RU2480810C1 - Источник опорного напряжения отрицательной полярности - Google Patents

Источник опорного напряжения отрицательной полярности Download PDF

Info

Publication number
RU2480810C1
RU2480810C1 RU2012105387/08A RU2012105387A RU2480810C1 RU 2480810 C1 RU2480810 C1 RU 2480810C1 RU 2012105387/08 A RU2012105387/08 A RU 2012105387/08A RU 2012105387 A RU2012105387 A RU 2012105387A RU 2480810 C1 RU2480810 C1 RU 2480810C1
Authority
RU
Russia
Prior art keywords
transistor
source
base
emitter
field
Prior art date
Application number
RU2012105387/08A
Other languages
English (en)
Inventor
Евгений Иванович Старченко
Павел Сергеевич Кузнецов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС")
Priority to RU2012105387/08A priority Critical patent/RU2480810C1/ru
Application granted granted Critical
Publication of RU2480810C1 publication Critical patent/RU2480810C1/ru

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

Изобретение относится к области электротехники и может использоваться при проектировании стабилизаторов напряжения, аналого-цифровых и цифроаналоговых преобразователей и других элементов автоматики и вычислительной техники. Технический результат заключается в повышении температурной стабильности выходного напряжения ИОН при одновременном упрощении устройства и повышении радиационной стойкости при воздействии потока нейтронов. ИОН отрицательной полярности содержит 2 транзистора, 2 полевых транзистора, 3 резистора, повторитель тока и регулирующий элемент. 7 ил.

Description

Предлагаемое изобретение относится к области электротехники и может использоваться в стабилизаторах напряжения, аналогово-цифровых преобразователях и других элементах автоматики и вычислительной техники.
Известны источники опорного напряжения (ИОН), имеющие высокую стабильность, но содержащие в своем составе биполярные транзисторы p-n-p типа и полевые транзисторы с изолированным затвором, что снижает их радиационную стойкость [Haiplik, H. Voltage Reference Circuit / US patent No. 7626374, Dec. 1, 2009].
Наиболее близким техническим решением, принятым за прототип, является ИОН, приведенный в [Dobkin R.C., Pease R.A. Voltage regulator and current regulator / US Patent No. 4176308, Nov.27, 1979].
На фиг.1 показана схема прототипа, содержащая первый и второй транзисторы, коллекторы которых подключены к общей шине, база первого транзистора подключена к общей шине, а его эмиттер - к эмиттеру третьего транзистора, эмиттер второго транзистора подключен к эмиттеру четвертого транзистора, первый коллектор третьего транзистора, первый коллектор четвертого транзистора и их базы объединены и через источник тока подключены к шине отрицательной полярности источника питания, первый резистор, включенный между вторым коллектором третьего транзистора и шиной отрицательной полярности источника питания, второй резистор, включенный между вторым коллектором четвертого транзистора и шиной отрицательной полярности источника питания, операционный усилитель, неинвертирующим входом подключенный ко второму коллектору третьего транзистора, инвертирующим - ко второму коллектору четвертого транзистора, третий резистор, включенный между базой второго транзистора и общей шиной, четвертый резистор, включенный между базой второго транзистора и объединенными базой и коллектором пятого транзистора, эмиттер пятого транзистора соединен с выходом операционного усилителя и подключен к выходу устройства.
Недостатком прототипа является его сложность, относительно низкая температурная стабильность и наличие в его составе транзисторов PNP типа, что снижает его радиационную стойкость, в частности, при воздействии потока нейтронов.
Задачей предлагаемого изобретения является повышение температурной стабильности выходного напряжения ИОН при одновременном упрощении устройства и повышении его радиационной стойкости при воздействии потока нейтронов.
Для решения поставленной задачи в схему прототипа, содержащую первый и второй транзисторы, коллекторы которых подключены к общей шине, первый резистор, включенный между базой второго транзистора и общей шиной, второй резистор, включенный между базой второго транзистора и объединенными базой и коллектором третьего транзистора, эмиттер которого подключен к выходу устройства, четвертый резистор, введены первый и второй полевые транзисторы, повторитель тока и регулирующий элемент, причем третий резистор включен между базой первого транзистора и общей шиной, исток первого полевого транзистора соединен с эмиттером первого транзистора и затвором второго полевого транзистора, затвор первого полевого транзистора подключен к точке соединения эмиттера второго транзистора и истока второго полевого транзистора, исток первого полевого транзистора подключен ко входу повторителя тока, выход повторителя тока соединен с истоком второго полевого транзистора, питающий вход повторителя тока подключен к шине отрицательного источника питания, вход управления регулирующего элемента подключен к истоку второго полевого транзистора, вход питания регулирующего элемента подключен к шине отрицательной полярности источника питания, в выход регулирующего элемента подключен к выходу устройства.
Заявляемый ИОН (фиг.2) содержит первый транзистор 1, коллектор которого подключен к общей шине, второй транзистор 2, коллектор которого подключен к общей шине, первый полевой транзистор 3, исток которого соединен с эмиттером первого транзистора 1 и затвором второго полевого транзистора 4, исток второго полевого транзистора 4 соединен с эмиттером второго транзистора 2 и затвором первого полевого транзистора 3, первый резистор 5, включенный между базой второго транзистора 2 и общей шиной, второй резистор 6, включенный между базой второго транзистора 2 и объединенными базой и коллектором третьего транзистора 7, эмиттер которого подключен к выходу устройства, третий резистор 8, включенный между базой первого транзистора 1 и общей шиной, исток первого полевого транзистора 3 соединен со входом повторителя тока 8, выход которого соединен с истоком второго полевого транзистора 4, питающий вход повторителя тока 8 соединен с шиной отрицательной полярности источника питания, регулирующий элемент 9 входом управления соединен с истоком второго полевого транзистора 4, вход питания регулирующего элемента 9 подключен к шине отрицательной полярности источника питания, а выход регулирующего элемента 9 подключен к выходу устройства.
Работа устройства основана на том, что отрицательный температурный дрейф напряжения база-эмиттер третьего транзистора 7 компенсируется положительным температурным дрейфом разности напряжений база-эмиттер первого транзистора 1 и второго транзистора 2, которая возникает из-за разных плотностей токов, протекающих через эмиттеры первого транзистора 1 и второго транзистора 2. Повторитель тока 8 совместно с регулирующим элементом 9 обеспечивает равенство токов транзисторов 1 и 2 по абсолютной величине, чем достигается поддержание требуемой разности напряжений база-эмиттер транзисторов 1 и 2.
Покажем, что заявляемое устройство имеет преимущество перед прототипом по температурной стабильности.
Для выходного напряжения схемы прототипа (фиг.1) можно записать:
Figure 00000001
UБЭ.5 - напряжение база-эмиттер транзистора VT5; R3, R4 - сопротивления соответствующих резисторов R3, R4; I0 - ток через резистор R3, обусловленный разностью напряжений база-эмиттер транзисторов VT1 и VT3.
Для тока I0 будет справедливо следующее выражение:
Figure 00000002
где IЭ.1, IЭ.3 - токи эмиттеров транзисторов VT1 и VT3 соответственно; φТ - температурный потенциал; N=S3/S1 - отношение площадей эмиттеров транзисторов VT1 и VT3 соответственно.
С учетом того, что в устройстве действует глубокая отрицательная обратная связь с помощью операционного усилителя AD1, токи эмиттеров транзисторов VT1 и VT3 можно считать равными, поэтому выражение (2) можно представить в виде:
Figure 00000003
и тогда с учетом (3) выражение (1) перепишем в виде:
Figure 00000004
Вид выражения (4) является общим практически для всех ИОН, выполненных на основе ширины запрещенной зоны кремния. Дифференцируя это выражение по температуре и приравнивая производную нулю можно найти условие, при котором выходное напряжение не зависит от температуры. Но ввиду достаточно сложной зависимости напряжения база-эмиттер от температуры, таким образом, удается скомпенсировать только линейную составляющую температурного дрейфа, а с доминирующей после такой компенсации составляющей второго порядка в выходном напряжении приходится мириться.
Утверждение, приведенное выше, можно подтвердить результатами моделирования. На фиг.3 приведена схема прототипа, предназначенная для моделирования в среде PSpice, а на фиг.4 - результаты моделирования.
В качестве моделей использованы компоненты аналогового базового матричного кристалла, выпускаемые НПО «Интеграл» (Белоруссия, г. Минск) [Дворников О.В. Аналоговый биполярно-полевой БМК с расширенными функциональными возможностями / О.В.Дворников, В.А.Чеховской // Chip News. - 1999. №2. - С.21-23], а в качестве операционного усилителя использовалась макромодель uA741 из библиотеки analog.lib.
Результаты моделирования показывают, что производная выходного напряжения по температуре обращается в нуль только в одной точке - при температуре 35°С, а функциональная зависимость выходного напряжения от температуры близка к квадратичной. При этом максимальное отклонение выходного напряжения в диапазоне температур от -40°С до +120°С составляет 1,88 мВ, а относительный температурный дрейф - ±40 ppm/°C.
Моделирование схемы прототипа при воздействии потока нейтронов не проводилось, так как отсутствует модель операционного усилителя, учитывающая радиационное воздействие. Однако можно утверждать, что даже при использовании компонентов вышеназванного радиационно-стойкого АБМК деградация параметров транзисторов PNP типа столь велика, что нарушаются не только условия температурной компенсации, но и сама функциональная годность устройства [Дворников О.В. Комплексный подход к проектированию радиационно-стойких аналоговых микросхем. Часть 1. Учет влияния проникающей радиации в «Spice-подобных» программах / О.В.Дворников, В.Н.Гришков. Проблемы разработки перспективных микро- и наноэлектронных систем. - 2010. Сборник трудов / под общ. ред. академика РАН А.Л.Стемпковского. - М.: ИППМ РАН, 2010. С.301-306].
Приведем аналитические выражения, описывающие поведение выходного напряжения для схемы заявляемого устройства.
В этом случае выходное напряжение может быть представлено по аналогии с (1):
Figure 00000005
где UБЭ.5 - напряжение база-эмиттер третьего транзистора 5; I0 - ток через первый резистор 5; R5, R6 - сопротивления соответствующих резисторов (фиг.2).
Ток I0 определим из следующего соотношения:
Figure 00000006
где UБЭ.1, UБЭ.2 - напряжение база-эмиттер первого и второго транзисторов соответственно; IБ.1 - ток базы первого транзистора 1.
Из (6) следует:
Figure 00000007
где IЭ.1, IЭ.2 - токи эмиттеров первого транзистора 1 и второго транзистора 2 соответственно; β1 - коэффициент усиления тока базы первого транзистора 1.
Токи эмиттеров первого 1 и второго 2 транзисторов определяются начальным током истока полевых транзисторов 3 и 4, поскольку они функционируют при нулевом напряжении между затвором и истоком. Отметим, что этот ток практически не зависит от температуры.
Коэффициент усиления тока базы в зависимости от температуры можно представить как [Разевиг В.Д. Система сквозного проектирования электронных устройств DesingLab 8.0. - М.: СОЛОН-Р, 2003. С.301]
Figure 00000008
где Т - абсолютная температура; β0 - коэффициент усиления тока базы при комнатной (номинальной) температуре Т0.
Таким образом, коэффициент усиления тока базы с ростом температуры возрастает по закону «трех вторых».
Подставляя (7) и (8) в (5), получаем:
Figure 00000009
Выражение (9), показывающее поведение выходного напряжения заявляемого устройства в зависимости от температуры, отличается от аналогичного для схемы прототипа наличием третьего слагаемого в правой части, которое при правильном выборе сопротивлений резисторов может компенсировать составляющие температурного дрейфа более высоких порядков, что подтверждается результатами моделирования.
На фиг.5 приведена принципиальная электрическая схема, соответствующая схеме прототипа, представленная в моделирующей среде PSpice. На транзисторах q4, q5, q8 и резисторах R5 и R6 выполнен повторитель тока, а регулирующий элемент выполнен на транзисторах q6, q7. Модели компонентов, как и для схемы прототипа, использовались из радиационно-стойкого АБМК [Дворников О.В. Аналоговый биполярно-полевой БМК с расширенными функциональными возможностями / О.В.Дворников, В.А.Чеховской // Chip News. - 1999. №2. - С.21-23].
Результаты моделирования заявляемого устройства - зависимость выходного напряжения от температуры - приведены на фиг.6. Как видно из графика для выходного напряжения, доминирующей в нестабильности выходного напряжения является составляющая третьего порядка. В этом случае максимальное отклонение выходного напряжения в диапазоне температур от -40°С до 120°С не превышает 46 мкВ, а температурный дрейф составляет ±2,32 ppm/°C.
Результаты моделирования заявляемого устройства при воздействии потока нейтронов приведены на фиг.7. Интенсивность потока нейтронов F изменялась от нуля до 1013 n/см2сек. Заявляемый источник опорного напряжения вплоть до интенсивности потока нейтронов F=1012 n/см2сек сохраняет прецезионность, а при интенсивности F=1013 n/см2сек - функциональную годность.
Заявляемое устройство в сравнении с прототипом обладает более высокой - в 4 раза - абсолютной температурной стабильностью, в 17 раз более высокой относительной температурной стабильностью в расчете на 1°С и, в отличие от схемы прототипа, обладает радиационной стойкостью. В то же время очевидно упрощение устройства, так как в заявляемом ИОН отсутствует операционный усилитель и необходимость использования дополнительного источника питания.
Таким образом, решена задача предлагаемого изобретения - повышение температурной стабильности выходного напряжения ИОН при одновременном упрощении устройства и повышении его радиационной стойкости при воздействии потока нейтронов.

Claims (1)

  1. Источник опорного напряжения отрицательной полярности, содержащий первый и второй транзисторы, коллекторы которых подключены к общей шине, первый резистор, включенный между общей шиной и базой второго транзистора, второй резистор, первым выводом подключенный к базе второго транзистора, вторым выводом к точке соединения базы и коллектора третьего транзистора, эмиттер которого подключен к выходу устройства, третий резистор, отличающийся тем, что в устройство введены первый и второй полевые транзисторы, повторитель тока и регулирующий элемент, причем третий резистор включен между базой первого транзистора и общей шиной, эмиттер первого транзистора подключен к истоку первого полевого транзистора, затвор которого подключен к точке соединения эмиттера второго транзистора и истока второго полевого транзистора, затвор которого подключен к эмиттеру первого транзистора, исток первого полевого транзистора подключен ко входу повторителя тока, вход питания повторителя тока подключен к отрицательному выводу шины питания, вход управления регулирующего элемента подключен к точке соединения выхода повторителя тока и истока второго полевого транзистора, вход питания регулирующего элемента подключен к отрицательному выводу шины питания, а выход регулирующего элемента подключен к выходу устройства.
RU2012105387/08A 2012-02-15 2012-02-15 Источник опорного напряжения отрицательной полярности RU2480810C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012105387/08A RU2480810C1 (ru) 2012-02-15 2012-02-15 Источник опорного напряжения отрицательной полярности

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012105387/08A RU2480810C1 (ru) 2012-02-15 2012-02-15 Источник опорного напряжения отрицательной полярности

Publications (1)

Publication Number Publication Date
RU2480810C1 true RU2480810C1 (ru) 2013-04-27

Family

ID=49153256

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012105387/08A RU2480810C1 (ru) 2012-02-15 2012-02-15 Источник опорного напряжения отрицательной полярности

Country Status (1)

Country Link
RU (1) RU2480810C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176308A (en) * 1977-09-21 1979-11-27 National Semiconductor Corporation Voltage regulator and current regulator
SU1403051A1 (ru) * 1986-12-15 1988-06-15 Предприятие П/Я В-8719 Источник опорного напр жени
SU1504645A1 (ru) * 1987-05-13 1989-08-30 Предприятие П/Я А-7306 Вторичный источник питани
US7626374B2 (en) * 2006-10-06 2009-12-01 Wolfson Microelectronics Plc Voltage reference circuit
RU2420863C1 (ru) * 2010-03-29 2011-06-10 Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ГОУ ВПО "ЮРГУЭС") Дифференциальный операционный усилитель с малым напряжением смещения нуля

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176308A (en) * 1977-09-21 1979-11-27 National Semiconductor Corporation Voltage regulator and current regulator
SU1403051A1 (ru) * 1986-12-15 1988-06-15 Предприятие П/Я В-8719 Источник опорного напр жени
SU1504645A1 (ru) * 1987-05-13 1989-08-30 Предприятие П/Я А-7306 Вторичный источник питани
US7626374B2 (en) * 2006-10-06 2009-12-01 Wolfson Microelectronics Plc Voltage reference circuit
RU2420863C1 (ru) * 2010-03-29 2011-06-10 Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ГОУ ВПО "ЮРГУЭС") Дифференциальный операционный усилитель с малым напряжением смещения нуля

Similar Documents

Publication Publication Date Title
US10936001B2 (en) Voltage regulator and power supply
CN103729010B (zh) 高精度带隙基准源电路
US7893681B2 (en) Electronic circuit
US20180143659A1 (en) Reference voltages
JP2006109349A (ja) 定電流回路及びその定電流回路を使用したシステム電源装置
US9568929B2 (en) Bandgap reference circuit with beta-compensation
KR20150039696A (ko) 전압 레귤레이터
CN116931641B (zh) 一种低功耗高精度的无电阻型cmos基准电压源
RU2480810C1 (ru) Источник опорного напряжения отрицательной полярности
CN104977968B (zh) 一种高阶温度补偿的带隙基准电路
RU2480899C1 (ru) Источник опорного напряжения
Gupta et al. Predicting the effects of error sources in bandgap reference circuits and evaluating their design implications
RU2473951C1 (ru) Источник опорного напряжения
KR101567843B1 (ko) 낮은 공급 전압을 제공하는 고정밀 cmos 밴드갭 기준 회로
RU2449342C1 (ru) Источник опорного напряжения
CN115328262A (zh) 具有工艺补偿的低压低功耗cmos基准电压源及调试方法
RU2461864C1 (ru) Источник опорного напряжения
Li et al. A Novel Frequency Compensation Scheme for Heavy Load LDO with Improved Load Regulation and High Open Loop Gain
Starchenko et al. The radiation-hardened voltage references on bipolar and JFET transistors
RU2447477C1 (ru) Источник опорного напряжения
RU2517683C1 (ru) Низковольтный температурно стабильный радиационно стойкий источник опорного напряжения
RU2546083C1 (ru) Температурно стабильный радиационно стойкий источник опорного напряжения на основе дифференциальной пары полевых транзисторов
RU2530260C1 (ru) Температурно стабильный источник опорного напряжения на основе стабилитрона
RU2474954C1 (ru) Токовое зеркало
RU2616573C1 (ru) Дифференциальный операционный усилитель

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140216