RU2479350C2 - СПОСОБ ПОЛУЧЕНИЯ СИЛАНОВ ТИПА RnSiH4-n ДИСПРОПОРЦИОНИРОВАНИЕМ ГИДРИДАЛКОКСИСИЛАНОВ ТИПА RnSiH(OR')3-n (ГДЕ n=0; 1; R=Me; R'=Me, Et) И КАТАЛИЗАТОРЫ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ - Google Patents

СПОСОБ ПОЛУЧЕНИЯ СИЛАНОВ ТИПА RnSiH4-n ДИСПРОПОРЦИОНИРОВАНИЕМ ГИДРИДАЛКОКСИСИЛАНОВ ТИПА RnSiH(OR')3-n (ГДЕ n=0; 1; R=Me; R'=Me, Et) И КАТАЛИЗАТОРЫ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Download PDF

Info

Publication number
RU2479350C2
RU2479350C2 RU2011125802/05A RU2011125802A RU2479350C2 RU 2479350 C2 RU2479350 C2 RU 2479350C2 RU 2011125802/05 A RU2011125802/05 A RU 2011125802/05A RU 2011125802 A RU2011125802 A RU 2011125802A RU 2479350 C2 RU2479350 C2 RU 2479350C2
Authority
RU
Russia
Prior art keywords
catalyst
type
disproportionation
exchange resin
anion
Prior art date
Application number
RU2011125802/05A
Other languages
English (en)
Other versions
RU2011125802A (ru
Inventor
Евгений Алексеевич Монин
Павел Аркадьевич Стороженко
Ирина Александровна Быкова
Сергей Леонардович Русаков
Original Assignee
Федеральное государственное унитарное предприятие "Государственный ордена Трудового Красного Знамени научно-исследовательский институт химии и технологии, элементоорганических соединений" (ФГУП ГНИИХТЭОС)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Государственный ордена Трудового Красного Знамени научно-исследовательский институт химии и технологии, элементоорганических соединений" (ФГУП ГНИИХТЭОС) filed Critical Федеральное государственное унитарное предприятие "Государственный ордена Трудового Красного Знамени научно-исследовательский институт химии и технологии, элементоорганических соединений" (ФГУП ГНИИХТЭОС)
Priority to RU2011125802/05A priority Critical patent/RU2479350C2/ru
Publication of RU2011125802A publication Critical patent/RU2011125802A/ru
Application granted granted Critical
Publication of RU2479350C2 publication Critical patent/RU2479350C2/ru

Links

Abstract

Изобретение может быть использовано в химической промышленности. Силаны типа RnSiH4-n получают диспропорционированием гидридалкоксисиланов типа RnSiH(OR')3-n (где n=0; 1; R=Me; R'=Me, Et) в присутствии гетерогенного катализатора - анионообменной смолы. Анионообменную смолу однократно обрабатывают сухим метиловым спиртом с последующим его отделением и затем раствором гидроксида щелочного металла в сухом метаноле с его отделением и последующей сушкой катализатора. Сушку проводят в вакууме при температуре 20-50°С до постоянного веса. Остаточное содержание воды и спирта в сухой анионообменной смоле составляет не более 0,1%. Предложенное изобретение позволяет повысить активность и селективность катализатора. 3 табл., 27 пр.

Description

Изобретение относится к способу получения моносилана, пригодного для производства поли- и монокристаллического кремния для солнечной энергетики и полупроводниковой техники, а также метилсилана для получения покрытий из карбида кремния.
Известен способ получения моносилана диспропорционированием триэтоксисилана на различных катализаторах, таких как этилат натрия (патент US 2,530,367, МПК С01В 33/04, 1950), трет-бутилат натрия (патент US 4,016,188, МПК С01В 33/04, 1977) или калия (патент РФ 2279403, С01В 33/04, 2004), фенолят натрия (патент US 4,904,460, C01B 33/04, 1990), растворы алкоголятов или триалкоксисиланолятов щелочных металлов в тетраалкоксисилане (патент РФ 2129984, МПК С01В 33/04, 1999).
Диспропорционирование гидридалкоксисиланов протекает по схеме
Figure 00000001
где n=0; 1; R=Me; R'=Me, Et.
Существенным недостатком известных методов является то, что используемые гомогенные катализаторы растворимы как в исходных гидридалкоксисиланах, так и в продуктах реакции. Загрязнение отработанным катализатором жидких продуктов реакции - алкоксисиланов, применяющихся в производстве различных кремнийсодержащих материалов, приводит к дополнительным затратам по очистке этих соединений. Кроме того, процесс очистки сопровождается образованием олигомеров, что дополнительно снижает выход очищенного продукта.
Следует также отметить, что отработанные гомогенные катализаторы практически не поддаются регенерации из-за образования высших силоксанов, силаноляты которых не обладают каталитической активностью. Все это приводит к необходимости постоянного добавления свежего катализатора в процесс, увеличивает количество нерегенерируемых отходов процесса и создает дополнительную экологическую нагрузку на окружающую среду.
В этой связи применение гетерогенных катализаторов позволило бы существенно упростить и удешевить этот процесс, облегчив отделение катализатора от жидких продуктов диспропорционирования.
Известны гетерогенные катализаторы реакции диспропорционирования гидридалкоксисиланов - цеолиты, оксид алюминия, силикагель, содержащие металлы Iа группы или благородные металлы - Rh, Pd, Pt или Ru (патент US 4,667,047, МПК C07F 7/18, 1987).
К недостаткам этих катализаторов следует отнести недостаточно высокую конверсию гидридалкоксисиланов (22-90%), длительное время реакции (до 6 часов), а также необходимость ведения процесса при повышенной до 70°С температуре, что приводит к сильному загрязнению моносилана и метилсилана парами легколетучих алкоксисиланов, существенно усложняет и повышает стоимость очистки газообразных моносилана и метилсилана. Кроме того, высокая стоимость благородных металлов делает промышленное применение катализаторов на их основе достаточно затратным.
Стоит отметить еще один существенный недостаток гетерогенных катализаторов диспропорционирования на основе неорганических носителей - высокое сродство последних к воде, что приводит к необходимости длительного и трудоемкого обезвоживания, поскольку присутствие в них воды вызывает целый ряд нежелательных побочных реакций. Во-первых, наблюдается гидролиз гидридалкоксисиланов с образованием полисилоксанов, блокирующих каталитические центры и резко снижающих активность и эффективность катализаторов такого типа (реакции 2,3). Во-вторых, из-за присутствия воды происходит ее взаимодействие с исходным гидридалкоксисиланом с выделением водорода. Аналогично реагирует с гидридалкоксисиланом и выделяющийся при гидролизе спирт. Все эти процессы резко снижают выход целевых моносилана и метилсилана.
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
где n=0; 1; R=Me; R'=Me, Et.
Наиболее близким к предлагаемому способу и принятым нами в качестве прототипа является способ получения моносилана диспропорционированием гидридалкоксисиланов на анионообменных смолах - сополимерах стирола и дивинилбензола, содержащих первичные, вторичные или третичные аминогруппы (слабые основания), а также четвертичные аммониевые группы (сильные основания) (патент US 4,667,047, МПК C07F 7/18, 1987).
Недостатком предложенного способа является продолжительное время реакции, а также необходимость частой регенерации анионитов вследствие быстрой потери их активности.
Задача настоящего изобретения - разработать простой и дешевый способ получения силанов типа RnSiH4-n (n=0; 1; R=Me) с высоким выходом целевого продукта.
Указанная задача решается тем, что предложен способ получения силанов типа RnSiH4-n диспропорционированием гидридалкоксисиланов типа RnSiH(OR')3-n (где n=0; 1; R=Ме; R'=Ме, Et) в присутствии гетерогенного катализатора - анионообменной смолы, отличающийся тем, что катализатор - анионообменную смолу однократно обрабатывают сухим метиловым спиртом с последующим его отделением, затем раствором гидроксида щелочного металла в сухом метаноле, его отделением и последующей сушкой катализатора, причем катализатор можно многократно регенерировать без потери активности.
Способ осуществляют следующим образом.
Исходные гидридалкоксисиланы получают этерификацией хлорсиланов спиртом или прямым воздействием спирта с порошкообразным техническим кремнием в присутствии однохлористой меди в высококипящем растворителе (патент РФ 2157375, МПК C07F 7/02, 2000).
Затем предварительно очищенный от примесей спирта и других нежелательных примесей гидридалкоксисилан направляют на каталитическое диспропорционирование.
В качестве катализаторов используют сильно- и слабоосновные анионообменные смолы макропористого и гелевого типа. Предпочтительнее использовать смолы макропористой структуры, поскольку гелевая матрица не позволяет эффективно адсорбировать достаточно объемистые молекулы гидридалкоксисиланов и поэтому смолы гелевой структуры имеют пониженную каталитическую активность. Физические свойства использованных смол приведены в таблице 1.
Figure 00000006
30-35 г смолы, поставляемой в виде свободного основания, сушат, замачивая ее в 100-120 мл сухого метанола в течение 2-3 часов, с последующим отделением от обводненного метанола фильтрацией и удалением остаточного спирта в вакууме при температуре не выше 45°С до постоянного веса. Получают 15-20 г сухой смолы с содержанием воды на уровне 0,1% (Метод А).
Известно, что аниониты в Cl-форме не катализируют реакцию диспропорционирования алкоксисиланов. Такие аниониты перед реакцией переводят в более активную ОН-форму обработкой смолы 0,1 н. раствором щелочи в дистиллированной воде. Затем смолу отфильтровывают, промывают водой до нейтральной реакции промывных вод и сушат по методу А (Метод Б).
Для увеличения активности смолу, подготовленную методами А или Б, замачивают в 5-6%-ном растворе щелочи в абсолютном метаноле на несколько часов, затем смолу отфильтровывают и сушат до постоянного веса в вакууме при температуре 20-50°С (Метод В).
Предлагаемые катализаторы проявляют активность уже при содержании порядка 0,01% по массе по отношению к массе исходного гидридалкоксисилана, однако предпочтительно использовать их в количестве 1-50%.
В реактор загружают необходимое количество катализатора и дозируют гидридалкоксисилан. Образующиеся газообразные моносилан или метилсилан направляют на очистку от примесей на активированном угле, цеолитах, хемосорбентах, а затем конденсируют в баллоне, охлаждаемом жидким азотом.
После окончания реакции катализатор отделяют от жидких продуктов реакции и проводят следующий цикл диспропорционирования. При потере активности катализатор подвергают регенерации по методу В.
Контроль за ходом реакции осуществляют хроматографически, определяя содержание исходных гидридалкоксисиланов и соответствующих тетраалкоксисиланов (метилтриалкоксисиланов) в реакционной массе. Кроме этого, измеряют объем выделившихся газообразных силанов.
Предложенный способ иллюстрируется, но не исчерпывается примерами, представленными ниже.
ПРИМЕР 1 (по прототипу)
В стеклянный реактор, снабженный капельной воронкой, вводом для инертного газа и эффективным холодильником, связанным с системой для определения объема выделившегося газа, засыпают 1 г слабоосновного макропористого анионита AMBERLITE IRA 96 фирмы "ROHM and НААS" (свободное основание), осушенного в токе сухого азота при 70°С в течение 10 часов. Тщательно продувают реактор инертным газом и погружают его в баню с температурой 50°С. При перемешивании на магнитной мешалке добавляют по каплям 3,685 мл (0,02 моль) триэтоксисилана. После добавления всего триэтоксисилана реакционную смесь перемешивают около 2-х часов. Измеряют объем выделившегося моносилана и хроматографически определяют остаточное содержание триэтоксисисилана в реакционной смеси. Катализатор отделяют от жидких продуктов реакции фильтрованием и вводят в реакцию со следующей порцией триэтоксисилана.
ПРИМЕР 2
Процесс проводят аналогично примеру 1, но в качестве катализатора используют анионит AMBERLITE IRA 96, обезвоженный по методу А.
ПРИМЕР 3
Реакцию проводят аналогично примеру 1, но в качестве катализатора используют анионит AMBERLITE IRA 96, подготовленный в растворе NaOH в метаноле по методу В. Реакционную смесь перемешивают 30-60 мин. Далее поступают аналогично примеру 1.
ПРИМЕР 4
Реакцию проводят аналогично примеру 3, но в качестве катализатора используют анионит AMBERLITE IRA 96, отработавший 20 циклов и регенерированный в растворе NaOH в метаноле по методу В. Реакционную смесь перемешивают 30-60 мин. Далее поступают аналогично примеру 1.
ПРИМЕР 5
Реакцию проводят аналогично примеру 3, но в качестве катализатора используют анионит AMBERLITE IRA 96, подготовленный в растворе КОН в метаноле по методу В. Реакционную смесь перемешивают 80-90 мин. Далее поступают аналогично примеру 1.
ПРИМЕРЫ 6-8
Процесс проводят аналогично примеру 2, но в качестве катализатора используют слабоосновные макропористые аниониты RELITE 329, PUROLITE А-100 и АМН-2 соответственно, обезвоженные по методу А.
ПРИМЕРЫ 9-11
Процесс проводят аналогично примеру 2, но в качестве катализатора используют слабоосновные макропористые аниониты RELITE 329, PUROLITE A-100 и АМН-2 соответственно, подготовленные по методу В.
ПРИМЕРЫ 12-14
Процесс проводят аналогично примеру 2, но в качестве катализатора используют сильноосновные макропористые аниониты RELITE 3AS, AMBERLITE IRA 900Cl и PUROLITE A-500P, подготовленные по методу Б соответственно.
ПРИМЕР 15
Процесс проводят аналогично примеру 2, но в качестве катализатора используют сильноосновный макропористый анионит PUROLITE A-500P, подготовленный по методу В.
ПРИМЕР 16
Процесс проводят аналогично примеру 2, но в качестве катализатора используют сильноосновный макропористый анионит PUROLITE A-500P, отработавший 5 циклов и регенерированный по методу В.
ПРИМЕР 17
Реакцию проводят аналогично примеру 3, но в качестве субстрата используют триметоксисилан. Реакционную смесь перемешивают 30 мин.
ПРИМЕРЫ 18-21
Реакцию проводят аналогично примеру 1, но в качестве катализатора используют аниониты гелевой структуры - «AMBERLITE IRA 403 Сl», «PUROLITE А-200», «АМП» и «АВ 17-8», подготовленные по методу Б. Реакционную смесь перемешивают более 5 часов.
ПРИМЕР 22
Реакцию проводят аналогично примеру 1, но в качестве катализатора используют анионит гелевой структуры «АВ 17-8», обработанный раствором едкого натра в метаноле по методу В.
Результаты примеров представлены в таблице 2.
Figure 00000007
ПРИМЕР 23
В стеклянный реактор емкостью 0,5 л, снабженный магнитной мешалкой, капельной воронкой, вводом для инертного газа и эффективным холодильником, соединенным через систему очистки газа, заполненную активированным углем, цеолитами и хемосорбентом, с охлаждаемыми жидким азотом ловушками и баллоном, предварительно взвешенным и откачанным до вакуума 10-5 мм рт.ст., засыпают 50 г слабоосновного макропористого анионита AMBERLITE IRA 96, подготовленного по методу В. Тщательно продувают всю систему инертным газом. Реакцию начинают при комнатной температуре. При перемешивании на магнитной мешалке в течение 50 минут добавляют по каплям 313,6 мл (268 г, 2 моль) метилдиэтоксисилана. Реакционная смесь разогревается и ее охлаждают холодной водой таким образом, чтобы температура не превышала 55°С. После добавления всего метилдиэтоксисилана реакционную смесь перемешивают при температуре 55°С еще 40 минут. Выделяющийся метилсилан улавливают в двух стеклянных ловушках, охлаждаемых жидким азотом. Затем реактор продувают инертным газом, вытесняя остатки метилсилана из системы в ловушки. Метилсилан переконденсируют из стеклянных ловушек в баллон. Получают 22 г (95,65%) метилсилана. Катализатор отделяют от образовавшегося метилтриэтоксисилана декантацией или фильтрованием и снова вводят в реакцию со следующей порцией метилдиэтоксисилана.
ПРИМЕР 24
Реакцию проводят аналогично примеру 23, но в качестве катализатора используют анионит AMBERLITE IRA 96, отработавший 7 циклов и регенерированный по методу В.
ПРИМЕР 25
Реакцию проводят аналогично примеру 3, но при температуре реакционной смеси 25°С в течение 2,5 часов.
ПРИМЕР 26
Реакцию проводят аналогично примеру 3, но при температуре реакционной смеси 80°С в течение 20 минут.
ПРИМЕР 27
Реакцию проводят аналогично примеру 5, но в качестве субстрата используют 0,02 моля метилдиэтоксисилана.
Результаты примеров представлены в таблица 3.
Figure 00000008
Техническим результатом предложенного способа получения моносилана и метилсилана диспропорционированием соответствующих гидридалкоксисиланов в присутствии модифицированных раствором щелочи анионитов является:
1. Снижение расходных норм сырья за счет более высокой конверсии алкоксисиланов при диспропорционировании.
2. Сокращение времени полной конверсии алкоксисиланов за счет повышения активности катализатора.
3. Многократное использование катализатора без потери его активности.
4. Регенерация катализатора и возвращение его в процесс.
5. Легкое отделение катализатора от жидких продуктов реакции.
Указанные преимущества метода являются особенно важными для промышленного производства моносилана и метилсилана.

Claims (1)

  1. Способ получения силанов типа RnSiH4-n диспропорционированием гидридалкоксисиланов типа RnSiH(OR')3-n (где n=0; 1; R=Me; R'=Me, Et) в присутствии гетерогенного катализатора - анионообменной смолы, отличающийся тем, что катализатор - анионообменную смолу - однократно обрабатывают сухим метиловым спиртом с последующим его отделением, затем раствором гидроксида щелочного металла в сухом метаноле с его отделением и последующей сушкой катализатора в вакууме при температуре 20-50°С до постоянного веса, при этом остаточное содержание воды и спирта в сухой анионообменной смоле составляет не более 0,1%.
RU2011125802/05A 2011-06-24 2011-06-24 СПОСОБ ПОЛУЧЕНИЯ СИЛАНОВ ТИПА RnSiH4-n ДИСПРОПОРЦИОНИРОВАНИЕМ ГИДРИДАЛКОКСИСИЛАНОВ ТИПА RnSiH(OR')3-n (ГДЕ n=0; 1; R=Me; R'=Me, Et) И КАТАЛИЗАТОРЫ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ RU2479350C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011125802/05A RU2479350C2 (ru) 2011-06-24 2011-06-24 СПОСОБ ПОЛУЧЕНИЯ СИЛАНОВ ТИПА RnSiH4-n ДИСПРОПОРЦИОНИРОВАНИЕМ ГИДРИДАЛКОКСИСИЛАНОВ ТИПА RnSiH(OR')3-n (ГДЕ n=0; 1; R=Me; R'=Me, Et) И КАТАЛИЗАТОРЫ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011125802/05A RU2479350C2 (ru) 2011-06-24 2011-06-24 СПОСОБ ПОЛУЧЕНИЯ СИЛАНОВ ТИПА RnSiH4-n ДИСПРОПОРЦИОНИРОВАНИЕМ ГИДРИДАЛКОКСИСИЛАНОВ ТИПА RnSiH(OR')3-n (ГДЕ n=0; 1; R=Me; R'=Me, Et) И КАТАЛИЗАТОРЫ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Publications (2)

Publication Number Publication Date
RU2011125802A RU2011125802A (ru) 2012-12-27
RU2479350C2 true RU2479350C2 (ru) 2013-04-20

Family

ID=49152837

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011125802/05A RU2479350C2 (ru) 2011-06-24 2011-06-24 СПОСОБ ПОЛУЧЕНИЯ СИЛАНОВ ТИПА RnSiH4-n ДИСПРОПОРЦИОНИРОВАНИЕМ ГИДРИДАЛКОКСИСИЛАНОВ ТИПА RnSiH(OR')3-n (ГДЕ n=0; 1; R=Me; R'=Me, Et) И КАТАЛИЗАТОРЫ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Country Status (1)

Country Link
RU (1) RU2479350C2 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117563681A (zh) * 2024-01-17 2024-02-20 浙江赛勒新能源材料有限公司 三氯氢硅歧化反应催化剂的再生方法及再生装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4667047A (en) * 1985-05-16 1987-05-19 Mitsubishi Chemical Industries Limited Method for producing monosilane and a tetraalkoxysilane
US4904460A (en) * 1988-04-13 1990-02-27 Mitsubishi Kasei Corporation Process for producing monosilane
RU2129984C1 (ru) * 1998-06-25 1999-05-10 Государственный научный центр Российской Федерации - Государственный научно-исследовательский институт химии и технологии элементоорганических соединений Способ получения моносилана высокой чистоты
RU2216532C2 (ru) * 1998-08-26 2003-11-20 СК Корпорейшн Способ получения ацетиленовых спиртов с использованием непрерывного процесса

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4667047A (en) * 1985-05-16 1987-05-19 Mitsubishi Chemical Industries Limited Method for producing monosilane and a tetraalkoxysilane
US4904460A (en) * 1988-04-13 1990-02-27 Mitsubishi Kasei Corporation Process for producing monosilane
RU2129984C1 (ru) * 1998-06-25 1999-05-10 Государственный научный центр Российской Федерации - Государственный научно-исследовательский институт химии и технологии элементоорганических соединений Способ получения моносилана высокой чистоты
RU2216532C2 (ru) * 1998-08-26 2003-11-20 СК Корпорейшн Способ получения ацетиленовых спиртов с использованием непрерывного процесса

Also Published As

Publication number Publication date
RU2011125802A (ru) 2012-12-27

Similar Documents

Publication Publication Date Title
RU2492924C9 (ru) Катализатор и способ дисмутации содержащих водород галогенсиланов
KR101664521B1 (ko) 아미노 관능성 중합체 촉매 전구체의 처리 방법
KR101819262B1 (ko) 고급 실란의 선택적 분해 방법
KR101666473B1 (ko) 클로로실란의 제조 방법
EP3141553B1 (en) Method for producing tetraalkoxysilane
CN110841702A (zh) 一种用于合成芳香腈催化剂的制备方法和芳香腈的合成方法
RU2479350C2 (ru) СПОСОБ ПОЛУЧЕНИЯ СИЛАНОВ ТИПА RnSiH4-n ДИСПРОПОРЦИОНИРОВАНИЕМ ГИДРИДАЛКОКСИСИЛАНОВ ТИПА RnSiH(OR')3-n (ГДЕ n=0; 1; R=Me; R'=Me, Et) И КАТАЛИЗАТОРЫ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
CN1715186A (zh) 一种小晶粒zsm-5沸石的制备方法
CN107746410B (zh) 一种含碳硼烷的硅烷偶联剂及其制备方法
US6229037B1 (en) Polyorganosiloxane catalyst
CN105439802A (zh) 加氢烷基化制备环己基苯的方法
CN101157700B (zh) 甲基丙烯酰氧丙基二甲基氯硅烷的制备方法
CN104059097A (zh) 一种歧化制备二甲基二氯硅烷的方法
CN102898457B (zh) 一种乙基苯基二乙氧基硅烷及其制备方法
CN102898454A (zh) 一种间甲基苯基二乙氧基甲基硅烷及其制备方法
CN108822033B (zh) 一种7-氯喹哪啶的合成方法
CN105712830B (zh) 一种异丁烯的制备方法
JP3766475B2 (ja) モノシランの製造方法
JPS6042216A (ja) トリクロロシラン・ジクロロシラン・モノクロロシランの不均斉化方法
CN104624233A (zh) 乙二胺功能化的三维有序介孔有机硅固载的Pd(II)催化剂
TW201808449A (zh) 脫水用固體觸媒及由甘露糖醇製造2,5-脫水山梨醇和/或去水甘露糖醇的方法、沸石的用途、酸型β-沸石的用途、Y型沸石的用途
CN103030658A (zh) 二异松蒎基氯甲硼烷的工业化生产方法
CN102898456B (zh) 一种邻甲基苯基二乙氧基甲基硅烷及其制备方法
CN102898455B (zh) 一种对甲基苯基二乙氧基甲基硅烷及其制备方法
Pohako et al. A new method for the synthesis of 3-hydrazinopropyl trimethoxysilane

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130625

NF4A Reinstatement of patent

Effective date: 20140727

PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20160401