RU2476384C2 - Способ очистки сточных вод от фенолов - Google Patents

Способ очистки сточных вод от фенолов Download PDF

Info

Publication number
RU2476384C2
RU2476384C2 RU2011113133/05A RU2011113133A RU2476384C2 RU 2476384 C2 RU2476384 C2 RU 2476384C2 RU 2011113133/05 A RU2011113133/05 A RU 2011113133/05A RU 2011113133 A RU2011113133 A RU 2011113133A RU 2476384 C2 RU2476384 C2 RU 2476384C2
Authority
RU
Russia
Prior art keywords
phenols
phenol
manganese
waters
oxidation
Prior art date
Application number
RU2011113133/05A
Other languages
English (en)
Other versions
RU2011113133A (ru
Inventor
Ольга Владимировна Черемисина
Дмитрий Эдуардович Чиркст
Мария Алексеевна Сулимова
Татьяна Евгеньевна Литвинова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный"
Priority to RU2011113133/05A priority Critical patent/RU2476384C2/ru
Publication of RU2011113133A publication Critical patent/RU2011113133A/ru
Application granted granted Critical
Publication of RU2476384C2 publication Critical patent/RU2476384C2/ru

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

Изобретение может быть использовано при очистке фенолсодержащих сбросных вод, промышленных стоков, а также попутных вод нефтепромыслов. Для осуществления способа проводят каталитическое окисление фенолов марганецсодержащим окислителем в термостатированном реакторе с автоматическим перемешиванием. В качестве марганецсодержащего окислителя используют железомарганцевые конкреции, содержащие оксид железа(III) в мольном отношении 1:2 к активному оксиду марганца(IV). Процесс окисления проводят при соотношении объема жидкой фазы к массе твердой фазы 50-55 л на 1 кг железомарганцевых конкреций при температурах 303-343 К и рН=5-6. Способ обеспечивает снижение содержания фенола в высоконцентрированных по фенолам сточных водах (не менее 1 г/л) до 0,15-0,18 г/л, причем степень очистки возрастает с увеличением температуры и времени контакта. Содержание фенола в низкоконцентрированных по фенолам сточных водах (не менее 1,2 мг/л) снижается до значений ПДК - 0,001 мг/л. 2 ил., 2 пр.

Description

Изобретение относится к деструктивным способам очистки сточных вод от фенолов высоких и низких концентраций и может быть использовано при очистке фенолсодержащих сбросных вод, промышленных стоков, а также попутных вод нефтепромыслов.
Известен способ адсорбционной очистки воды от фенолов (пат. RU №2111172, опубл. 1998.05.20), включающий фильтрацию через природный сорбент, в качестве которого используют кремнистую породу смешанного минерального состава (мас.%): опал-кристобалит - 30-49; цеолит - 7-25; глина - 7-25, кальцит - 10-28, остальное - обломочно-песчано-алевритовый материал), которую прокаливают перед активацией при 300°С, а после активации пород обрабатывают 2 н. раствором хлорида натрия.
Недостатком данного способа является низкая сорбционная емкость природного сорбента по фенолам, поэтому способ рекомендован для доочистки воды от фенолов.
Известен способ биохимической очистки промышленных сточных вод от фенолов (пат. RU №2188164, опуб. 2002.08.27), который осуществляют путем совместного и одновременного окисления фенолов активным илом и перекисью водорода. Активный ил предварительно адаптируют в течение 1,5-3 месяцев к высоким концентрациям фенола не более 3,0 г/л и перекиси водорода не более 3,0 г/л без уменьшения интенсивности биологического окисления.
Недостатком такого способа является проведение процесса в длительном периодическом режиме.
Известен способ очистки сточных вод от фенолов (пат. RU №2058265, опубл. 1996.04.20), который включает электрокаталитическое окисление с использованием марганецсодержащего катализатора (пиролюзита) с высотой насыпного слоя 1,2-6,0 см в поле гальванического элемента, анодом которого является пиролюзит, а катодом - пластины из нержавеющей стали. Электрокаталитическая обработка сточной воды, содержащей фенол в количестве 4-200 мг/л, в поле гальванического элемента реактора с секционной загрузкой анода катализатора пиролюзита, разделенного катодами пластинами из нержавеющей стали, позволяет в течение 1,0-1,5 ч снизить содержание фенола в воде до 0,001 мг/л, т.е. до предельно допустимой концентрации. Температура протекания процесса 20±5°С.
Недостатками способа являются высокий расход энергии и невозможность использования разработанной электрокаталитической технологии для очистки сточных вод от высоких концентраций фенолов.
Известен способ очистки сточных вод от фенолов с использованием диоксида марганца в качестве окислителя фенола при рН=2-4 (Song Yin-xian, Xie Qiao-qin, Chen Tian-hu et all. // Bulletin of Mineralogy, Petrology and Geochemistry. 2006. V.25. No.4. P.324-329), принятый за прототип.Диоксид марганца является окислителем в кислых средах. Реакции окисления дифенолов (гидрохинона и пирокатехина) описываются уравнением:
Figure 00000001
Figure 00000002
Продуктами окисления дифенолов являются соответствующие бензохиноны. Концентрация Mn2+ в растворе подчиняется уравнению:
Figure 00000003
Недостатками способа являются: использование дорогостоящего материала диоксида марганца в силу отсутствия собственных месторождений пиролюзита в России и образующиеся в результате окисления фенолов и растворения диоксида марганца в кислых средах при рН<4 катионы Mn2+. Последнее особенно нежелательно при очистке сточных вод, так как катионы марганца (2+) являются токсикантами, для них установлена ПДК 0,1 мг/л.
Техническим результатом является повышение степени очистки сточных вод от фенолов высоких и низких концентраций при отсутствии продуктов восстановления MnO2 в очищенных растворах катионов марганца (II), являющихся токсикантами.
Технический результат достигается тем, что в способе очистки сточных вод от фенолов, включающем каталитическое окисление фенолов марганецсодержащим окислителем с автоматическим перемешиванием фаз, в качестве марганецсодержащего окислителя используют железомарганцевые конкреции, содержащие оксид железа (III) в мольном отношении 1:2 к активному оксиду марганца (IV), а процесс окисления проводят при соотношении объема жидкой фазы к массе твердой 50-55 л на 1 кг железомарганцевых конкреций при температурах 303-343 К и рН=5-6.
Использование в качестве марганецсодержащего окислителя железомарганцевых конкреций Финского залива позволяет проводить процесс с высокими скоростями окисления при низких температурах 303-343 К. В состав железомарганцевых конкреций входит оксид железа (III) в мольном отношении 1:2 к активному оксиду марганца (IV), что в пересчете на элементы железо и марганец составляет 1:1 и соответствует седиментационному генетическому типу ЖМК. (Челищев Н.Ф., Грибанов Н.К., Новиков Г.В. Сорбционные свойства океанических железомарганцевых конкреций и корок. - М.: Недра, 1992. - С.21, 317 с.).
Изучение вещественного состава ЖМК Финского залива показывает, что основная масса рудной части представлена гидроксидами железа и марганца, а цветные металлы находятся в изоморфной связи с минералами марганца и железа. Железо содержится в основном в виде гидрогетита FeO(OH) и двойных силикатов с алюминием типа ферригидрита Fe5Al2(Al2Si6O22)(OH)2 (Челищев Н.Ф., Грибанов Н.К., Новиков Г.В. Сорбционные свойства океанических железомарганцевых конкреций и корок. - М: Недра, 1992. - С.9, 317 с.).
Минеральный состав используемых конкреций представлен тодорокитом, вернадитом, в подчиненном количестве пиролюзитом, псиломеланом и рансьеитом.
Присутствие оксида железа (III) в железомарганцевых конкрециях вносит вклад в значения констант скорости поверхностно-химической реакции и существенно понижает активационный барьер по сравнению с процессом окисления на чистом оксиде марганца (IV), что позволяет проводить эффективный процесс окисления даже при 30-40°С.
Реакция окисления фенолов на железомарганцевых конкрециях в интервале температур 303-343 К имеет второй порядок по фенолу и характеризуется низким значением активации 17,5 кДж/моль, что и объясняется каталитическим действием оксида железа (III).
Автоматическое перемешивание фаз обеспечивает ликвидацию диффузионных торможений. Так как скорость гетерогенно-каталитической реакции относят к единице поверхности катализатора или к единице поверхности твердой фазы, то соотношение объема жидкой фазы к массе твердой, установленное экспериментально и равное 50-55 л на 1 кг железомарганцевых конкреций, обеспечивает необходимую поверхностную концентрацию твердой фазы.
Проведение процесса окисления при температурах 303-343 К обусловлено минимальными экономическими затратами для его осуществления в промышленном масштабе и исключает вероятность процесса испарения фенолов.
Проведение процесса окисления фенолов при значении рН=5-6, обеспечивает отсутствие в очищенном от фенолов растворе продуктов восстановления MnO2 токсичных катионов Mn2+, реакцию описывает следующее уравнение:
MnO2(тв)+2С6Н5ОН(р-р)+H2O(ж)⇔MnO(тв)+2НО-С6Н5-ОН(р-р)+2H+aq.
При данной кислотности среды также нет зависимости скорости реакции окисления фенолов от концентрации ионов гидроксония, так как согласно значениям рК1=2,3 и рК2=3,3 для поверхностных манганиольных групп >MnIV(OH)2 при рН=5-6 эти функциональные группы практически полностью диссоциированы, а степень диссоциации фенольных групп ничтожно мала. Кроме того, фенольные стоки имеют нейтральную реакцию.
Способ осуществляют следующим образом. Экологически чистый материал железомарганцевых конкреций представляет собой готовые гранулы округлой формы с подходящим для использования в насыпных фильтрах дисперсным составом.
Процесс окисления проводили с использованием термостатированной установки, состоящей из реактора с автоматическим перемешиванием. В реактор помещали водный раствор фенола с концентрацией 1,0-1,2 г/л и рН=5-6, вносили железомарганцевые конкреции в виде гранул размерами 1,0-2,0 мм и перемешивали со скоростью 400 оборотов в минуту. Отношение объема жидкой фазы к массе твердой фазы составляло 50 л фенолсодержащего водного раствора на 1 кг железомарганцевых конкреций.
Необходимая продолжительность контакта водного раствора и железомарганцевых конкреций для десятикратного снижения исходной концентрации фенолов была установлена экспериментально и составляла 300-350 мин. Контроль за величиной рН выполняли при помощи рН-метра рН-150М с комбинированным электродом марки ЭСК-10601/4. Контроль за содержанием катионов Mn2+ в водном растворе осуществлялся при помощи рентгенофлуоресцентного анализатора «Spectroscan-U».
Через определенные промежутки времени отбирали аликвоты объемом 15 мл, которые анализировали на содержание фенола и его продуктов окисления: гидрохинона и бензохинона.
Содержание высоких концентраций фенола определяли по поглощению в ультрафиолетовой области спектра при длине волны 235 нм (Суханов П.Т., Коренман Я.И. Концентрирование и определение фенолов / Воронеж: изд. Воронеж. Гос. Технол. Акад. 2005. 260 с.). Содержание низких концентраций фенола определяли хроматографическим методом с использованием газового хроматографа HP 6890 (Лурье Ю.Ю. Аналитическая химия промышленный сточных вод. / М.: Химия. 1984).
Концентрацию гидрохинона определяли по разности оптических плотностей Dph=13-ΔD. Концентрацию п-бензохинона определяли фотометрическим методом с использованием реакции оксимирования с помощью солянокислого гидроксиламина (Лурье Ю.Ю., Рыбникова А.И. Химический анализ производственных сточных вод. / Изд. 4-е. М.: Химия. 1974).
Установлено, что при рН=5,0±6,0 основным продуктом окисления фенола диоксидом марганца являются гидрохиноны и менее 10 мол.% п-бензохинонов, ПДК которых (0,2 мг/л) в 200 раз выше ПДК фенолов.
Гидрохинон является сильным восстановителем, как и фенол, обладает слабым дезинфицирующим действием. Гидрохинон при концентрации 100 мг/л стерилизует воду, при 10 мг/л тормозит развитие сапрофитной микрофлоры, ниже 10 мг/л гидрохинон подвергается окислению до СО2 и Н2О. Продукты окисления фенолов, полученные в результате окисления с использованием ЖМК, соответствуют продуктам окисления фенолов на пиролюзите.
Анализ растворов на содержание марганца с помощью рентгенофлуоресцентного кристалл-диффракционного спектрометра «Spectroscan-U» показал отсутствие катионов Mn2+, что является доказательством того, что при рН>5 марганец (2+) в раствор не переходит.
Пример 1. В реактор с температурой 303 К помещали водный раствор фенола с концентрацией 1,0-1,2 г/л (0,0106-0,013 моль/л) и рН=5-6, вносили железомарганцевые конкреции в виде гранул размерами 1,0-2,0 мм и перемешивали со скоростью 400 оборотов в минуту. Отношение объема жидкой фазы к массе твердой фазы составляло 50 л фенолсодержащего водного раствора на 1 кг железомарганцевых конкреций. Через 300-350 мин концентрация фенола в водной фазе снизилась до 0,16 г/л (0,70·10-3 моль/л).
Пример 2. Сточную воду, содержащую фенол в количестве 1,2-1,1 мг/л (0,0125-0,0120 ммоль/л), нагревали до 313 К, вносили железомарганцевые конкреции в количестве 1 кг на 50 л водного раствора и перемешивали со скоростью 400 оборотов в минуту. Через определенные промежутки времени отбирали аликвоты водного раствора на анализ содержания фенола. Через 300-350 мин концентрация фенола в водной фазе снизилась до 0,001 мг/л, соответствующей ПДК.
На фиг.1 представлены зависимости концентрации фенола в высококонцентрированной по фенолу сточной воде от времени окисления железомарганцевых конкреций при рН=5-6, соотношении V/m=50 л/кг и температурах 303, 313, 323, 333 и 343 К, полученные экспериментально.
На фиг.2 представлены зависимости концентрации фенола в низкоконцентрированной по фенолу сточной воде от времени окисления железомарганцевых конкреций при рН=5-6, соотношении V/m=50 л/кг и температурах 313, 323, 333, 343 К, полученные экспериментально.
Способ обеспечивает обезвреживание сточных вод от фенолов высоких и низких концентраций при использовании железомарганцевых конкреций с понижением концентрации фенолов до 0,15-0,18 г/л в высококонцентрированных растворах и до ПДК в растворах с низким исходным содержанием фенолов, причем степень очистки сточных вод возрастает с увеличением температуры и времени контакта при отсутствии продуктов восстановления MnO2 катионов Mn2+ в очищенных растворах.

Claims (1)

  1. Способ очистки сточных вод от фенолов, включающий каталитическое окисление фенолов марганецсодержащим окислителем с автоматическим перемешиванием фаз, отличающийся тем, что в качестве марганецсодержащего окислителя используют железомарганцевые конкреции, содержащие оксид железа(III), в мольном соотношении 1:2 к активному оксиду марганца(IV), а процесс окисления проводят при отношении объема жидкой фазы к массе твердой 50-55 л на 1 кг железомарганцевых конкреций при температурах 303-343 К и рН 5-6.
RU2011113133/05A 2011-04-05 2011-04-05 Способ очистки сточных вод от фенолов RU2476384C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011113133/05A RU2476384C2 (ru) 2011-04-05 2011-04-05 Способ очистки сточных вод от фенолов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011113133/05A RU2476384C2 (ru) 2011-04-05 2011-04-05 Способ очистки сточных вод от фенолов

Publications (2)

Publication Number Publication Date
RU2011113133A RU2011113133A (ru) 2012-10-10
RU2476384C2 true RU2476384C2 (ru) 2013-02-27

Family

ID=47079262

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011113133/05A RU2476384C2 (ru) 2011-04-05 2011-04-05 Способ очистки сточных вод от фенолов

Country Status (1)

Country Link
RU (1) RU2476384C2 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1143456A1 (ru) * 1984-01-16 1985-03-07 Институт Минералогии,Геохимии И Кристаллохимии Редких Элементов Сорбент ионов металлов
RU2084282C1 (ru) * 1993-08-19 1997-07-20 Александр Владимирович Зацепин Способ получения катализатора для очистки отходящего газа
KR20030055929A (ko) * 2001-12-27 2003-07-04 한국과학기술원 망간산화물 및 반응매개체를 이용한 난분해성유기오염물질의 제거 방법
US6719908B2 (en) * 2000-04-10 2004-04-13 Midwest Research Institute Phenol removal pretreatment process
RU2239494C1 (ru) * 2003-06-17 2004-11-10 Архангельский государственный технологический университет Катализатор окисления соединений фенольного ряда
CN101269841A (zh) * 2008-04-15 2008-09-24 北京大学 除酚用锰氧化物及其处理高浓度含酚废水的方法
CN101891297A (zh) * 2010-07-19 2010-11-24 江南大学 一种以二氧化锰一维纳米材料作为催化剂的臭氧化水处理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1143456A1 (ru) * 1984-01-16 1985-03-07 Институт Минералогии,Геохимии И Кристаллохимии Редких Элементов Сорбент ионов металлов
RU2084282C1 (ru) * 1993-08-19 1997-07-20 Александр Владимирович Зацепин Способ получения катализатора для очистки отходящего газа
US6719908B2 (en) * 2000-04-10 2004-04-13 Midwest Research Institute Phenol removal pretreatment process
KR20030055929A (ko) * 2001-12-27 2003-07-04 한국과학기술원 망간산화물 및 반응매개체를 이용한 난분해성유기오염물질의 제거 방법
RU2239494C1 (ru) * 2003-06-17 2004-11-10 Архангельский государственный технологический университет Катализатор окисления соединений фенольного ряда
CN101269841A (zh) * 2008-04-15 2008-09-24 北京大学 除酚用锰氧化物及其处理高浓度含酚废水的方法
CN101891297A (zh) * 2010-07-19 2010-11-24 江南大学 一种以二氧化锰一维纳米材料作为催化剂的臭氧化水处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SONG Yin-xian at al. The Kinetics of Oxidizing Phenol in Wastewater by Natural Manganese Oxide Minerals // Bulletin of Mineralogy, Petrology and Geochemistry. - 2006, v.5, N 4, p.324-329. *

Also Published As

Publication number Publication date
RU2011113133A (ru) 2012-10-10

Similar Documents

Publication Publication Date Title
Ziembowicz et al. Limitations and future directions of application of the Fenton-like process in micropollutants degradation in water and wastewater treatment: A critical review
Michael et al. Solar photo-Fenton oxidation followed by adsorption on activated carbon for the minimisation of antibiotic resistance determinants and toxicity present in urban wastewater
Khuntia et al. Removal of ammonia from water by ozone microbubbles
Arslan-Alaton et al. Removal of iopamidol, an iodinated X-ray contrast medium, by zero-valent aluminum-activated H2O2 and S2O82−
Wang et al. Degradation of Acid Orange 7 by persulfate activated with zero valent iron in the presence of ultrasonic irradiation
Carriazo et al. Catalytic wet peroxide oxidation of phenol by pillared clays containing Al–Ce–Fe
Liang et al. Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate
Mahamuni et al. Effect of additives on ultrasonic degradation of phenol
Kordbacheh et al. Water pollutants and approaches for their removal
Min et al. Accelerated reduction of bromate in frozen solution
Badmus et al. Removal of heavy metal from industrial wastewater using hydrogen peroxide
Sühnholz et al. Evidence of heterogeneous degradation of PFOA by activated persulfate–FeS as adsorber and activator
He et al. Metal oxyanion removal from wastewater using manganese-oxidizing aerobic granular sludge
EP3365101A1 (en) Methods for treating selenocyanate in wastewater
Soler et al. Effect of inorganic ions on the solar detoxification of water polluted with pesticides
Rao et al. Liquid–liquid extraction of phenol from simulated sebacic acid wastewater
Ning et al. Organic removal from coal-to-chemical brine by a multistage system of adsorption-regeneration and electrochemically driven UV/chlorine processes
Yang et al. Changes of distribution and chemical speciation of metals in hexavalent chromium loaded algal-bacterial aerobic granular sludge before and after hydrothermal treatment
Putschew et al. Ozonation and reductive deiodination of iopromide to reduce the environmental burden of iodinated X-ray contrast media
RU2476384C2 (ru) Способ очистки сточных вод от фенолов
Benghaffour et al. Insight into natural medium remediation through ecotoxicity correlation with clay catalyst selectivity in organic molecule ozonation
Hussain Water treatment using graphite adsorbents with electrochemical regeneration
JP4936453B2 (ja) 鉄イオン及び砒素を含有するイオンを含むpH4未満の水処理用吸着剤及び前記水の浄化方法
Hübner et al. Tertiary treatment of Berlin WWTP effluents with ferrate (Fe (VI))
Kochetov et al. Integrated treatment of rinsing cooper-containing wastewater

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180406