляемому устройству систему автопилотирования и выполняет перевод БЛА в требуемую зону полета (3) или (5) в ручном (радиоуправляемом) режиме (фиг.2 - пунктирные стрелки), после чего повторно включает систему автопилотирования. На конечном участке диагностируемой линии электропередачи посредством устройства радиоуправления БЛА переводят в ручной режим управления и выполняют его посадку на ровную площадку.
Пример. В соответствии с фиг.1 вертикальное положение летательного аппарата - приблизительно на расстоянии S=5 метров ниже центрального провода ЛЭП задают значением напряженности магнитного поля, равным Н 0≅2 А/м (при токе в линии 100 А). При увеличении в процессе автопилотирования напряженности магнитного поля Н ср относительно заданного выше значения Н 0 вырабатывается сигнал управления, воздействующий на руль высоты для уменьшения высоты полета БЛА (т.е. для увеличения расстояния S). При горизонтальном смещении БЛА относительно центрального провода на расстояние 1 м разность напряженностей магнитного поля ΔН (измеренная на высоте ~5 м ниже центрального провода) составляет ~0,5 А/м. При смещении БЛА влево на 1 м (ΔН>0) посредством системы автоматического пилотирования воздействуют на киль и направляют БЛА вправо; при смещении БЛА вправо (ΔН<0) и БЛА направляют влево.
Пилотирование БЛА в области 5 (над проводами ЛЭП - фиг.1) выполняют, воздействуя на руль высоты и киль обратным образом по отношению к случаю пилотирования в областях 3 (под проводами ЛЭП).
Таким образом, места дефектов на линии электропередачи, локально создающие коронный или поверхностный разряды, т.е. инициирующие высокочастотное электромагнитное излучение, определяются посредством несложной и нетрудоемкой аэродиагностики с помощью маломерного недорогого беспилотного летательного аппарата с надежной системой навигации, в том числе при облете диагностируемого объекта в воздушном пространстве с повышенной влажностью.

Claims (1)

  1. Способ диагностики высоковольтной воздушной линии электропередачи, заключающийся в регистрации электрических высокочастотных импульсов вблизи линии электропередачи с помощью измерительной аппаратуры (электромагнитного датчика и подключенного к нему цифрового запоминающего осциллографа) путем вдольтрассового облета линии электропередачи беспилотным летательным аппаратом, отличающийся тем, что для управления беспилотным летательным аппаратом измеряют напряженность магнитного поля линии (Н) с помощью электромагнитных датчиков, расположенных на концах крыльев БЛА, нормируют ее по отношению к току в линии (Iл), для этого на одном из концов линии измеряют ток, кодируют его значение и вводят эту информацию в высокочастотный канал связи, организованный по фазному проводу или грозозащитному тросу диагностируемой линии электропередачи, на борту летательного аппарата с помощью радиоприемника принимают высокочастотный сигнал, декодируют его и получают текущее значение тока линии, измеренные действующие значения напряженности магнитного поля на левом (Нл.изм) и правом (Нп.изм) концах крыльев нормируют по отношению к базисному току линии (Iбаз) Нлл.измIл/Iбаз, Нпп.измIл/Iбаз, вычисляют среднее значение напряженности магнитного поля Нср=(Нпл)/2 и сравнивают его с наперед заданным значением Н0, определяющим вертикальное положение летательного аппарата относительно проводов линии электропередачи, при пилотировании БЛА под проводами линии электропередачи и выполнении условия Нср0 посредством системы автоматического пилотирования, находящейся на БЛА, воздействуют на руль высоты и увеличивают ее (т.е. уменьшают расстояние от провода до БЛА), при Нср0 высоту уменьшают (увеличивают расстояние от провода до БЛА); вдольтрассовое положение БЛА автоматически поддерживают, воздействуя на киль на основе разности измеренных напряженностей магнитного поля (ΔН=Нпл), при положительном значении ΔН воздействуют на киль и смещают БЛА вправо, при отрицательном значении ΔН направляют летательный аппарат влево; при пилотировании БЛА над проводами линии электропередачи и изменении Нср и ΔН действуют соответственно на руль высоты и киль БЛА обратным образом по отношению к способу пилотирования БЛА под проводами линии электропередачи; измерительную информацию, поступающую от цифрового осциллографа, и текущие координаты БЛА, получаемые во время полета посредством GPS- или ГЛОНАСС-навигаторов, записывают в долговременную память портативного компьютера, расположенного на БЛА.
RU2011147003/28A 2011-11-18 2011-11-18 Способ аэродиагностики высоковольтной линии электропередачи RU2483314C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011147003/28A RU2483314C1 (ru) 2011-11-18 2011-11-18 Способ аэродиагностики высоковольтной линии электропередачи

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011147003/28A RU2483314C1 (ru) 2011-11-18 2011-11-18 Способ аэродиагностики высоковольтной линии электропередачи

Publications (1)

Publication Number Publication Date
RU2483314C1 true RU2483314C1 (ru) 2013-05-27

Family

ID=48792012

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011147003/28A RU2483314C1 (ru) 2011-11-18 2011-11-18 Способ аэродиагностики высоковольтной линии электропередачи

Country Status (1)

Country Link
RU (1) RU2483314C1 (ru)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2555585C1 (ru) * 2014-05-27 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Способ работы автоматического беспилотного комплекса диагностики высоковольтных воздушных линий электропередачи
WO2015115927A1 (ru) 2014-02-03 2015-08-06 Общество с ограниченной ответственностью "Лаборатория будущего" Способ и устройство для диагностики воздушных линий электропередач
RU2572166C1 (ru) * 2014-10-15 2015-12-27 Общество с ограниченной ответственностью "ОПТЭН" Волоконно-оптическая система контроля частичных разрядов на дефектах изоляции воздушной линии электропередачи
RU2639570C1 (ru) * 2017-01-18 2017-12-21 Сергей Григорьевич Кузовников Устройство для диагностики воздушных линий электропередач
CN108872724A (zh) * 2018-06-13 2018-11-23 国网浙江省电力有限公司金华供电公司 用于获取特高压直流线路状态的检测方法
RU2714514C1 (ru) * 2019-08-27 2020-02-18 Сергей Григорьевич Кузовников Устройство для диагностики воздушных линий электропередач
RU2748134C1 (ru) * 2021-02-01 2021-05-19 Общество с ограниченной ответственностью "Научно-Производственное предприятие "Центр роботизации процессов" Роботизированный комплекс контроля линий электропередач и электроподстанций.
CN115201582A (zh) * 2022-09-15 2022-10-18 国网湖北省电力有限公司经济技术研究院 一种高压输电电磁辐射检测方法及系统
RU2785445C1 (ru) * 2021-12-20 2022-12-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени И.С. ТУРГЕНЕВА" (ОГУ им. И.С. Тургенева) Способ завершения полета дрона в установленном районе аварийной посадки при осуществлении мониторинга состояния воздушной линии электропередачи в случае потери связи с наземным пунктом управления

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247293A (ja) * 2007-03-30 2008-10-16 Shikoku Air Service Co Ltd 航空巡視支援装置
RU2343438C1 (ru) * 2007-06-08 2009-01-10 Открытое акционерное общество "Камов" Автоматический беспилотный комплекс диагностики протяженных объектов, оснащенных собственной информационной системой
RU2421746C1 (ru) * 2010-02-10 2011-06-20 Ооо Научно-Производственное Предприятие "Энергоконсалт" Способ диагностики высоковольтной линии электропередачи
CN202042825U (zh) * 2011-03-09 2011-11-16 南京航空航天大学 基于多旋翼无人飞行器的输电线路巡检系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247293A (ja) * 2007-03-30 2008-10-16 Shikoku Air Service Co Ltd 航空巡視支援装置
RU2343438C1 (ru) * 2007-06-08 2009-01-10 Открытое акционерное общество "Камов" Автоматический беспилотный комплекс диагностики протяженных объектов, оснащенных собственной информационной системой
RU2421746C1 (ru) * 2010-02-10 2011-06-20 Ооо Научно-Производственное Предприятие "Энергоконсалт" Способ диагностики высоковольтной линии электропередачи
CN202042825U (zh) * 2011-03-09 2011-11-16 南京航空航天大学 基于多旋翼无人飞行器的输电线路巡检系统

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115927A1 (ru) 2014-02-03 2015-08-06 Общество с ограниченной ответственностью "Лаборатория будущего" Способ и устройство для диагностики воздушных линий электропередач
US10705131B2 (en) 2014-02-03 2020-07-07 Obschestvo S Ogranichennoj Otvetstvennostyu “Laboratoriya Buduschego” Method and apparatus for locating faults in overhead power transmission lines
RU2555585C1 (ru) * 2014-05-27 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Способ работы автоматического беспилотного комплекса диагностики высоковольтных воздушных линий электропередачи
RU2572166C1 (ru) * 2014-10-15 2015-12-27 Общество с ограниченной ответственностью "ОПТЭН" Волоконно-оптическая система контроля частичных разрядов на дефектах изоляции воздушной линии электропередачи
RU2639570C1 (ru) * 2017-01-18 2017-12-21 Сергей Григорьевич Кузовников Устройство для диагностики воздушных линий электропередач
CN108872724A (zh) * 2018-06-13 2018-11-23 国网浙江省电力有限公司金华供电公司 用于获取特高压直流线路状态的检测方法
RU2714514C1 (ru) * 2019-08-27 2020-02-18 Сергей Григорьевич Кузовников Устройство для диагностики воздушных линий электропередач
RU2748134C1 (ru) * 2021-02-01 2021-05-19 Общество с ограниченной ответственностью "Научно-Производственное предприятие "Центр роботизации процессов" Роботизированный комплекс контроля линий электропередач и электроподстанций.
RU2785445C1 (ru) * 2021-12-20 2022-12-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени И.С. ТУРГЕНЕВА" (ОГУ им. И.С. Тургенева) Способ завершения полета дрона в установленном районе аварийной посадки при осуществлении мониторинга состояния воздушной линии электропередачи в случае потери связи с наземным пунктом управления
CN115201582A (zh) * 2022-09-15 2022-10-18 国网湖北省电力有限公司经济技术研究院 一种高压输电电磁辐射检测方法及系统
CN115201582B (zh) * 2022-09-15 2022-12-27 国网湖北省电力有限公司经济技术研究院 一种高压输电电磁辐射检测方法及系统

Similar Documents

Publication Publication Date Title
RU2483314C1 (ru) Способ аэродиагностики высоковольтной линии электропередачи
RU2421746C1 (ru) Способ диагностики высоковольтной линии электропередачи
CN106526292B (zh) 一种适用于同塔多回特高压交、直流线路的无导线非接触验电系统及方法
CN102879692B (zh) 一种多旋翼无人机检测绝缘子方法与装置
JP5237472B2 (ja) ライン検査ロボット及びシステム
US20160216304A1 (en) Rapid high-resolution magnetic field measurements for power line inspection
US20170110015A1 (en) Magnetic navigation methods and systems utilizing power grid and communication network
CN105912024B (zh) 一种架空输电线路巡线无人机的电磁场定位方法及装置
CN108469838B (zh) 基于特高压线区电场等势面的无人机自主导航系统及方法
EP3250456A1 (en) Rapid high-resolution magnetic field measurements for power line inspection
KR101421576B1 (ko) 무인비행체를 이용한 항행안전무선신호 측정 시스템 및 방법
CN107196410B (zh) 一种地空一体变电站巡检系统及方法
CN202815124U (zh) 一种多旋翼无人机检测绝缘子装置
CN104597907A (zh) 一种架空输电线路无人机巡检系统飞行准确性评价方法
CN111896794A (zh) 一种架空线路无人机验电方法及装置
CN105867366A (zh) 一种变电站电力设备全自动智能巡检方法
KR101347839B1 (ko) 수질 모니터링 비행체 및 수질 모니터링 시스템
RU2720638C1 (ru) Устройство для мониторинга и диагностики высоковольтных линейных полимерных изоляторов
RU149069U1 (ru) Маломерный беспилотный летательный аппарат для диагностики высоковольтных электроустановок
CN103986533B (zh) 基于六自由度摇摆台的动中通天线跟踪性能检测方法
CN111580531B (zh) 用于输电线路的无人机验电方法及装置
RU2501031C2 (ru) Способ летных проверок наземных средств радиотехнического обеспечения полетов и устройства для его применения
Demule et al. Using UAV multicopters as an extension of ILS ground measurements: This innovative idea has already become reality in Switzerland
RU2497282C9 (ru) Способ оценки электромагнитной совместимости бортового оборудования в составе летательного аппарата в диапазоне частот от 10 кгц до 400 мгц
RU2753811C1 (ru) Способ и устройство бесконтактного дистанционного контроля технического состояния высоковольтных линейных изоляторов воздушных линий электропередач

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20141119