RU2483160C2 - Гидроэнергетическая установка замкнутого цикла - Google Patents

Гидроэнергетическая установка замкнутого цикла Download PDF

Info

Publication number
RU2483160C2
RU2483160C2 RU2011149765/13A RU2011149765A RU2483160C2 RU 2483160 C2 RU2483160 C2 RU 2483160C2 RU 2011149765/13 A RU2011149765/13 A RU 2011149765/13A RU 2011149765 A RU2011149765 A RU 2011149765A RU 2483160 C2 RU2483160 C2 RU 2483160C2
Authority
RU
Russia
Prior art keywords
turbine
pressure
receiving chamber
pressure tower
pipeline
Prior art date
Application number
RU2011149765/13A
Other languages
English (en)
Other versions
RU2011149765A (ru
Inventor
Нуриаздан Минуллович Алеев
Original Assignee
Нуриаздан Минуллович Алеев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Нуриаздан Минуллович Алеев filed Critical Нуриаздан Минуллович Алеев
Priority to RU2011149765/13A priority Critical patent/RU2483160C2/ru
Publication of RU2011149765A publication Critical patent/RU2011149765A/ru
Application granted granted Critical
Publication of RU2483160C2 publication Critical patent/RU2483160C2/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

Изобретение относится к гидроэнергетике, а именно, к сооружениям для получения электроэнергии при ограниченном объеме энергоносителя. Гидроэнергетическая установка содержит корпус, выполненный в виде вертикальной цилиндрической камеры и установленного внутри нее на расстоянии цилиндра, образующих сборный канал, компрессорную станцию, сообщенную воздуховодом с приемной камерой, гидрореактивную турбину с основным генератором, установленную на выходе турбинного трубопровода, расположенного в верхней части приемной камеры, хранилище рабочей жидкости и датчики уровней. Установка снабжена ковшовыми турбинами с генераторами, первой и второй напорными башнями, дополнительными датчиками уровней, один из которых расположен в первой напорной башне, второй - во второй напорной башне и цистерной с воздухом, сообщенной дополнительным воздуховодом с обратным клапаном с первой напорной башней. Напорные башни установлены внутри верхней части цилиндра. Первая напорная башня имеет воронкообразную форму, соединенную по центру с турбинным трубопроводом. Вторая напорная башня наставлена на первую напорную башню и снабжена напорными рукавами, расположенными в первой башне таким образом, что их выходы находятся над отверстием воронки первой напорной башни. Ковшовые турбины установлены напротив сопел гидрореактивной турбины по периметру приемной камеры. Сборный канал соединяет приемную камеру со второй напорной башней. Хранилище расположено в верхней части корпуса. На напорных рукавах и на входе турбинного трубопровода установлены вентили, а на одних валах с турбинами установлены маховики. Снижаются затраты энер�

Description

Изобретение относится к гидроэнергетике, а именно к сооружениям для получения электроэнергии при ограниченном объеме энергоносителя. И может быть автономно использовано во многих отраслях промышленности.
Известна гидроэнергетическая установка по патенту RU №2081966, включающая гидравлическую турбину с генератором, установленную на выходе турбинного водовода, соединенного с водохранилищем, водоприемную камеру с устройством для возврата воды в водохранилище, состоящую из не менее чем двух групп камер, сообщенных водоводами, такого же количества рычагов, соединенных поплавками, поплавковых камер, соединенных выводами гибких камер, а каждый вывод имеет запорную арматуру.
Недостатком известной установки является сложность конструкции и то, что для возврата воды в водохранилище необходимы большие затраты энергии извне.
Известна гидроэнергетическая установка по патенту RU №2318955, опубл. 10.03.2008. Данная гидроэнергетическая установка содержит корпус, выполненный в виде вертикальной цилиндрической камеры и установленного внутри нее на расстоянии цилиндра. образующих сборный канал, компрессорную станцию, сообщенную воздуховодом с приемной камерой, гидрореактивную турбину с генератором, установленную на выходе турбинного трубопровода, расположенного в верхней части приемной камеры, хранилище рабочей жидкости, датчики уровней. Эта гидроэнергетическая установка наиболее близка к предлагаемой.
Недостатком известной установки является то, что для возврата рабочей жидкости в водохранилище необходимы большие затраты энергии извне.
Задачей настоящего изобретения является снижение затрат энергии, необходимой для возврата рабочей жидкости в водохранилище.
Она решается тем. что гидроэнергетическая установка замкнутого цикла, содержащая корпус, выполненный в виде вертикальной цилиндрической камеры и установленного внутри нее на расстоянии цилиндра, образующих сборный канал, компрессорную станцию, сообщенную воздуховодом с приемной камерой, гидрореактивную турбину с основным генератором, установленную на выходе турбинного трубопровода, расположенного в верхней части приемной камеры, хранилище рабочей жидкости, датчики уровней, согласно изобретению снабжена ковшовыми турбинами с генераторами, первой и второй напорными башнями, дополнительными датчиками уровней, один из которых расположен в первой напорной башне, второй - во второй напорной башне, цистерну с воздухом, сообщенную дополнительным воздуховодом с обратным клапаном с первой напорной башней, при этом напорные башни установлены внутри верхней части цилиндра, первая напорная башня имеет воронкообразную форму, соединенную по центру с турбинным трубопроводом, вторая напорная башня наставлена на первую напорную башню и снабжена напорными рукавами, расположенными в первой башне таким образом, что их выходы находятся над отверстием воронки первой напорной башни, ковшовые турбины установлены напротив сопел гидрореактивной турбины по периметру приемной камеры, сборный канал соединяет приемную камеру со второй напорной башней, хранилище расположено в верхней части корпуса, на напорных рукавах и на входе турбинного трубопровода установлены вентили, на одних валах с турбинами установлены маховики.
Предлагаемая гидроэнергетическая установка замкнутого цикла иллюстрируется чертежами, представленными на фигурах 1-4.
На фиг.1 показан продольный разрез установки с заправленными первой, второй напорными башнями и хранилищем рабочей жидкостью.
На фиг.2 показан продольный разрез установки с образованным нижним бьефом.
На фиг.3 показан продольный разрез установки в рабочем режиме.
На фиг.4 показано размещение ковшовых турбин относительно сопел гидрореактивной турбины.
Гидроэнергетическая установка замкнутого цикла содержит корпус, выполненный в виде вертикальной цилиндрической камеры 1. Внутри нее на расстоянии установлен цилиндр 2 с образованием сборного канала 3. В верхней части цилиндра 2 расположены первая 4 и вторая 5 напорные башни, а в верхней части камеры 1 расположено хранилище 6 рабочей жидкости. В нижней части хранилища выполнено отверстие 7 для прохода жидкости, которое закрывается заглушкой 8. Заглушка соединена с установленным в направляющих 9 штоком 10 электропривода (не показано). Нижняя часть первой напорной башни 4 имеет воронкообразную форму, соединенную по центру с турбинным трубопроводом 11, внутри которого выполнены спиральные направляющие 12 из меди. Вторая напорная башня 5 наставлена на первую напорную башню 4. В нижней части башня 5 имеет напорные рукава 13, которые расположены в первой напорной башне 4 таким образом, что их выходы находятся над отверстием воронки в этой башне. На напорных рукавах 13 установлены вентили 14, на входе турбинного трубопровода - вентиль 15.
В нижней части камеры 1 расположена приемная камера 16. Корпус приемной камеры выполнен в виде расширяющейся к низу воронки, края которой соединены с нижней частью цилиндра 2. В верхней части корпуса приемной камеры 16 расположены выход турбинного трубопровода 11 с гидрореактивной турбиной 17 и основным генератором 18, который изолирован и установлен в отдельном машинном зале 19. Сборный канал 3 соединяет приемную камеру 16 со второй напорной башней 5. Приемная камера 16 воздуховодом 20 с обратным клапаном 21 сообщена с компрессором 22. Воздуховод 20 расположен над гидрореактивной турбиной 17. Напротив сопел 23 гидрореактивной турбины 17 по периметру приемной камеры 16 расположены ковшовые турбины 24 с генераторами 25. Генераторы 25 размещены в машинном зале (не показано). Внутри корпуса приемной камеры 16 находятся каналы 26 для отвода рабочей жидкости после прохождения через ковшовые турбины 24. Каналы 26 в нижней части самотечным каналом 27 соединяются со сборным каналом 3.
Установка имеет цистерну 28, которую заранее заполняют воздухом компрессором 22. Цистерна сообщена дополнительным воздуховодом 29 с обратным клапаном 30 с первой напорной башней 4.
Хранилище 6 имеет датчик уровня 31 и два отверстия: одно 32 - для заполнения его рабочей жидкостью, другое 33 - для отвода воздуха.
В приемной камере 16 установлен датчик 34 уровня нижнего бьефа 35, во второй напорной башне 5 - датчик 36 уровня верхнего бьефа 37, в первой напорной башне 4 - датчик 38 уровня, над которым создают воздушную подушку 39.
Камера 1 имеет два трубопровода 40, которые служат для отвода воздуха из сборного канала 3.
На одних валах с турбинами установлены маховики 41.
Трубопровод 42 с реверсивным клапаном предназначен для сброса напора воздуха для уменьшения числа оборотов турбин и генераторов.
Стрелками 43 показан путь рабочей жидкости в установке.
Гидроэнергетическая установка замкнутого цикла работает следующим образом.
Сначала заполняют рабочей жидкостью (водно-солевым раствором с добавлением мелкодисперсного полимера) хранилище 6, первую 4 и вторую 5 напорные башни, использовав внешнюю энергию для пуска установки. При этом закрывают вентиль 15 на входе турбинного трубопровода 11 и открывают заглушку 8 в хранилище 6 и вентили 14 на напорных рукавах 13. Через отверстия 32 и 7 в хранилище 6, напорные рукава 13 заполняют первую напорную башню 4 до уровня датчика 38, оставляя пространство для создания воздушной подушки 39. Затем закрывают вентили 14 на напорных рукавах 13. При закрытых вентилях 14 вторую напорную башню 5 заполняют рабочей жидкостью до уровня датчика 36 верхнего бьефа 37, например, 30 метров. Далее закрывают заглушку 8 и заполняют хранилище 6 до срабатывания датчика уровня 31. Хранилище 6 с рабочей жидкостью является резервным и обеспечивающим необходимый уровень верхнего бьефа 37 во второй напорной башне 5.
Затем открывают вентиль 15 на турбинном трубопроводе 11 и подают рабочую жидкость вниз по турбинному трубопроводу в гидрореактивную турбину 17. Причем спиральные направляющие 12 в турбинном трубопроводе придают жидкости вращательное движение. Одновременно открывают вентили 14 на напорных рукавах 13 и заглушку 8. Рабочая жидкость поступает из второй напорной башни 5 по напорным рукавам на вход турбинного трубопровода 11, а из хранилища 6 - во вторую напорную башню 5, что обеспечивает постоянный приток жидкости в гидрореактивную турбину 17 и приводит к раскрутке установленных на одном валу гидрореактивной турбины 17 и основного генератора 18. Поток истекающей через сопла 23 рабочей жидкости попадает на лопатки ковшовых турбин 24 и приводит их и генераторы 25 во вращение.
Рабочая жидкость, перетекая из первой напорной башни 4 по турбинному трубопроводу 11 и через гидрореактивную турбину 17, начинает заполнять камеру 1. При заполнении камеры 1 в приемной камере 16 остается воздух, создавая тем самым благоприятные условия для вращения гидрореактивной турбины 17 и основного генератора 18, соединенных соосно. При дальнейшем заполнении камеры 1 рабочей жидкостью и увеличении давления рабочей жидкости в нижней части камеры 1, уровень в приемной камере 16 будет повышаться.
При увеличении высоты столба жидкости h в камере 1 в соответствии с формулой давления р=ρgh, где ρ - плотность рабочей жидкости, g - ускорение свободного падения, пропорционально будет возрастать давление воздуха в приемной камере 16. Использование в качестве рабочей жидкости водно-солевого раствора приведет к возрастанию давления столба рабочей жидкости примерно на одну атмосферу при увеличении уровня рабочей жидкости в камере 1 на каждые 10 метров высоты столба. В соответствии с правилом сообщающихся сосудов это приведет к повышению уровня нижнего бьефа 35. Так как перед началом работы давление воздуха в приемной камере 16 соответствовало атмосферному (1 атм.), то для сохранения постоянного уровня нижнего бьефа при повышении уровня рабочей жидкости в камере 1 до 30 метров давление воздуха в приемной камере 16 должно соответствовать 4 атм. Это давление создают с помощью компрессора 22 через воздуховод 20 с обратным клапаном 21.
После того как гидрореактивная турбина 17 раскручивается до номинальной частоты вращения генераторов 25 ковшовых турбин 24 гидроэнергетическая установка готова к подключению нагрузки. Величиной этой нагрузки можно регулировать частоту вращения гидрореактивной турбины 17, а также соосно соединенного основного генератора 18 и ковшовых турбин 24, и соосно соединенных генераторов 25.
Такую регулировку частоты вращения гидрореактивной турбины 17 и генераторов 18 и 25 гидроэнергетической установки достигают следующим образом. Открывают обратный клапан 30 на воздуховоде 29, который подведен в верхнюю часть первой напорной башни 4 и, закачивая воздух из цистерны 28, создают воздушную подушку 39. Давление на поверхность рабочей жидкости оказывают до такого значения частоты вращения, при котором гидроэнергетическая установка начинает вырабатывать электроэнергию. Достигнув заданной частоты вращения, клапан 30 в воздуховоде 29 закрывают.
Давлением воздуха из цистерны 28 поддерживают необходимое давление воздуха на рабочую жидкость в напорной башне 4, компенсирующее высоту плотин речных ГЭС. При этом в приемной камере 16 давление воздуха тоже остается постоянным, тем самым контролирующим работу гидроэнергетической установки и нижнего бьефа 35.
Емкости напорных башен подобраны таким образом, чтобы в процессе работы гидроэнергетической установки при перетекании рабочей жидкости из первой напорной башни 4 по турбинному трубопроводу 11 в гидрореактивную турбину 17 уровень в напорной башне 4 оставался на прежнем заданном уровне. Поэтому для этого предусмотрена вторая напорная башня 5, соединенная рукавами 13 с башней 4, а напорная башня 5 заполняется из хранилища 6. В этом случае рабочая жидкость приобретает кольцевое возобновляемое движение сверху вниз.
Изобретение рассчитано на то, что выходящая из сопла гидрореактивной турбины 17 рабочая жидкость вращает основной генератор 18 и ковшовые турбины 24. Кинетическая энергия водного потока, поступающая в гидрореактивную турбину 17, используется дважды, приводя во вращательное движение ковшовые турбины 24 и генератор 18. Рабочая жидкость, стекая, образует нижний бьеф 35, который не может подняться выше уровня датчика 34 нижнего бьефа 35, положение которого тоже контролируется давлением воздуха. Рабочая жидкость, поднимаясь по сборному каналу 3 и достигнув напорной башни 5. снова возобновляемо повторяет цикл своего движения в гидроэнергетической установке в направлении, указанном стрелками 43.
Гидрореактивная турбина, основной генератор и маховик установлены на одной оси, что обеспечивает стабильность вращения с заданной частотой. При этом давление выходной струи из сопла гидрореактивной турбины вращает ковшовые турбины. При этом вращаются генераторы, соединенные соосно с ковшовыми турбинами, на валах которых, также, установлены маховики. Таким образом происходит «глубокий» отбор полезной энергии, получаемой от маховичных накопителей. Такая система позволяет обеспечить стабильное вращение и работу гидроэнергетической установки.
При необходимости экстренной остановки гидроэнергетической установки необходимо исключить доступ рабочей жидкости в гидрореактивную турбину и через некоторое время работы за счет накопленной маховиками энергии гидрореактивная турбина и ковшовые турбины остановятся уже принудительно.
Повторно пуск гидроэнергетической установки можно осуществить путем подачи воздуха в приемную камеру 16 и образования нижнего бьефа 35, дистанционно открыв вентиль 15 на турбинном трубопроводе 11. При этом рабочая жидкость начнет поступать в гидрореактивную турбину 17 и выходящая струя из сопел 23 гидрореактивной турбины начнет вращать ковшовые турбины 24, уровень рабочей жидкости поднимается до второй напорной башни 5 и она начнет перетекать по напорным рукавам 13 в первую напорную башню 4 в воронкообразную часть турбинного трубопровода. За счет спирального расположения направляющих 12, обуславливающих дополнительный вакуум, рабочая жидкость при поступлении в гидрореактивную турбину 17 получает дополнительное ускорение и образует водяной шнур (аналогично перевернутому смерчу).
Дополнительно создавая напор избыточным давлением на поверхность рабочей жидкости с помощью предварительно закачанного в цистерну 28 воздуха, можно ускорить движение рабочей жидкости по турбинному трубопроводу в гидрореактивную турбину. При этом выходящая струя рабочей жидкости из сопла гидрореактивной турбины вращает также и ковшовые турбины. Такой принцип работы гидроэнергетической установки обеспечивает выработку экологически чистой электроэнергии в сравнении с речной ГЭС на один турбинный трубопровод с КПД более 100%.
Дополнительно рабочая жидкость после пуска в работу гидроэнергетической установки начинает поступать одновременно из хранилища во вторую напорную башню, где одновременно, создавая напор, поступает через рукава в первую напорную башню. Рабочая жидкость, выходя из рукавов, поступает непосредственно в воронкообразную часть турбинного трубопровода и рабочий цикл возобновляемо повторяется, сопровождаясь выработкой электроэнергии генератором. При этом большая часть энергии поступает потребителям, меньшая часть идет на поддержание работы гидроэнергетической установки. Увеличивая или уменьшая давление воздуха на поверхность рабочей среды, в первой напорной башне можно изменять частоту вращения гидрореактивной турбины, а следовательно, и электрогенератора.
Важным элементом гидроэнергетической установки, обеспечивающим стабильность работы турбин и генераторов, являются маховики. Разгоняя маховики их же энергией можно обеспечить оптимальные условия работы турбин и генераторов. Соединив единым валом турбины, маховики и генераторы, получают «мягкость» рабочей характеристики, необходимую для большинства машин.
При этом положительное воздействие как от маховиков, так и от турбин, заключается в следующем:
- маховик запасает энергию крутящего момента;
- гидрореактивная турбина тоже накапливает механическую энергию крутящего момента.
Кроме этого необходимо также отметить следующие особенности:
- одновременно вращаются все турбины;
- не нарушается синхронность работы гидрореактивной турбины и ковшовых турбин; частота вращения турбин при ускорении не остается постоянной, а регулируется в соответствии с требуемым режимом работы гидроэнергетической установки;
- поток рабочей жидкости при спиральном перемещении по турбинному трубопроводу образует вихревой шнур и влечет за собой образование воронки на поверхности рабочей жидкости на входных отверстиях приемной части турбинного трубопровода;
- давление воздуха на поверхность рабочей жидкости в первой напорной башне управляет частотой вращения гидрореактивной турбины;
- при раскручивании рабочей жидкости в турбинном трубопроводе скорость потока увеличивается, а это означает, что в вихревом шнуре рабочей жидкости возрастает не только тангенциальная, но и осевая скорость потока;
- материал стенок турбинного трубопровода - полированная медь.
Скорость потока рабочей жидкости в турбинном трубопроводе зависит от гидродинамического сопротивления материала стенок закрученному потоку рабочей жидкости в нем. Минимальным гидродинамическим сопротивлением обладает полированная медь.
Трение в турбинном трубопроводе с увеличением скорости потока (скорость потока жидкости можно увеличить путем увеличения давления воздуха на поверхность рабочей жидкости в первой напорной башне) рабочей жидкости уменьшается и после превышения некоторой критической скорости рабочая жидкость течет с отрицательным сопротивлением, то есть засасывается в турбинном трубопроводе и ускоряется в нем. При этом отпадает необходимость строить гидроэнергетическую установку высоко как плотину речной ГЭС для получения того же давления энергоносителя на турбине. Гидрореактивная турбина без потерь пропускает через свою рабочую камеру и через сопла рабочую жидкость.
Предлагаемая гидроэнергетическая установка замкнутого цикла может быть создана с использованием известных материалов и стандартного оборудования.

Claims (1)

  1. Гидроэнергетическая установка замкнутого цикла, содержащая корпус, выполненный в виде вертикальной цилиндрической камеры и установленного внутри нее на расстоянии цилиндра, образующих сборный канал, компрессорную станцию, сообщенную воздуховодом с приемной камерой, гидрореактивную турбину с основным генератором, установленную на выходе турбинного трубопровода, расположенного в верхней части приемной камеры, хранилище рабочей жидкости, датчики уровней, отличающаяся тем, что она снабжена ковшовыми турбинами с генераторами, первой и второй напорными башнями, дополнительными датчиками уровней, один из которых расположен в первой напорной башне, второй - во второй напорной башне, цистерной с воздухом, сообщенной дополнительным воздуховодом с обратным клапаном с первой напорной башней, при этом напорные башни установлены внутри верхней части цилиндра, первая напорная башня имеет воронкообразную форму, соединенную по центру с турбинным трубопроводом, вторая напорная башня наставлена на первую напорную башню и снабжена напорными рукавами, расположенными в первой башне таким образом, что их выходы находятся над отверстием воронки первой напорной башни, ковшовые турбины установлены напротив сопел гидрореактивной турбины по периметру приемной камеры, сборный канал соединяет приемную камеру со второй напорной башней, хранилище расположено в верхней части корпуса, на напорных рукавах и на входе турбинного трубопровода установлены вентили, на одних валах с турбинами установлены маховики.
RU2011149765/13A 2011-12-08 2011-12-08 Гидроэнергетическая установка замкнутого цикла RU2483160C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011149765/13A RU2483160C2 (ru) 2011-12-08 2011-12-08 Гидроэнергетическая установка замкнутого цикла

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011149765/13A RU2483160C2 (ru) 2011-12-08 2011-12-08 Гидроэнергетическая установка замкнутого цикла

Publications (2)

Publication Number Publication Date
RU2011149765A RU2011149765A (ru) 2012-03-20
RU2483160C2 true RU2483160C2 (ru) 2013-05-27

Family

ID=46029907

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011149765/13A RU2483160C2 (ru) 2011-12-08 2011-12-08 Гидроэнергетическая установка замкнутого цикла

Country Status (1)

Country Link
RU (1) RU2483160C2 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU484280A1 (ru) * 1972-02-21 1975-09-15 Ленинградский Ордена Ленина Политехнический Институт Им.М.И. Калинина Гидроаккумулирующа электростанци
SU1693191A1 (ru) * 1989-08-07 1991-11-23 Казахский научно-исследовательский институт энергетики Гидроаккумулирующа электростанци
RU2081966C1 (ru) * 1994-06-22 1997-06-20 Шевела Алексей Михайлович Гидроэнергетическая установка
DE10028431A1 (de) * 2000-06-13 2002-03-07 Nicolas Chatzigrigoriou Wasserkraftwerk
RU55794U1 (ru) * 2006-04-03 2006-08-27 Нуриаздан Минуллович Алеев Гидроэлектрическая станция без плотины
RU2318955C2 (ru) * 2006-04-14 2008-03-10 Нуриаздан Минуллович Алеев Гидроэнергетическая установка
US20110133466A1 (en) * 2009-04-08 2011-06-09 Kamen George Kamenov Hybrid water pressure energy accumulating wind turbine and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU484280A1 (ru) * 1972-02-21 1975-09-15 Ленинградский Ордена Ленина Политехнический Институт Им.М.И. Калинина Гидроаккумулирующа электростанци
SU1693191A1 (ru) * 1989-08-07 1991-11-23 Казахский научно-исследовательский институт энергетики Гидроаккумулирующа электростанци
RU2081966C1 (ru) * 1994-06-22 1997-06-20 Шевела Алексей Михайлович Гидроэнергетическая установка
DE10028431A1 (de) * 2000-06-13 2002-03-07 Nicolas Chatzigrigoriou Wasserkraftwerk
RU55794U1 (ru) * 2006-04-03 2006-08-27 Нуриаздан Минуллович Алеев Гидроэлектрическая станция без плотины
RU2318955C2 (ru) * 2006-04-14 2008-03-10 Нуриаздан Минуллович Алеев Гидроэнергетическая установка
US20110133466A1 (en) * 2009-04-08 2011-06-09 Kamen George Kamenov Hybrid water pressure energy accumulating wind turbine and method

Also Published As

Publication number Publication date
RU2011149765A (ru) 2012-03-20

Similar Documents

Publication Publication Date Title
EP2644884B1 (en) Water flow electricity generating device
JP2009144721A (ja) 複数のエネルギー入力を有する水力発電システム
US20100170236A1 (en) Atmospheric pressure hydropower plant
US8664786B1 (en) Underwater pumped-hydro energy storage
JP2013525663A (ja) 流体力学サイクル発生技術
US20100059999A1 (en) Sea Floor Pump Tailrace Hydraulic Generation System
JP2016517923A (ja) 潜水式水力発電機装置およびかかる装置から水を排出する方法
US20140133961A1 (en) Method and device for producing a driving force by bringing about differences in a closed gas/liquid system
JP2014533807A (ja) タービン装置
KR100995404B1 (ko) 공기에 의해 기밀되는 발전기를 가지는 조류 발전용 터빈
EP2302202A1 (en) Hydraulic propulsion for increases of hydroelektric power station capacity
RU2483160C2 (ru) Гидроэнергетическая установка замкнутого цикла
KR101190268B1 (ko) 가변 증속 기능을 가진 파력발전기
US20120200088A1 (en) Sipoline Hydro Electric Generator
WO2014035267A1 (en) Buoyancy power plant
AU2019203242A1 (en) Harnessing wave power
KR20190072503A (ko) 파도에너지 변환기
EP1826399A2 (en) Supply device for a rotor of a water powered machine and a system for the production of electrical energy from wave motion using said device
JP2005023799A (ja) 沈水式発電装置
JP6671061B2 (ja) 液体揚水循環装置
RU2663436C2 (ru) Погружная гидроэлектростанция
WO2021117252A1 (ja) 液体揚水循環装置
CN201401267Y (zh) 虹吸式流体动力装置
JP2004124866A (ja) 沈水式発電装置
KR200458527Y1 (ko) 조류에너지의 풍력발전에너지로의 변환효율을 극대화하는 방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20131209

NF4A Reinstatement of patent

Effective date: 20161227

MM4A The patent is invalid due to non-payment of fees

Effective date: 20181209