RU2478779C2 - Повышение плавучести материалов для обработки скважин - Google Patents

Повышение плавучести материалов для обработки скважин Download PDF

Info

Publication number
RU2478779C2
RU2478779C2 RU2009145962/03A RU2009145962A RU2478779C2 RU 2478779 C2 RU2478779 C2 RU 2478779C2 RU 2009145962/03 A RU2009145962/03 A RU 2009145962/03A RU 2009145962 A RU2009145962 A RU 2009145962A RU 2478779 C2 RU2478779 C2 RU 2478779C2
Authority
RU
Russia
Prior art keywords
proppant
dispersed
substrate
composite
particles
Prior art date
Application number
RU2009145962/03A
Other languages
English (en)
Other versions
RU2009145962A (ru
Inventor
Ричард РИДАЙДЖЕР
Джессе ПЕТРЕЛЛА
Майкл Джозеф АРОН
Бедфорд В. ФЕННЕЛЛ
Original Assignee
ДЖОРДЖИЯ-ПЭСИФИК КЕМИКАЛЗ ЭлЭлСи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ДЖОРДЖИЯ-ПЭСИФИК КЕМИКАЛЗ ЭлЭлСи filed Critical ДЖОРДЖИЯ-ПЭСИФИК КЕМИКАЛЗ ЭлЭлСи
Publication of RU2009145962A publication Critical patent/RU2009145962A/ru
Application granted granted Critical
Publication of RU2478779C2 publication Critical patent/RU2478779C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • C09K8/805Coated proppants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/922Fracture fluid
    • Y10S507/924Fracture fluid with specified propping feature

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Laminated Bodies (AREA)

Abstract

Изобретенте относится к дисперсным композициям, подходящим для гидравлического трещинообразования или для других обработок формаций скважин. Способ обработки подземного пласта, при котором вводят в разрывы в пласте частицы, включающие композитный проппант, причем указанный композитный проппант включает подложку проппанта, способную выдерживать давление смыкания, по меньшей мере, около 5000 psi (35 МПа), и приклеенное покрытие дисперсного материала с фактической плотностью, меньшей, чем кажущаяся плотность подложки проппанта, причем дисперсный материал имеет фактическую плотность менее чем 0,5 г/см3 и по меньшей мере 90 вес.% дисперсного материала имеют распределение размеров частиц в диапазоне от 75 до 150 микрон. Дисперсный композитный проппант, включающий подложку проппанта, способную выдерживать давление смыкания, по меньшей мере, около 5000 psi (35 МПа), и приклеенное покрытие дисперсного материала с фактической плотностью, меньшей, чем кажущаяся плотность подложки проппанта, причем дисперсный материал имеет фактическую плотность менее чем 0,5 г/см3, и по меньшей мере 90 вес.% дисперсного материала имеют распределение размеров частиц в диапазоне от 75 до 150 микрон. Изобретение развито в зависимых пунктах формулы. Технический результат - замедление темпов оседания проппанта при сохранении способности функционирования при более высоких напряжениях смыкания. 2 н. и 18 з.п. ф-лы, 2 пр., 1 табл., 1 ил.

Description

ОБЛАСТЬ ИЗОБРЕТЕНИЯ
Данное изобретение относится к дисперсным композициям, подходящим для гидравлического трещинообразования (т.е., как композитный проппант), подходящим для заполнения скважинного фильтра гравием в контроле песка или подходящим для других обработок формаций скважин. Более точно, данное изобретение направлено на использование материала, имеющего меньшую плотность, чем у подложки, прикрепленного путем связывающего как покрытие на подложке, чтобы усилить плавучесть дисперсной композиции (т.е. проппанта).
ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
Проппанты используются, чтобы держать открытыми разрывы, созданные гидравлическим разрывом подземного пласта, например, в нефте- или газоносных горизонтах. Как правило, разрыв производят в подземном пласте, чтобы повысить добычу нефти или газа. Разрыв вызывают путем введения вязкой разрывающей жидкости под высоким давлением в скважину. После формирования разрывов дисперсный материал, именуемый как «расклинивающее средство» или «проппант», помещают в пласт, чтобы после снижения давления ввода удерживать разрыв в расклиненном открытом состоянии. Во время формирования разрыва проппанты вносят в скважину при помощи суспендирования их в жидкости, заполняющей разрыв шламом проппанта. После уменьшения давления проппанты оседают в разрывах так, что разрывы не закрываются сразу после того, как уменьшится давление разрыва. Использование проппантов повышает добычу нефти и/или газа из подземного пласта путем обеспечения высокопроводящих каналов через пласт.
Поддержание этих каналов обеспечивает повышенный поток различных флюидов, например, углеводородов, таких как природный газ и нефть.
Широко используемые материалы проппанта включают: (1) дисперсную спеченную керамику, как правило, оксид алюминия, диоксид кремния или боксит, часто с глиноподобными связующими или другими добавками, для повышения предела прочности при сжатии частиц, особенно спеченного боксита; (2) природный относительно грубый песок, частички которого являются приблизительно сферическими, в основном, называемый «песок разрыва», и (3) частицы (1) и (2), покрытые смолой, т.е., покрытый смолой проппант.
К сожалению, каждый из этих материалов (также как и другие) имеет относительно высокую плотность (высокий удельный вес), что вызывает быстрое оседание проппантов сразу после суспендирования в транспортирующей жидкости, например жидкости разрыва. В частности, такие проппанты обычно имеют плотность свыше 1,60 г/см3 и часто свыше 3,50 г/см3.
Удельный вес определяется как отношение плотности материала или вещества, чей удельный вес определяется, к плотности справочного материала, обычно воды, сообщенную при стандартной температуре (обычно при условиях, когда плотность воды составляет 1 г/см3). Удельный вес является безразмерной величиной. Плотностью материала или вещества является отношение массы материала к объему, который занимает масса материала (масса/объем), и часто сообщается в грамм/кубический сантиметр (г/см3) или грамм/миллилитр (г/мл).
Когда проппант оседает слишком быстро из жидкости разрыва, оседание ухудшает позиционирование проппанта в пласте, подвергнутом гидроразрыву. Чтобы воспрепятствовать этому результату, разрывающую жидкость часто загущают, чтобы повысить ее вязкость и, таким образом, замедлить скорость оседания специфического проппанта. Одной из проблем использования разрывающей жидкости с более высокой вязкостью, однако, является повышенное количество энергии, необходимой, чтобы закачать жидкость в подземные пласты при создании разрывов и доставке проппанта по всему пласту. Иначе говоря, необходимо больше энергии, чтобы прокачать более густые жидкости.
Другим способом уменьшения скорости оседания проппанта является использование проппантов с более низким удельным весом (т. е. более высокой плавучестью), таких как шарики из полого стекла, ореховая скорлупа и керамика с закрытой пористостью. Эти типы проппантов обладают более низким кажущимся удельным весом. Кажущийся удельный вес является показателем удельного веса пористого твердого тела или вещества, когда объем, используемый в подсчете плотности, рассматривается с включением пористости, т.е. пористого проницаемого внутреннего пространства, пористого твердого тела или вещества. Таким образом, в случае пористых материалов кажущаяся плотность является меньшей, чем собственная плотность только массы твердого тела материала.
Так как эти проппанты обнаруживают или проявляют свойства как менее плотные, чем кварцевый песок или керамические проппанты, они имеют тенденцию медленнее оседать в жидкости. Однако эти типы проппантов являются, в общем, менее устойчивыми к раздавливанию и реально удовлетворительно используются только в горизонтальных водопонизительных скважинах при давлении смыкания трещин от 3000 до 4000 psi (от 20,7 до 27,6 МПа). Многие пласты могут подвергаться напряжениям смыкания от 6000 до 10000 psi (от 41,4 до 69 МПа) и выше.
В связи с вышеупомянутым не ослабевает интерес к разработке новых решений для конструирования и доставки проппанта в операциях использования скважин. В частности, продолжают быть востребованными дисперсные композиции (проппанты), имеющие более медленные темпы оседания и все еще способные функционировать при более высоких напряжениях смыкания.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В соответствии с данным изобретением могут быть получены дисперсные композиции (проппанты), имеющие более высокую плавучесть (т.е. более низкую плотность и более низкий удельный вес) и широкую толерантность к давлению смыкания, с помощью традиционных материалов проппантов, таких как: (1) дисперсная спеченная керамика, как правило, оксид алюминия, диоксид кремния или боксит, возможно с глиноподобными связывающими или другими добавками, чтобы усилить сопротивление сжатию частиц, особенно спеченного боксита, и (2) природный относительно грубый песок, частицы которого являются приблизительно сферическими, в основном называемый «песок разрыва», а также более новые высокоустойчивые к раздавливанию материалы проппанта (3), как подложка, и применяемый или прикрепляемый, как покрытие, второй, более плавучий (т. е. менее плотный) материал к подложке.
В одном варианте осуществления менее плотные частицы, такие как пробковые частицы, древесный материал с более низкой плотностью, включая древесные опилки, пластик (например, фенопласты, уретаны, сложные полиэфиры, эпоксиды и мочевины - особенно пенопласты) и подобные, прикрепляют к поверхности высокоустойчивой к раздавливанию (например, общепринятой) подложки проппанта. Менее плотные частицы могут быть прикреплены к подложке проппанта с помощью множества способов, например, таких как клеевое покрытие. Количество менее плотных частиц, присоединенных к подложке проппанта, может варьировать в пределах от около 0,1 до около 20% на основе типа менее плотных частиц и подложки проппанта. Пробковые частицы, например, могут включать 2-10% общего веса покрытого композитного проппанта. (В более широких аспектах данного изобретения для достижения схожих эффектов похожие покрытия менее плотных материалов могут также наноситься на подложки проппантов с низкой плотностью, такие как шарики из полого стекла, ореховая скорлупа и керамика с закрытой пористостью.)
При осуществлении данного изобретения материал(ы) или вещество(а), подлежащие прикреплению к подложке проппанта, должны иметь фактический, свойственный или подлинный удельный вес (т.е., не кажущийся удельный вес), меньший, чем удельный вес подложки проппанта. Например, патент США 4493875 описывает конструкцию проппанта, в которой покрытие стеклянных микросферного внедренного в клеевое покрытие покрывает традиционный проппант из кварцевого песка. Материал стеклянных микросфер, т.е. стекло, имеет в основном такой же удельный вес (плотность), что и подложка кварцевого песка (т. е. такой же свойственный, подлинный или фактический удельный вес или плотность). Однако по причине полой природы микросфер они имеют более низкий “кажущийся” удельный вес. К сожалению, когда такие микросферы повреждаются во время использования (так как им неизбежно присуще дрожание во время применения в качестве проппанта), и, таким образом, внутреннее пространство сфер открывается в окружающую среду, материал перестает способствовать уменьшению плотности связанного проппанта. Как результат, проппант теряет свою плавучесть и становится неспособным в достаточной мере переноситься жидкостью-носителем (жидкостью разрыва).
Данное изобретение избегает этой присущей известному уровню техники проблемы, так как данное изобретение вместо этого направлено на использование материалов, чей фактический, свойственный или присущий удельный вес (фактическая, свойственная или присущая плотность) ниже, чем удельный вес (фактический или кажущийся) подложки проппанта. Заявитель доказывает, что природа материала, использованного в данном изобретении, проявляет улучшенную целостность по отношению к полым микросферам, используемым в известном уровне техники.
Композитные проппанты, имеющие ядро высокоустойчивой к раздавливанию подложки проппанта с материалом покрытия со свойственной меньшей плотностью (как отмечено выше), которая приклеена к его поверхности, можно получить с помощью множества процессов. В одном примере устойчивая к раздавливанию подложка проппанта, например, керамика или частица кварцевого песка, может быть нагрета и смешана со склеивающей смолой и покрывающим дисперсным материалом с более низкой плотностью, чтобы сформировать композитный проппант. Как использовано во всем описании и формуле изобретения фраза «покрывающий дисперсный материал с более низкой плотностью» означает дисперсное вещество, имеющее фактический, свойственный или присущий удельный вес (или плотность), который ниже, чем фактический (например, свойственный), или кажущийся удельный вес (или плотность) подложки проппанта. Смолу добавляли к смеси как клей для прикрепления дисперсного покрывающего материала с более низкой плотностью к поверхности подложки проппанта. После того как подложку проппанта, склеивающую смолу и дисперсный покрывающий материал с более низкой плотностью перемешивали в течение определенного промежутка времени, смесь выгружали, просеивали и охлаждали. Покрытие частиц материала с более низкой плотностью может включать один дисперсный материал или может включать комбинации дисперсных материалов в зависимости от предполагаемого использования.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
Фиг.1 иллюстрирует изображение композитного проппанта данного изобретения, сделанное при помощи сканирующего электронного микроскопа.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Данное изобретение относится к композитному проппанту с низкой плотностью (низким удельным весом) (т.е., композитному проппанту с повышенной плавучестью) для использования в добыче нефти и газа для «поддерживания/подпирания» гидравлических разрывов в подземном пласте. Проппант держит гидравлические разрывы открытыми для притока нефти и/или природного газа и может существенно улучшать производительность скважины. Конкретнее, данное изобретение относится к покрытой подложке проппанта как композитному проппанту повышенной плавучести. Данное изобретение также относится к способам создания и использования этих композитных проппантов.
Путем создания и использования композитных проппантов с более низкой плотностью (т.е., повышенной плавучести) может быть уменьшено потребление энергии, которое связано с закачиванием жидкости разрыва и проппантов в подземные пласты во время операций бурения скважин. Следовательно, вязкость разрывающей жидкости не нужно будет повышать так сильно, как это делается в настоящее время для того, чтобы уменьшить скорость оседания проппанта. Так как жидкости с более высокой вязкостью требуют больше энергии для закачки при заданном давлении, чем того требуют жидкости с более низкой вязкостью, использование жидкости с более низкой вязкостью требует меньше энергии и приводит к более низким энергозатратам. Данное изобретение позволяет использовать жидкости с более низкой вязкостью, так как проппанты с более низкой плотностью данного изобретения из-за их повышенной плавучести оседают с более низкой скоростью. Более того, более медленная скорость оседания проппантов с более низкой плотностью данного изобретения позволяет распределять проппанты по большим подземным площадям.
Согласно одной или более схемам данного изобретения разрывы в подземных пластах могут быть образованы путем введения обрабатывающей жидкости (например, жидкости разрыва или жидкости в разрыве) в подземный пласт. Процедуры гидравлического разрыва пласта хорошо известны специалистам данной области техники и не составляют часть данного изобретения (см., например, патенты США 6059034 и 6330916). Обрабатывающую жидкость (жидкость гидравлического разрыва) вводят при высоком давлении, чтобы принудить к образованию подземных разрывов. В операциях бурения подземные разрывы могут увеличить размер и число каналов, через которые могут быть извлечены нефть и/или другие углеводороды. Образование разрывов в подземном пласте в основном усиливает поток углеводородного материала (например, нефти), извлекаемого во время добывающих операций.
Как хорошо известно, чтобы поддерживать эти разрывы открытыми, в них вводят и заклинивают проппанты. Без поддерживающей структуры (обеспеченной проппантом) для удержания разрывов открытыми, разрывы, вероятно, будут закрываться, до некоторой степени препятствуя последующему потоку флюида углеводорода через пласт, подвергнутый гидроразрыву. Проппанты обычно перемещают в изначальном вводе жидкости разрыва, или они могут быть включены в последующее введение жидкости в пласт для удержания пласта в открытом положении. Во многих случаях разрывы могут быть созданы в областях, отдаленных от точки введения жидкости. Таким образом, проппанты должны оставаться суспендированными в обрабатывающей жидкости или жидкости разрыва достаточно долго для того, чтобы проппанты были донесены в самые отдаленные разрывы.
Использование дисперсного материала с более низкой плотностью, в соответствии с данным изобретением, в качестве покрытия подложки проппанта образует композитный проппант, имеющий более низкий удельный вес (т.е., более высокую плавучесть), и позволяет проппантам оседать с более низкой скоростью из конкретной жидкости. Таким образом, композитный проппант по данному изобретению перемещается далее через подземный пласт, перед тем как осесть в разрыве, чем было бы в противном случае. Как только покрытый композитный проппант по данному изобретению достигает разрыва, проппанты заклиниваются внутри разрыва и могут скапливаться для формирования стабильного каркаса в разрыве, чтобы обеспечить проницаемую область для флюида.
Одним преимуществом использования композитного проппанта, имеющего более низкий удельный вес (т.е., более высокую плавучесть), в соответствии с данным изобретением является то, что вязкость жидкости, необходимая для переноса проппанта на желаемое расстояние в пласте, подвергнутом гидроразрыву, может быть, соответственно, уменьшена относительно вязкости жидкости, которая в обратном случае была бы нужна для немодифицированного проппанта. Это уменьшение вязкости уменьшает энергозатраты, связанные с операцией добычи углеводорода.
Чтобы приготовить композитный проппант данного изобретения, устойчивую к раздавливанию подложку проппанта, которая, как правило, включает дисперсный материал, например песок, встречающийся в природе материал, например, плавленый диоксид циркония, керамику, например, спеченный боксит или спеченный алюминий, или другой некерамический огнеупорный материал, например, измельченная или стеклянная дробь, а также их аналоги, покрытые смолой, покрывают дисперсным материалом с меньшей плотностью, например, пробковыми частицами. Подложка композитного проппанта данного изобретения должна быть достаточно прочной, чтобы выдерживать давление смыкания, по меньшей мере, около 3000 psi (20,7 МПа), предпочтительно, устойчивость к раздавливанию проппанта должна быть достаточной, чтобы выдерживать давление смыкания, по меньшей мере, около 5000 psi (35 МПа), и более предпочтительно, устойчивость к раздавливанию проппанта должна быть достаточной, чтобы выдерживать давление смыкания, по меньшей мере, около 7500 psi (48,3 МПа) и выше
Подложка проппанта, такая как песок или керамика (по выбору покрытая смолой), обычно имеет распределение частиц, имеющих размеры в диапазоне от около 4 меш до около 100 меш (номера стандартных сит США) (т.е. частицы проходят через ячейку сита около 4760 микрон (4 меш) и удерживаются на ячейке около 150 микрон (100 меш)). Предпочтительные подложки проппанта имеют распределения размеров частиц в диапазоне от 8 меш до 60 меш, и чаще в диапазоне от 16 меш до 50 меш (предпочтительно, по меньшей мере, 90% по весу частиц удовлетворяет требованиям такого диапазона размеров ячейки). Особенно предпочтительные подложки проппанта имеют распределение размеров частиц с, по меньшей мере, 90% по весу частиц, имеющих размеры в диапазоне от 20 меш до 40 меш.
В соответствии с данным изобретением подложку проппанта затем покрывают дисперсным материалом с более низкой плотностью, например, пробковыми частицами. В наиболее широких аспектах данного изобретения дисперсный материал с более низкой плотностью, как правило, имеет фактическую, свойственную или присущую плотность менее чем около 1,6 г/см3, предпочтительно, менее чем около 0,5 г/см3. Подходящие материалы для использования в качестве дисперсного материала с более низкой плотностью включают пробковые частицы, дисперсную древесину с низкой плотностью, например, бальзу, бамбук, сосну и красный кедр, и, предпочтительно, дисперсные пенопласты, такие как фенолопласты, уретаны, сложные полиэфиры, эпоксиды и мочевины.
Предпочтительно, чтобы дисперсный материал с более низкой плотностью поставлялся в форме частиц (частицами), имеющих размеры меньше, чем у подложки проппанта, для прикрепления к поверхности подложки проппанта. Предпочтительно, чтобы дисперсный материал с более низкой плотностью имел распределение частиц, измеряемых в диапазоне от 30 меш до 635 меш (номера стандартных сит США), т.е., размеры частиц от 600 до 20 микрон. Общепринято, что, когда указывают диапазон размеров ячеек, это означает, что указывают диапазон распределения частиц, проходящих через сито с большим размером ячейки, и указывают диапазон частиц, удерживаемых на сите, которое имеет меньшие размеры ячеек (более закрытые). Для большей части частиц, по меньшей мере, 90% по весу частиц в данном образце предназначено иметь указанное распределение. Обычно, частицы материала с более низкой плотностью имеют распределение размеров частиц в диапазоне от 100 меш до 200 меш, т.е., размеры частиц между от 150 до 75 микрон.
Чтобы получить композитный проппант по данному изобретению, частицы материала с более низкой плотностью приклеивают к поверхности подложки проппанта. В предпочитаемом варианте осуществления данного изобретения это достигается путем прикрепления частиц материала с более низкой плотностью к поверхности подложки проппанта с помощью склеивающей связывающей смолы. Клей, как правило, наносят в количестве 1-10 весовых процентов подложки проппанта, и чаще в количестве 2-5 процентов. В наиболее широком аспекте данного изобретения можно использовать широкое разнообразие клеев, включая фенольные смолы, карбамидные смолы, изоцианатные смолы, эпоксидные смолы и подобные. Природа склеивающей смолы не является исключительно критичной.
Одним особенно употребляемым клеем для использования в данном изобретении является класс фенол-формальдегидных новолачных смол, обычно используемых для покрытия традиционных проппантов. Фенол-формальдегидные новолачные смолы могут быть получены путем реакции молярного избытка фенола с формальдегидом в присутствии кислотного катализатора, такого как серная кислота, соляная кислота или щавелевая кислота (обычно в количестве от 0,2 до 2% по весу фенола). Поддержание мольного отношения фенола к формальдегиду, например, 1:0,7-0,9, является обычным при приготовлении подобных смол. Однако данное изобретение не должно быть ограничено каким-либо специфическим типом новолачной смолы.
Новолачные смолы термопластичны, т.е., они не самосшиваемые. Новолачные смолы преобразуют в отвержденные смолы при помощи, например, реакции их при нагревании со сшивающим средством, например, метенамином (также называемым гексамином или гексаметилтетрамином), или, например, путем перемешивания их с твердым кислотным катализатором и параформальдегидом и их реакции при нагревании. Новолачные смолы также могут быть отверждены с другими сшивающими веществами, такими как резолы и эпоксиды.
Новолачные смолы давно используются для покрытия проппантов. Твердую новолачную смолу, обычно в форме хлопьев, добавляют к предварительно нагретому проппанту (от 200°F до 400°F) (от около 93°C до около 204°C) в подходящей производственной машине для нанесения покрытия при температуре выше точки плавления новолака (как правило, от 170°F до 200°F) (от около 77°C до около 93°C). Нагревание вызывает плавление новолачной смолы и при перемешивании равномерно покрывает поверхность проппанта. После достижения равномерного покрытия добавляют водный раствор метенамина. Добавленная вода охлаждает покрытый проппант путем испарения, по мере того как метенамин распределяется по смоле. Это охлаждение быстро снижает температуру покрытого проппанта и на начальной стадии предотвращает отверждение новолачной смолы метенамином. Покрытый таким образом проппант на данном этапе может быть выгружен, затем охлажден и просеян. Если использовать метенамин, его присутствие в новолачном покрытии позволяет покрытию отверждаться при условиях повышенной температуры в подземном пласте (отвержденный-на-месте). В альтернативном процессе новолачно-метенаминовому покрытию дают достичь полного отверждения в перемешивающем устройстве перед выгрузкой покрытого проппанта (предварительно отвержденное покрытие). Эти покрытия и техники отверждения хорошо известны и понятны в данном уровне техники и по данному изобретению могут быть адаптированы с помощью простого эксперимента для использования в прикреплении дисперсного материала с более низкой плотностью к подложке проппанта.
В соответствии с данным изобретением общепринятую процедуру изготовления покрытого проппанта с новолачной смолой модифицируют путем включения частиц покрывающего материала с более низкой плотностью в операции перемешивания вместе с расплавленной новолачной смолой и проппантом. Таким образом, когда охлаждают покрытие, частицы покрывающего материала с более низкой плотностью приклеиваются к поверхности подложки проппанта путем склеивающего действия новолачной смолы. Альтернативно, частицы покрывающего материала с более низкой плотностью могут быть добавлены в твердую новолачную смолу в операции отдельно от, т.е. до, операции покрытия. Затем смолу с внедренными частицами покрывающего материала с более низкой плотностью используют, чтобы покрыть подложку проппанта.
В другом варианте осуществления данного изобретения клеем, использованным для приклеивания частиц покрывающего материала с более низкой плотностью к подложке проппанта, может быть термопластическая смола типа раскрытой в находящейся на рассмотрении заявке на патент США с серийным номером 11/456897, раскрытие которой приведено здесь в виде ссылки.
В частности, различные типы термопластичных материалов, которые могут быть использованы как клей для приклеивания частиц покрывающего материала с более низкой плотностью к подложке проппанта в данном варианте осуществления данного изобретения, широко включают полиэтилен, полипропилен, сополимеры SIS (стирол-изопрен-стирол); сополимеры ABS (т.е., акрилонитрил-бутадиен-стирол); сополимеры SBS (стирол-бутадиен-стирол); полиуретаны; сополимеры EVA (этиленвинилацетат); полистиролы; акриловые полимеры; поливинилхлорид и другие подобные фторопласты; сосновые канифоли и модифицированные канифоли, например, эфиры канифоли, включая эфиры глицериновых канифолей и эфиры пентаэритритной канифоли; полисульфиды; сополимеры EEA (этиленэтилакрилат); стирол-акрилонитриловые сополимеры; найлоны, фенол-формальдегидные новолачные смолы, воски и другие схожие материалы и их смеси. Особенно предпочтительными к использованию как термопластичный склеивающий материал являются те вещества, которые обычно называют термоплавкий клей. Например, термоплавкие клеи, такие как Opt-E-Bond™ HL0033, произведенный HB Fuller Co., и Cool-Lok™ 34-250A, произведенный National Adhesives, могут быть использованы как клей для прикрепления дисперсных материалов с более низкой плотностью к устойчивому к раздавливанию подложке проппанта. Другие варианты клеев включают сосновые канифоли и модифицированные канифоли, продаваемые Georgia-Pacific Corporation как NOVARES® 1100 и NOVARES® 1182.
Одним из преимуществ использования подобной термопластической смолы в качестве клея является то, что после того как покрытые термопластиком проппанты заклинены в разрыве, тепловая энергия в подземном пласте вызывает переход термопластика в клейкое (липкое) состояние и сплавление с другими, таким же образом покрытыми термопластиком проппантами, с формированием поддерживающего каркаса для удержания разрыва в открытом состоянии. Более того, клейкая (липкая) природа покрытых термопластиком проппантов, как ожидают, поможет удерживать покрывающий дисперсный материал с более низкой плотностью от эродирования с подложки проппанта и/или поможет захватывать любые эродированные частицы, а также сможет захватывать другие несвязанные твердые частицы в противотоках. По существу, количество твердого материала, который извлекают с желаемым углеводородом, например нефтью, можно контролировать или уменьшать.
В одном частном примере данного изобретения для того, чтобы понизить плотность (увеличить плавучесть) композитного проппанта, материал пробковых частиц смешивали с расплавленной термопластичной смолой и покрывали подложку проппанта. Таким образом, композитный проппант обеспечен не только свойственной липкостью, но также имеет усиленную плавучесть из-за приклеивания на проппант частиц покрывающего материала с более низкой плотностью.
Количество частиц покрывающего материала с более низкой плотностью, использованных в покрытии подложки проппанта, может варьировать от около 0,1 весового % до около 20 весовых % на основе веса подложки проппанта и, как обычно ожидают, должен применяться в количестве от около 1% до 10% по весу. В одной конкретной схеме материал пробковых частиц может включать от 2 весовых % до 3 весовых % веса проппанта. Большие количества также могут использоваться, и данное изобретение не должно быть ограничено этими количествами.
Как отмечено ранее, подложки проппанта, покрытые дисперсным материалом с более низкой плотностью, могут включать обычно используемые подложки проппанта, такие как кварцевый песок, керамику, боксит и подобные, так же как их предварительно покрытые смолой альтернативы, а также новые устойчивые к раздавливанию подложки проппанта. Традиционно, чтобы переносить эти типы проппантов на большие расстояния в пласте, подвергнутом гидроразрыву, были необходимы более вязкие жидкости по причине их относительно более высоких плотностей (более высоких удельных весов). Однако путем прикрепления дисперсных материалов с более низкой плотностью, например, пробковых частиц, на поверхность проппанта, эти подложки проппанта могут переноситься с использованием менее вязких жидкостей (чем традиционно используемые) для перемещения проппантов на такое же или большее расстояние в пласте, подвергнутом гидроразрыву.
Что касается размера, композитные проппанты данного изобретения, как правило, имеют распределение размеров частиц в диапазоне от около l4 меш до 100 меш (размер ячейки сита согласно сериям стандартных сит США). Обычно по меньшей мере 90% по весу частиц (например, композитных проппантов), добавленных к обрабатывающей жидкости или жидкости разрыва, имеют размер, находящийся в пределах этого диапазона.
Предпочтительно по меньшей мере 90% по весу частиц имеют распределение размеров 8-60 меш, и, более предпочтительно, 16-50 меш. В некоторых особенно предпочтительных схемах по меньшей мере 90% по весу частиц имеют распределение размеров частиц в диапазоне 20-40 меш.
Согласно одному или более вариантам осуществления также могут быть использованы подложки проппанта с более низким кажущимся удельным весом. Эти типы проппантов могут включать природные или синтетически полученные материалы и структуры, например полые стеклянные шарики, ореховую скорлупу и пористую керамику. Эти проппанты обычно имеют более низкий порог устойчивости к раздавливанию, чем традиционные проппанты. Использование проппантов, имеющих относительно более низкий кажущийся удельный вес, далее уменьшает вязкость и давление, необходимое, чтобы прокачать жидкость, несущую проппант, через подземный пласт. Прикрепление менее плотного дисперсного материала к этим типам проппантов может далее увеличить расстояние, на которое способны перемещаться проппанты перед оседанием. Дополнительно или альтернативно, прикрепление менее плотных дисперсных материалов к проппантам, имеющим меньшие кажущиеся удельные веса, может позволить при операциях бурения скважин далее снизить вязкость жидкости разрыва или обрабатывающей жидкости. Снижение вязкости обрабатывающей жидкости может также далее уменьшить количество энергии или давления, требуемых для прокачки жидкости на необходимое расстояние. Кроме того, компромисс этих материалов, однако, заключается в их более низком пороге устойчивости к раздавливанию.
В то время как данное обсуждение относится к операциям бурения скважин, в частности, рядовой специалист в данной области оценит, что использование высокоплавучих композитных проппантов согласно данному изобретению может использоваться в ряде других применений и операций. Например, вдобавок к операциям нефтяного бурения, обсуждаемых ранее, высокоплавучие композитные проппанты могут применяться в процедурах заполнения скважинного фильтра гравием, в которых устройство для просеивания размещают в стволе скважины. Другие операции, связанные с добычей углеводородов, могут также извлекать пользу от применения более высокоплавучих проппантов, как будет очевидно для специалиста в области подобных методик.
Как отмечено выше, композитные проппанты, описанные здесь, можно получить, используя множество процессов. В одном примере покрытый пробковыми частицами кварцевый песок может быть получен путем изначального нагревания непокрытого песка с добавлением термоплавкого клея и перемешиванием песка с клеем в течение заданного времени. Впоследствии материал пробковых частиц может быть добавлен к нагретой смеси, покрывая кварцевый песок пробковыми частицами. Образование композитного проппанта может включать множество стадий добавления клея, чтобы удостовериться, что пробковый материал в достаточной мере покрывает кварцевый песок. Как только песок будет в достаточной мере покрыт частицами пробкового материала, композитный проппант охлаждают и выгружают, а затем просеивают до желаемого распределения размера частиц.
Рядовой специалист в данной области оценит, что количество подложки, смолы и покрывающего дисперсного материала может изменяться в зависимости от желаемой степени покрытия, веса подложки, типа подложки, типа покрывающего материала, типа смолы и других факторов.
В то время как данное изобретение описано в отношении специфических примеров, включая ныне предпочитаемые способы осуществления данного изобретения, специалисты в данной области оценят, что существует множество разновидностей и комбинаций вышеописанных систем и методов, которые охватываются сущностью и объемом данного изобретения, как указано дальше в прилагаемой формуле изобретения.
СРАВНИТЕЛЬНЫЙ ПРИМЕР 1
Материал подложки проппанта (например, около 3000 г 20/40 песка разрыва или пористой керамики (например, 20/40 пористая керамика, коммерчески доступная от Carbo Ceramics)) предварительно нагревают в печи, и предварительно нагретую подложку затем добавляют в предварительно нагретый смеситель, например мельницу, и дают уравновеситься при температуре около 400°F (около 204°C). Когда температура подложки проппанта достигает 400°F (около 204°C), новолачную смолу песка разрыва (например, Georgia-Pacific GP-2202 смола разрыва) добавляют к нагретому проппанту и затем перемешивают в течение около пятнадцати секунд. Затем добавляют около 9 г порошковой смеси 98 весовых % метенамина и 2 весовых % порошка воска к смеси проппант/расплавленная смола и перемешивают в течение дополнительных пятнадцати секунд. Далее добавляют дополнительное количество смолы (около 120 г) и перемешивают в течение еще пятнадцати секунд. Затем добавляют еще порошковой смеси метенамина/воска (около 18,4 г) и перемешивают в течение двух минут. После двух минут покрытый проппант выгружают, а затем он может быть просеян до желаемого размера частиц.
ПРИМЕР 2
Процедуру примера 1 повторили с двумя отличиями. Во-первых, после того как перемешали первую порцию порошка метенамин / воск добавили 50 г порошковой (в форме частиц) пробки и перемешали в течение около 20 секунд. Затем, после добавления 120 г дополнительного GP-2202 продолжили перемешивание в течение 30, а не 15 секунд. После последнего двухминутного перемешивания покрытый проппант разгружают, а затем он может быть просеян до желаемого размера частиц.
Следующая таблица демонстрирует кажущиеся удельные веса представленных проппантов, сделанных по методикам Примера 1 и 2.
20/40 песок разрыва 20/40 пористая керамика
Пример 1 2,37 1,96
Пример 2 2,18 1,94
Фиг.1 представляет собой изображение, сделанное при помощи сканирующего электронного микроскопа, композитного проппанта данного примера, имеющего прикрепленные при помощи смоляного клея к поверхности подложки проппанта пробковые частицы.
В одном модельном эксперименте пятьдесят грамм каждого проппанта в виде покрытого песка разрыва Примера 1 и композитного проппанта песка разрыва Примера 2 смешали вместе и суспендировали в трехстах миллилитрах загущенной жидкости разрыва, чтобы смоделировать перенос проппантов через жидкость разрыва. Проппант по Примеру 1 был окрашен в красный цвет при помощи 2 г красного пигмента, в то время как проппант по Примеру 2 был окрашен в синий цвет при помощи 2 г синего пигмента. В модельном эксперименте проппантам в виде покрытого пробкой песка потребовалось больше времени для оседания, а большая фракция оказалась на верху осевшей массы, как продемонстрировано при помощи разделения окрашенных слоев.
Данное изобретение было описано со ссылкой на специфические варианты осуществления. Однако данная заявка имеет целью охватить все те изменения и замещения, которые могут быть сделаны специалистом в данной области техники без отступления от сущности и объема данного изобретения. Если не указано иное, то все проценты являются весовыми. Во всем описании и в формуле изобретения выражение “около” имеет целью охватывать +/- 5%.

Claims (20)

1. Способ обработки подземного пласта, при котором вводят в разрывы в пласте частицы, включающие композитный проппант, причем указанный композитный проппант включает подложку проппанта, способную выдерживать давление смыкания, по меньшей мере, около 5000 psi (35 МПа), и приклеенное покрытие дисперсного материала с фактической плотностью, меньшей чем кажущаяся плотность подложки проппанта, причем дисперсный материал имеет фактическую плотность менее чем 0,5 г/см3 и по меньшей мере 90 вес.% дисперсного материала имеют распределение размеров частиц в диапазоне от 75 до 150 мкм.
2. Способ по п.1, в котором подложку проппанта выбирают из группы, состоящей из боксита, кварцевого песка и пористой керамики, возможно покрытых смолой.
3. Способ по п.1, в котором приклеенное покрытие дисперсного материала включает пробковые частицы.
4. Способ по п.3, в котором пробковые частицы составляют 2-3% по весу композитного проппанта.
5. Способ по п.1, в котором дисперсный материал приклеивают на подложку проппанта, используя термоплавкий клей.
6. Способ по п.1, в котором дисперсный материал приклеивают на подложку проппанта, используя новолачную смолу, сшитую метенамином.
7. Способ по п.5, в котором термоплавкий клей включает термопластичную смолу.
8. Способ по п.1, в котором приклеенное покрытие дисперсного материала составляет от 0,1% до 20% по весу композитного проппанта.
9. Дисперсный композитный проппант, включающий подложку проппанта, способную выдерживать давление смыкания, по меньшей мере, около 5000 psi (35 МПа), и приклеенное покрытие дисперсного материала с фактической плотностью, меньшей, чем кажущаяся плотность подложки проппанта, причем дисперсный материал имеет фактическую плотность менее чем 0,5 г/см3, и по меньшей мере 90 вес.% дисперсного материала имеют распределение размеров частиц в диапазоне от 75 до 150 мкм.
10. Дисперсный композитный проппант по п.9, дополнительно включающий клей, который приклеивает дисперсный материал к подложке проппанта.
11. Дисперсный композитный проппант по п.10, в котором клей включает термопластичную смолу.
12. Дисперсный композитный проппант по п.10, в котором клей включает порошок воска.
13. Дисперсный композитный проппант по п.10, в котором клей включает термоотверждаемую смолу.
14. Дисперсный композитный проппант по п.9, в котором приклеенное покрытие дисперсного материала включает пробковые частицы.
15. Дисперсный композитный проппант по п.14, в котором пробковые частицы составляют от 2% до 3% по весу дисперсного композитного проппанта.
16. Дисперсный композитный проппант по п.9, в котором подложка проппанта включает, по меньшей мере, одно из пористой керамики, кварцевого песка, боксита и полого стекла, возможно имеющих покрытие смолы.
17. Дисперсный композитный проппант по п.15, в котором подложка проппанта включает частицы кварцевого песка.
18. Дисперсный композитный проппант по п.10, в котором материал включает 0,1% до 20% композитного проппанта по весу.
19. Дисперсный композитный проппант по п.9, в котором подложка проппанта способна выдерживать давление смыкания, по меньшей мере, около 75000 psi.
20. Дисперсный композитный проппант по п.9, в котором дисперсный материал приклеен к подложке проппанта клеем, включающим термоплавкий клей.
RU2009145962/03A 2007-05-11 2008-05-07 Повышение плавучести материалов для обработки скважин RU2478779C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/747,359 2007-05-11
US11/747,359 US8058213B2 (en) 2007-05-11 2007-05-11 Increasing buoyancy of well treating materials
PCT/US2008/062890 WO2008141039A1 (en) 2007-05-11 2008-05-07 Increasing buoyancy of well treating materials

Publications (2)

Publication Number Publication Date
RU2009145962A RU2009145962A (ru) 2011-06-20
RU2478779C2 true RU2478779C2 (ru) 2013-04-10

Family

ID=39683521

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009145962/03A RU2478779C2 (ru) 2007-05-11 2008-05-07 Повышение плавучести материалов для обработки скважин

Country Status (6)

Country Link
US (1) US8058213B2 (ru)
AR (1) AR066529A1 (ru)
CA (1) CA2685839C (ru)
CL (1) CL2008001375A1 (ru)
RU (1) RU2478779C2 (ru)
WO (1) WO2008141039A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10538696B2 (en) 2015-01-12 2020-01-21 Southwestern Energy Company Proppant and methods of using the same

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8133587B2 (en) 2006-07-12 2012-03-13 Georgia-Pacific Chemicals Llc Proppant materials comprising a coating of thermoplastic material, and methods of making and using
US8003214B2 (en) 2006-07-12 2011-08-23 Georgia-Pacific Chemicals Llc Well treating materials comprising coated proppants, and methods
US7754659B2 (en) * 2007-05-15 2010-07-13 Georgia-Pacific Chemicals Llc Reducing flow-back in well treating materials
US9845427B2 (en) 2009-10-20 2017-12-19 Self-Suspending Proppant Llc Proppants for hydraulic fracturing technologies
US8714248B2 (en) 2010-08-25 2014-05-06 Schlumberger Technology Corporation Method of gravel packing
US9234415B2 (en) 2010-08-25 2016-01-12 Schlumberger Technology Corporation Delivery of particulate material below ground
US8459353B2 (en) 2010-08-25 2013-06-11 Schlumberger Technology Corporation Delivery of particulate material below ground
US8448706B2 (en) 2010-08-25 2013-05-28 Schlumberger Technology Corporation Delivery of particulate material below ground
CA2824181C (en) 2011-01-17 2015-02-17 Enfrac Inc. Fracturing system and method for an underground formation
US9868896B2 (en) 2011-08-31 2018-01-16 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
US20140000891A1 (en) 2012-06-21 2014-01-02 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
US9297244B2 (en) 2011-08-31 2016-03-29 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing comprising a coating of hydrogel-forming polymer
WO2013033391A1 (en) 2011-08-31 2013-03-07 Soane Energy, Llc Self-suspending proppants for hydraulic fracturing
US9409777B2 (en) 2012-02-09 2016-08-09 Basf Se Preparation of polymeric resins and carbon materials
CN104254560B (zh) 2012-02-09 2017-09-22 佐治亚-太平洋化工品有限公司 制备聚合物树脂的方法和碳材料
IN2014KN01689A (ru) 2012-02-09 2015-10-23 Georgia Pacific Chemicals Llc
CN104685152B (zh) 2012-08-23 2017-12-08 哈里伯顿能源服务公司 根据液力压裂操作回收产品的减排方法
US9169433B2 (en) * 2012-09-27 2015-10-27 Halliburton Energy Services, Inc. Methods for enhancing well productivity and minimizing water production using swellable polymers
US9321956B2 (en) 2012-11-28 2016-04-26 Halliburton Energy Services, Inc. Methods for hindering the settling of particulates in a subterranean formation
KR101670310B1 (ko) 2012-11-29 2016-10-28 조지아-퍼시픽 케미칼즈 엘엘씨 현탁 중합 또는 유화 중합을 사용한 페놀-포름알데히드 수지 비드의 제조 방법
JP2016511780A (ja) * 2013-02-01 2016-04-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se プロパント
US11352505B1 (en) * 2013-07-25 2022-06-07 Oceanit Laboratories, Inc. Method of making buoyancy adjusted materials and their application thereof
GB201316610D0 (en) * 2013-09-18 2013-10-30 Montanuniversitat Leoben Ground supporting energy recovery medium with carbohydrate-based thickener salt and proppant in base liquid
US9932521B2 (en) 2014-03-05 2018-04-03 Self-Suspending Proppant, Llc Calcium ion tolerant self-suspending proppants
WO2016160521A1 (en) * 2015-03-27 2016-10-06 Carbo Ceramics, Inc. Methods and compositions for use of proppant surface chemistry and internal porosity to consolidate proppant particulates
KR102528934B1 (ko) 2015-08-28 2023-05-08 그룹14 테크놀로지스, 인코포레이티드 극도로 내구성이 우수한 리튬 인터칼레이션을 나타내는 신규 물질 및 그의 제조 방법
AR107125A1 (es) * 2015-12-23 2018-03-21 Shell Int Research Compuesto de agente de sostén
CN111088028B (zh) * 2018-10-23 2022-07-08 中国石油化工股份有限公司 超低密度支撑剂及其制备方法和应用
WO2020106655A1 (en) 2018-11-21 2020-05-28 Self-Suspending Proppant Llc Salt-tolerant self-suspending proppants made without extrusion
US10619090B1 (en) * 2019-04-15 2020-04-14 Saudi Arabian Oil Company Fracturing fluid compositions having Portland cement clinker and methods of use

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4493875A (en) * 1983-12-09 1985-01-15 Minnesota Mining And Manufacturing Company Proppant for well fractures and method of making same
US5422183A (en) * 1993-06-01 1995-06-06 Santrol, Inc. Composite and reinforced coatings on proppants and particles
GB2426023A (en) * 2005-05-12 2006-11-15 Bj Services Co Structured composite compositions for well treatment

Family Cites Families (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3815680A (en) * 1971-04-09 1974-06-11 Continental Oil Co Method for fracturing and propping unconsolidated and dilatant subterranean formations
US3929191A (en) * 1974-08-15 1975-12-30 Exxon Production Research Co Method for treating subterranean formations
US4073343A (en) * 1976-12-23 1978-02-14 Texaco Inc. Sand consolidation method
US4126181A (en) 1977-06-20 1978-11-21 Palmer Engineering Company Ltd. Method and apparatus for formation fracturing with foam having greater proppant concentration
US4160483A (en) * 1978-07-21 1979-07-10 The Dow Chemical Company Method of treating a well using fluoboric acid to clean a propped fracture
US4183813A (en) * 1978-11-15 1980-01-15 Palmer Engineering Company Ltd. Mixture concentrator
US4222444A (en) * 1978-12-06 1980-09-16 Hamilton Harold L Method of well fluid leak prevention
GB2050467B (en) 1979-06-07 1983-08-03 Perlman W Fracturing subterranean formation
US4336842A (en) * 1981-01-05 1982-06-29 Graham John W Method of treating wells using resin-coated particles
US4547468A (en) * 1981-08-10 1985-10-15 Terra Tek, Inc. Hollow proppants and a process for their manufacture
US4439489A (en) * 1982-02-16 1984-03-27 Acme Resin Corporation Particles covered with a cured infusible thermoset film and process for their production
CA1202882A (en) 1982-03-01 1986-04-08 Owen Richmond Method of removing gas from an underground seam
CA1185778A (en) 1982-07-12 1985-04-23 Brian R. Ainley Stable foams and methods of use
US4518040A (en) * 1983-06-29 1985-05-21 Halliburton Company Method of fracturing a subterranean formation
US4527627A (en) * 1983-07-28 1985-07-09 Santrol Products, Inc. Method of acidizing propped fractures
US4569394A (en) * 1984-02-29 1986-02-11 Hughes Tool Company Method and apparatus for increasing the concentration of proppant in well stimulation techniques
US4585064A (en) * 1984-07-02 1986-04-29 Graham John W High strength particulates
US4888240A (en) * 1984-07-02 1989-12-19 Graham John W High strength particulates
CA1228226A (en) 1984-07-05 1987-10-20 Arup K. Khaund Sintered low density gas and oil well proppants from a low cost unblended clay material of selected compositions
US4665990A (en) * 1984-07-17 1987-05-19 William Perlman Multiple-stage coal seam fracing method
US4923714A (en) * 1987-09-17 1990-05-08 Minnesota Mining And Manufacturing Company Novolac coated ceramic particulate
US4869960A (en) 1987-09-17 1989-09-26 Minnesota Mining And Manufacturing Company Epoxy novolac coated ceramic particulate
US4852650A (en) * 1987-12-28 1989-08-01 Mobil Oil Corporation Hydraulic fracturing with a refractory proppant combined with salinity control
US5188175A (en) * 1989-08-14 1993-02-23 Carbo Ceramics Inc. Method of fracturing a subterranean formation with a lightweight propping agent
US5005641A (en) * 1990-07-02 1991-04-09 Mohaupt Henry H Gas generator with improved ignition assembly
US5133624A (en) * 1990-10-25 1992-07-28 Cahill Calvin D Method and apparatus for hydraulic embedment of waste in subterranean formations
US5128390A (en) * 1991-01-22 1992-07-07 Halliburton Company Methods of forming consolidatable resin coated particulate materials in aqueous gels
US5217074A (en) * 1991-10-29 1993-06-08 Exxon Chemical Patents Inc. Method of fracturing formations
US5728302A (en) * 1992-04-09 1998-03-17 Groundwater Services, Inc. Methods for the removal of contaminants from subterranean fluids
US5425994A (en) * 1992-08-04 1995-06-20 Technisand, Inc. Resin coated particulates comprissing a formaldehyde source-metal compound (FS-MC) complex
US5330005A (en) * 1993-04-05 1994-07-19 Dowell Schlumberger Incorporated Control of particulate flowback in subterranean wells
CA2119316C (en) * 1993-04-05 2006-01-03 Roger J. Card Control of particulate flowback in subterranean wells
US5381864A (en) * 1993-11-12 1995-01-17 Halliburton Company Well treating methods using particulate blends
US5411093A (en) * 1993-12-10 1995-05-02 Mobil Oil Corporation Method of enhancing stimulation load fluid recovery
US5837656A (en) 1994-07-21 1998-11-17 Santrol, Inc. Well treatment fluid compatible self-consolidating particles
US5500174A (en) * 1994-09-23 1996-03-19 Scott; Gregory D. Method of manufacture of a prepacked resin bonded well liner
GB9503949D0 (en) * 1995-02-28 1995-04-19 Atomic Energy Authority Uk Oil well treatment
US5639806A (en) * 1995-03-28 1997-06-17 Borden Chemical, Inc. Bisphenol-containing resin coating articles and methods of using same
US6047772A (en) * 1995-03-29 2000-04-11 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5833000A (en) * 1995-03-29 1998-11-10 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5501274A (en) * 1995-03-29 1996-03-26 Halliburton Company Control of particulate flowback in subterranean wells
US5787986A (en) * 1995-03-29 1998-08-04 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US6209643B1 (en) * 1995-03-29 2001-04-03 Halliburton Energy Services, Inc. Method of controlling particulate flowback in subterranean wells and introducing treatment chemicals
US5839510A (en) * 1995-03-29 1998-11-24 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5582249A (en) * 1995-08-02 1996-12-10 Halliburton Company Control of particulate flowback in subterranean wells
US5775425A (en) * 1995-03-29 1998-07-07 Halliburton Energy Services, Inc. Control of fine particulate flowback in subterranean wells
US5929437A (en) * 1995-08-18 1999-07-27 Protechnics International, Inc. Encapsulated radioactive tracer
US5578371A (en) 1995-08-25 1996-11-26 Schuller International, Inc. Phenol/formaldehyde fiberglass binder compositions exhibiting reduced emissions
US6528157B1 (en) * 1995-11-01 2003-03-04 Borden Chemical, Inc. Proppants with fiber reinforced resin coatings
US5697440A (en) * 1996-01-04 1997-12-16 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US6364018B1 (en) * 1996-11-27 2002-04-02 Bj Services Company Lightweight methods and compositions for well treating
US6749025B1 (en) * 1996-11-27 2004-06-15 Bj Services Company Lightweight methods and compositions for sand control
US20050028979A1 (en) * 1996-11-27 2005-02-10 Brannon Harold Dean Methods and compositions of a storable relatively lightweight proppant slurry for hydraulic fracturing and gravel packing applications
US7426961B2 (en) * 2002-09-03 2008-09-23 Bj Services Company Method of treating subterranean formations with porous particulate materials
US6059034A (en) * 1996-11-27 2000-05-09 Bj Services Company Formation treatment method using deformable particles
US6330916B1 (en) * 1996-11-27 2001-12-18 Bj Services Company Formation treatment method using deformable particles
US6017854A (en) * 1997-05-28 2000-01-25 Union Oil Company Of California Simplified mud systems
CA2308372C (en) 1997-11-21 2006-10-31 Bj Services Company Formation treatment method using deformable particles
US6114410A (en) * 1998-07-17 2000-09-05 Technisand, Inc. Proppant containing bondable particles and removable particles
ATE319772T1 (de) * 1998-07-22 2006-03-15 Hexion Specialty Chemicals Inc Stützmittelverbund, verbundstoff- filtrationsmedium und verfahren zu deren herstellung und verwendung
US6582819B2 (en) * 1998-07-22 2003-06-24 Borden Chemical, Inc. Low density composite proppant, filtration media, gravel packing media, and sports field media, and methods for making and using same
US6406789B1 (en) * 1998-07-22 2002-06-18 Borden Chemical, Inc. Composite proppant, composite filtration media and methods for making and using same
US6116342A (en) * 1998-10-20 2000-09-12 Halliburton Energy Services, Inc. Methods of preventing well fracture proppant flow-back
US6439789B1 (en) * 2000-09-27 2002-08-27 Closure Medical Corporation Polymerizable 1, 1-disubstituted ethylene monomer formulation applicators, applicator tips, applicator kits and methods
US6439309B1 (en) * 2000-12-13 2002-08-27 Bj Services Company Compositions and methods for controlling particulate movement in wellbores and subterranean formations
US6491097B1 (en) 2000-12-14 2002-12-10 Halliburton Energy Services, Inc. Abrasive slurry delivery apparatus and methods of using same
US6790317B2 (en) * 2001-06-28 2004-09-14 University Of Hawaii Process for flash carbonization of biomass
WO2003011588A1 (en) 2001-07-03 2003-02-13 Scapa Tapes North America, Inc. Heat-activated adhesive tape having an acrylic foam-like backing
CN100540844C (zh) 2001-09-11 2009-09-16 普拉德研究及开发股份有限公司 用于控制脱砂的方法
US6626241B2 (en) * 2001-12-06 2003-09-30 Halliburton Energy Services, Inc. Method of frac packing through existing gravel packed screens
US20030205376A1 (en) * 2002-04-19 2003-11-06 Schlumberger Technology Corporation Means and Method for Assessing the Geometry of a Subterranean Fracture During or After a Hydraulic Fracturing Treatment
US7153575B2 (en) * 2002-06-03 2006-12-26 Borden Chemical, Inc. Particulate material having multiple curable coatings and methods for making and using same
US6732800B2 (en) * 2002-06-12 2004-05-11 Schlumberger Technology Corporation Method of completing a well in an unconsolidated formation
US7066260B2 (en) * 2002-08-26 2006-06-27 Schlumberger Technology Corporation Dissolving filter cake
US6832650B2 (en) * 2002-09-11 2004-12-21 Halliburton Energy Services, Inc. Methods of reducing or preventing particulate flow-back in wells
US6817414B2 (en) * 2002-09-20 2004-11-16 M-I Llc Acid coated sand for gravel pack and filter cake clean-up
US7100688B2 (en) 2002-09-20 2006-09-05 Halliburton Energy Services, Inc. Fracture monitoring using pressure-frequency analysis
CN1304729C (zh) 2002-12-18 2007-03-14 宜兴东方石油支撑剂有限公司 油气井压裂用固体支撑剂
US6892813B2 (en) * 2003-01-30 2005-05-17 Halliburton Energy Services, Inc. Methods for preventing fracture proppant flowback
CA2519144C (en) 2003-03-18 2008-12-23 Bj Services Company Method of treating subterranean formations using mixed density proppants or sequential proppant stages
EP1615763A4 (en) * 2003-04-15 2012-03-21 Hexion Specialty Chemicals Inc PARTICULATE MATERIAL CONTAINING THERMOPLASTIC ELASTOMER AND METHODS OF MAKING AND USING SAME
US7581872B2 (en) * 2003-04-30 2009-09-01 Serva Corporation Gel mixing system
US7044220B2 (en) 2003-06-27 2006-05-16 Halliburton Energy Services, Inc. Compositions and methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US7178596B2 (en) 2003-06-27 2007-02-20 Halliburton Energy Services, Inc. Methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US20050059588A1 (en) * 2003-09-15 2005-03-17 Regents Of The University Of California Peptides which generate antibodies resulting in lysis of pathologically adherent erythrocytes
CA2540415C (en) * 2003-11-04 2007-01-02 Global Synfrac Inc. Proppants and their manufacture
US7244492B2 (en) * 2004-03-04 2007-07-17 Fairmount Minerals, Ltd. Soluble fibers for use in resin coated proppant
DE102004014891B4 (de) 2004-03-22 2006-03-09 Meissner, Jörg Schwimmhilfe als Trägergurtsystem
US7073581B2 (en) * 2004-06-15 2006-07-11 Halliburton Energy Services, Inc. Electroconductive proppant compositions and related methods
WO2006023172A2 (en) * 2004-08-16 2006-03-02 Fairmount Minerals, Ltd. Control of particulate flowback in subterranean formations using elastomeric resin coated proppants
US7210526B2 (en) 2004-08-17 2007-05-01 Charles Saron Knobloch Solid state pump
CN101432132B (zh) * 2004-09-20 2012-11-28 迈图专业化学股份有限公司 用作支撑剂或用于砾石充填的颗粒,及其制造和使用方法
US7491444B2 (en) * 2005-02-04 2009-02-17 Oxane Materials, Inc. Composition and method for making a proppant
EP1858694A4 (en) * 2005-02-25 2012-04-04 Superior Graphite Co GRAPHITE COATING OF PARTICLE MATERIALS
CN1325423C (zh) 2005-07-13 2007-07-11 攀枝花环业冶金渣开发有限责任公司 高钛型石油压裂支撑剂及其生产方法
US8133587B2 (en) * 2006-07-12 2012-03-13 Georgia-Pacific Chemicals Llc Proppant materials comprising a coating of thermoplastic material, and methods of making and using
US8003214B2 (en) * 2006-07-12 2011-08-23 Georgia-Pacific Chemicals Llc Well treating materials comprising coated proppants, and methods
CA2656647C (en) 2006-09-13 2011-05-03 Hexion Specialty Chemicals, Inc. Logging device with down-hole transceiver for operation in extreme temperatures
US7624802B2 (en) * 2007-03-22 2009-12-01 Hexion Specialty Chemicals, Inc. Low temperature coated particles for use as proppants or in gravel packs, methods for making and using the same
US7754659B2 (en) 2007-05-15 2010-07-13 Georgia-Pacific Chemicals Llc Reducing flow-back in well treating materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4493875A (en) * 1983-12-09 1985-01-15 Minnesota Mining And Manufacturing Company Proppant for well fractures and method of making same
US5422183A (en) * 1993-06-01 1995-06-06 Santrol, Inc. Composite and reinforced coatings on proppants and particles
GB2426023A (en) * 2005-05-12 2006-11-15 Bj Services Co Structured composite compositions for well treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10538696B2 (en) 2015-01-12 2020-01-21 Southwestern Energy Company Proppant and methods of using the same

Also Published As

Publication number Publication date
RU2009145962A (ru) 2011-06-20
WO2008141039A1 (en) 2008-11-20
US8058213B2 (en) 2011-11-15
CL2008001375A1 (es) 2008-11-14
US20080277115A1 (en) 2008-11-13
CA2685839C (en) 2015-07-14
CA2685839A1 (en) 2008-11-20
AR066529A1 (es) 2009-08-26

Similar Documents

Publication Publication Date Title
RU2478779C2 (ru) Повышение плавучести материалов для обработки скважин
RU2489569C2 (ru) Уменьшение выноса материалов при обработке буровых скважин
US9845428B2 (en) Proppants for hydraulic fracturing technologies
RU2462498C2 (ru) Материалы и способы для обработки скважины
US7244492B2 (en) Soluble fibers for use in resin coated proppant
US20120183687A1 (en) Methods for Reducing Particulate Density
US20100282468A1 (en) Fracturing fluid compositions comprising solid epoxy particles and methods of use
CA2718659C (en) Low temperature coated particles for use as proppants or in gravel packs, methods for making and using the same
US7255168B2 (en) Lightweight composite particulates and methods of using such particulates in subterranean applications
RU2703077C2 (ru) Отверждаемый при низкой температуре расклинивающий наполнитель
EA013097B1 (ru) Способ закупоривания трещиноватого пласта
AU2004316128A1 (en) Resin compositions and methods of using resin compositions to control proppant flow-back
ZA200610277B (en) Aqueous-based tackifier fluids and methods of use
EA002634B1 (ru) Композиционные частицы, способ их получения, способ обработки гидравлического разрыва, способ фильтрации воды
AU2005313226A1 (en) Low-quality particulates and methods of making and using improved low-quality particulates
AU2010244263B2 (en) Methods of consolidating particulates using a hardenable resin and an organosilane coupling agent
KR20150127229A (ko) 프로판트
WO2017188842A1 (ru) Способ гидроразрыва пласта с использованием нестандартного проппанта

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200508