RU2474737C2 - Сегментный радиальный подшипник скольжения - Google Patents

Сегментный радиальный подшипник скольжения Download PDF

Info

Publication number
RU2474737C2
RU2474737C2 RU2010149156/11A RU2010149156A RU2474737C2 RU 2474737 C2 RU2474737 C2 RU 2474737C2 RU 2010149156/11 A RU2010149156/11 A RU 2010149156/11A RU 2010149156 A RU2010149156 A RU 2010149156A RU 2474737 C2 RU2474737 C2 RU 2474737C2
Authority
RU
Russia
Prior art keywords
bearing
spherical
pin
segment
shaft
Prior art date
Application number
RU2010149156/11A
Other languages
English (en)
Other versions
RU2010149156A (ru
Inventor
Леонид Фёдорович Медведев
Юрий Михайлович Паутов
Александр Сергеевич Семёновых
Родион Петрович Казанцев
Сергей Юрьевич Шуцкий
Original Assignee
Открытое акционерное общество "Центральное конструкторское бюро машиностроения"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Центральное конструкторское бюро машиностроения" filed Critical Открытое акционерное общество "Центральное конструкторское бюро машиностроения"
Priority to RU2010149156/11A priority Critical patent/RU2474737C2/ru
Publication of RU2010149156A publication Critical patent/RU2010149156A/ru
Application granted granted Critical
Publication of RU2474737C2 publication Critical patent/RU2474737C2/ru

Links

Images

Abstract

Изобретение относится к подшипникам скольжения с рабочей поверхностью из силицированного графита, применяемым в электро- и гидромашинах с валами большого диаметра, преимущественно, в главных циркуляционных насосных агрегатах на АЭС. Подшипник содержит несколько самоустанавливающихся сегментов, расположенных внутри корпуса (1) равномерно по окружности вала (2) и охватывающих цапфу вала с радиальным зазором, а также соответствующее количество опорных механизмов для сегментов. В каждом сегменте несущий (3) и антифрикционный (4) элементы в виде пластин упруго сопряжены. Опорный механизм для каждого сегмента включает шаровой палец (10), охватывающий его пружинный стакан (9), образующий разъемное соединение с элементом (3) и опорную шпильку (11) со сквозным осевым отверстием (15), ввернутую в корпус (1). Сферические углубления (13) в элементе (3) и днище стакана (9) образуют с пальцем (10) сферический шарнир, поджимаемый стаканом (9). Палец (10) сопряжен с шпилькой (11) посредством винта (12), вворачиваемого снаружи подшипника через отверстие шпильки (11) в палец (10). Технический результат: обеспечение использования силицированного графита в условиях охлаждения и смазки подшипника водой, исключение повреждений элементов из силицированного графита за счет изгибных напряжений, а также термических деформаций, уменьшение до безопасного уровня силовых нагрузок в подшипнике. 2 з.п. ф-лы, 2 ил.

Description

Изобретение относится к подшипникам скольжения, у которых рабочая поверхность выполнена из силицированного графита (или других антифрикционных материалов с близкими характеристиками). Основной областью его применения являются соответствующие конструктивные узлы электромашин и гидромашин с валами большого диаметра (более 400 мм), а преимущественно - электродвигатели, служащие приводом главных циркуляционных насосных агрегатов (ГЦНА) водоохлаждаемых реакторных установок, например, на атомных электростанциях (АЭС).
Силицированный графит (как антифрикционный подшипниковый материал) характеризуется температуростойкостью (по меньшей мере, до 300°С) и возможностью применения воды в качестве смазывающе-охлаждающей жидкости вместо масла, поэтому его используют в радиальных и осевых подшипниках лопастных насосов, входящих в состав ГЦНА энергоблоков АЭС. Такое решение устраняет пожароопасность насосов, что особенно важно для ГЦНА, работающих в необслуживаемых помещениях. Однако вследствие повышенной хрупкости антифрикционные элементы из силицированного графита необходимо связывать с соответствующими несущими элементами. При этом для обеспечения работоспособности подшипниковой опоры при изменении распределения температуры по ее элементам необходимо учитывать более низкий коэффициент линейного расширения силицированного графита по сравнению со сталью и другими сплавами.
Известен подшипник скольжения [А.с. 438816 СССР, МПК4 F16С 17/03. - Опубл. 05.08.1974, Бюл. №29], в котором опорный механизм каждого из самоустанавливающихся сегментов (сегментных подушек) выполнен в виде отдельного ввертного болта-упора, ввинченного в корпус подшипника и своей сферической поверхностью взаимодействующего с сегментом. Регулировкой положения этих ввертных болтов (винтов)-упоров относительно корпуса подшипника обеспечивают требуемую величину радиального зазора в подшипнике.
Как показывает опыт создания подшипниковых опор скольжения для ГЦНА, при замене масла водой прямое повторение указанной конструктивной схемы подшипника не обеспечивает высокой надежности. В частности, циклические динамические (ударные) нагрузки в опорных механизмах самоустанавливающихся сегментов при прецессии вращающегося вала приводят к повреждению (например, за счет наклепа) и разрушению элементов этих механизмов. Задача, решаемая изобретением, состоит в создании надежно работающего радиального подшипника с самоустанавливающимися сегментами при использовании силицированного графита (или других материалов с близкими характеристиками) в качестве антифрикционного материала в условиях охлаждения и смазки подшипника водой, соответствующих эксплуатации ГЦНА на АЭС.
При осуществлении предлагаемого изобретения могут быть получены следующие технические результаты:
во-первых, исключение повреждений антифрикционных элементов из силицированного графита за счет изгибных напряжений, а также термических деформаций;
во-вторых, уменьшение до безопасного уровня силовых нагрузок в цепи от самоустанавливающегося сегмента до корпуса подшипника;
в третьих, предотвращение возбуждения колебаний сегментов, опасных для последних.
Как решение задачи, позволяющее достигнуть эффекта с указанными характеристиками, предлагается сегментный радиальный подшипник скольжения, содержащий самоустанавливающиеся сегменты, расположенные внутри корпуса подшипника по окружности вала и охватывающие цапфу последнего с радиальным зазором, причем каждый из упомянутых сегментов установлен на отдельном опорном механизме, взаимодействующем с сегментом посредством элемента с поверхностью сферической формы, который отличается от прототипа следующими признаками.
Каждый сегмент включает несущий и антифрикционный элементы в виде пластин, смежные поверхности которых выполнены с возможно большей площадью контакта при их упругом сопряжении. От обоих торцов каждого сегмента, перпендикулярных геометрической оси вала, на рабочей поверхности антифрикционного элемента и внешней поверхности несущего элемента выполнены ступени, в пределах которых каждый торец охвачен скобой, отжимаемой в направлении от вала упругими элементами, которые установлены в глухих отверстиях соответствующей ступени несущего элемента.
Опорный механизм для каждого сегмента включает шаровой палец, взаимодействующий своим сферическим концом с поверхностью углубления, которое выполнено на внешней поверхности несущего элемента расширяющимся в направлении от вала,
пружинный стакан, выполненный с возможностью упругой деформации вдоль его продольной оси, который на открытом конце снабжен фланцем, предназначенным для разъемного соединения с несущим элементом сегмента с установкой между ними регулировочных шайб,
при этом в днище пружинного стакана выполнено сквозное осевое отверстие, охватывающее область шарового пальца, примыкающую к сферическому концу последнего, и взаимодействующее своей частью с поверхностью сферической формы, расширяющейся в направлении к сегменту, со сферическим концом шарового пальца,
опорную шпильку, ввернутую в сквозное радиальное резьбовое отверстие корпуса подшипника, со сквозным осевым отверстием, примыкающая к внутреннему торцу шпильки, область которого сопряжена с цилиндрическим концом шарового пальца, а примыкающая к наружному внешнему торцу область меньшего диаметра - со стержнем винта, ввернутым в глухое резьбовое осевое отверстие в торце цилиндрического конца шарового пальца до сопряжения головки этого винта с наружным торцом опорной шпильки, а заплечика, ограничивающего цилиндрический конец шарового пальца при переходе к его сферическому концу, с внутренним торцом опорной шпильки.
В частных случаях выполнения изобретение может характеризоваться следующими признаками. Указанные упругие элементы выполнены в виде цилиндрических пружин сжатия (возможно также использование тарельчатых пружин). Углублению на внешней поверхности несущего элемента, расширяющемуся от вала, придана сферическая форма.
Фиг.1 - сегментный радиальных подшипник скольжения (вертикальный разрез),
Фиг.2 - опорный механизм сегмента (горизонтальный разрез А-А).
Сегментный радиальный подшипник скольжения включает несколько (например, восемь) самоустанавливающихся сегментов, расположенных внутри корпуса 1 подшипника равномерно по окружности вала 2 и охватывающих цапфу последнего с радиальным зазором, а также соответствующее количество опорных механизмов для сегментов.
Каждый сегмент включает несущий элемент 3 (например, стальной) и антифрикционный элемент 4 (например, из силицированного графита) в виде пластин, причем рабочая поверхность элемента 4 профилирована в соответствии с геометрическими характеристиками цапфы вала 2. Смежные (обращенные друг к другу) поверхности элементов 3 и 4 (внутренняя относительно вала 2 для элемента 3 и внешняя - для элемента 4) выполнены с возможно большей площадью контакта при их упругом сопряжении (например, посредством притирки этих поверхностей).
От обоих торцов каждого сегмента, перпендикулярных геометрической оси вала 2, выполнены по две ступени: на антифрикционном элементе 4 со стороны его рабочей (внутренней) поверхности, а на несущем элемента 3 со стороны его внешней (дальней от элемента 4) поверхности. Указанные торцы каждого сегмента в пределах этих ступеней охвачены скобами 5 и 6. От внешней поверхности каждой ступени несущего элемента 3 выполнены глухие отверстия (например, по три с каждого торца), в которых установлены цилиндрические пружины сжатия 7 и 8. Усилиями пружин 7 и 8, отжимающими в направлении от вала 2 соответственно концы скоб 5 и 6, элемент 4 постоянно упруго прижат к элементу 3 по всей (по существу) поверхности их сопряжения. При нагружении сегмента упругое сопряжение предотвращает опасные изгибные деформации антифрикционного элемента 4, а также исключает возникновение в последнем опасных термических деформаций, автоматически компенсируя различие коэффициентов линейного расширения элементов 3 и 4 при изменениях их температуры.
Каждый самоустанавливающийся сегмент снабжен отдельным опорным механизмом. Этот механизм включает пружинный стакан 9, шаровой палец 10, опорную шпильку 11 и винт (ввертный болт) 12. На внешней поверхности несущего элемента 3 выполнено углубление 13 сферической формы, расширяющееся в направлении от вала 2 и предназначенное для сопряжения со сферическим концом шарового пальца 10. В частном выполнении углублению 13 можно придать также форму конуса. В днище стакана 9 выполнено сквозное осевое отверстие, охватывающее область шарового пальца 10, примыкающую к его сферическому концу. При этом расширяющаяся в направлении к сегменту часть 14 поверхности указанного отверстия выполнена сферической формы и предназначена для сопряжения со сферическим концом шарового пальца 10. Сферические поверхности 13 и 14 вместе со сферическим концом шарового пальца 10 образуют шаровой шарнир. В частном случае целесообразно выполнять поверхности 13 и 14 на отдельных деталях-вкладышах.
В опорной шпильке 11 выполнено сквозное осевое отверстие 15. Область отверстия 15, примыкающая к внутреннему торцу шпильки 11 (направленному к сегменту), предназначена для сопряжения с цилиндрическим концом шарового пальца 10, а примыкающая к наружному внешнему (противоположному) торцу область меньшего диаметра - для стержня винта 12. От торца цилиндрического конца пальца 10 выполнено глухое осевое резьбовое отверстие 16, предназначенное для взаимодействия с резьбовой частью винта 12. Заплечик 17, ограничивающий цилиндрический конец пальца 10 при переходе к его сферическому концу, предназначен для сопряжения с внутренним торцом шпильки 11. Лыски на пальце 10 (от заплечика 17) и стенки продольного (диаметрального) паза на внутреннем торце шпильки 11, выполненные с возможностью их сопряжения, предназначены для фиксации взаимного углового положения пальца 10 и шпильки 11. Пружинный стакан 9 выполнен с возможностью упругой деформации вдоль его продольной оси. Открытый конец стакана 9 снабжен фланцем, предназначенным для разъемного соединения с несущим элементом 3 сегмента (например, посредством винтов 18). Величину упругой деформации стакана 9 устанавливают за счет выбора толщины регулировочных шайб 19 между указанным фланцем и элементом 3.
Опорная шпилька 11 ввернута в сквозное радиальное резьбовое отверстие корпуса 1. Винт 12 через осевое отверстие 15 шпильки 11 ввернут в глухое резьбовое осевое отверстие 16 в торце цилиндрической конца шарового пальца 10 до сопряжения головки винта 12 с наружным торцом шпильки 11, а заплечика 17 шарового пальца 10 с внутренним торцом шпильки 11.
В процессе сборки каждого сегмента и его опорного механизма сначала соединяют несущий и антифрикционный элементы 3 и 4 посредством скоб 5 и 6, предварительно установив в глухие отверстия элемента 3 под этими скобами цилиндрические пружины 7 и 8. Затем, охватив шаровой палец 10 пружинным стаканом 9, прикрепляют последний фланцем к несущему элементу 3 посредством винтов 19. При этом под фланец стакана 9 устанавливают регулировочные шайбы 19 так, чтобы обеспечить беззазорное по существу сопряжение сферического конца шарового пальца 10 и сферических поверхностей 13 и 14, но с возможностью углового смещения несущего элемента 3 (и всего сегмента) относительно шарового пальца 10.
При дальнейшей сборке сегментного радиального подшипника скольжения для каждого сегмента сначала в радиальное резьбовое отверстие корпуса 1 вворачивают опорную шпильку 11, затем в осевое отверстие 15 последней вставляют цилиндрический конец шарового пальца 10 изнутри корпуса 1, а винт 12 - снаружи корпуса 1. Самоустанавливающийся сегмент закрепляют в шпильке 11, вворачивая винт 12 (как указано выше) в осевое резьбовое отверстие 16 пальца 10.
При установке сегментного радиального подшипника скольжения в приводящем электродвигателе ГЦНА, а также при проведении его регламентного обслуживания производят регулировку рабочего зазора в подшипнике путем изменения положения опорных шпилек 11 относительно корпуса 1. Для этого сначала вворачивают все опорные шпильки 11 в резьбовые отверстия корпуса 1 подшипника до упора антифрикционных элементов 4 в цапфу вала 2, после чего выворачивают опорные шпильки 11 (отводя назад сегменты) на половину величины рабочего диаметрального зазора в подшипнике и стопорят их (контровочными гайками с шайбами).
При работе ГЦНА его вал 2 (вследствие прецессии в пределах рабочего зазора) оказывает на сегменты подшипника силовое воздействие переменной величины в радиальном направлении. Усилие от вала передается через сегмент и его опорный механизм на корпус 1 подшипника. Упругое сопряжение антифрикционного 4 и несущего 3 элементов сегмента по максимально возможной площади практически исключает повреждения элемента 4 из силицированного графита за счет возникновения изгибных напряжений, а также термических деформаций. Большой диаметр поперечного сечения опорной шпильки 11 предотвращает возникновение чрезмерных напряжений в сопряжении этой шпильки с корпусом 1 по радиальному резьбовому отверстию в последнем. Пружинный стакан 9 обеспечивает одинаковую жесткость сегмента при различном его положении относительно шарового пальца 10, что предотвращает возбуждение колебаний сегмента, опасных для последнего.
Кроме того, пружинный стакан 9 за счет приданной ему при сборке подшипника упругой деформации создает в опорном механизме усилие, поджимающее сферическую поверхность 14 к сферическому концу шарового пальца 10, а следовательно, сферический конец последнего к сферической поверхности 13. Это усилие обеспечивает фиксацию сегмента в радиальном направлении, не позволяя несущему элементу 3 отходить от шарового пальца 10 за прецессирующим валом 2 с потерей контакта с шаровым пальцем 10 и последующим его ударным (по существу) восстановлением. Указанная фиксация предотвращает явление наклепа (возникающее в противном случае), а придание взаимодействующим поверхностям сферической формы обеспечивает низкий уровень контактных напряжений, что повышает ресурс работы опорного механизма сегмента.
Таким образом, изобретение позволяет оптимизировать выбор материала и технологии изготовления для большинства элементов подшипника.

Claims (3)

1. Сегментный радиальный подшипник скольжения, содержащий самоустанавливающиеся сегменты, расположенные внутри корпуса подшипника по окружности вала и охватывающие цапфу последнего с радиальным зазором, причем каждый из упомянутых сегментов установлен на отдельном опорном механизме, взаимодействующем с сегментом посредством элемента с поверхностью сферической формы, отличающийся тем, что каждый сегмент включает несущий и антифрикционный элементы в виде пластин, смежные поверхности которых выполнены с возможно большей площадью контакта при их упругом сопряжении, от обоих торцов каждого сегмента, перпендикулярных геометрической оси вала, на рабочей поверхности антифрикционного элемента и внешней поверхности несущего элемента выполнены ступени, в пределах которых каждый торец охвачен скобой, отжимаемой в направлении от вала упругими элементами, которые установлены в глухих отверстиях соответствующей ступени несущего элемента, опорный механизм для каждого сегмента включает шаровой палец, взаимодействующий своим сферическим концом с поверхностью углубления, которое выполнено на внешней поверхности несущего элемента расширяющимся в направлении от вала, пружинный стакан, выполненный с возможностью упругой деформации вдоль его продольной оси, который на открытом конце снабжен фланцем, предназначенным для разъемного соединения с несущим элементом сегмента с установкой между ними регулировочных шайб, при этом в днище пружинного стакана выполнено сквозное осевое отверстие, охватывающее область шарового пальца, примыкающую к сферическому концу последнего, и взаимодействующее своей частью с поверхностью сферической формы, расширяющейся в направлении к сегменту, со сферическим концом шарового пальца, опорную шпильку, ввернутую в сквозное радиальное резьбовое отверстие корпуса подшипника, со сквозным осевым отверстием, примыкающая к внутреннему торцу шпильки область которого сопряжена с цилиндрическим концом шарового пальца, а примыкающая к наружному внешнему торцу область меньшего диаметра - со стержнем винта, ввернутым в глухое резьбовое осевое отверстие в торце цилиндрического конца шарового пальца до сопряжения головки этого винта с наружным торцом опорной шпильки, а заплечика, ограничивающего цилиндрический конец шарового пальца при переходе к его сферическому концу, с внутренним торцом опорной шпильки.
2. Сегментный радиальный подшипник скольжения по п.1, отличающийся тем, что указанные упругие элементы выполнены в виде цилиндрических пружин сжатия.
3. Сегментный радиальный подшипник скольжения по п.1, отличающийся тем, что поверхности указанного углубления на внешней поверхности несущего элемента, расширяющегося от вала, придана сферическая форма.
RU2010149156/11A 2010-11-30 2010-11-30 Сегментный радиальный подшипник скольжения RU2474737C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010149156/11A RU2474737C2 (ru) 2010-11-30 2010-11-30 Сегментный радиальный подшипник скольжения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010149156/11A RU2474737C2 (ru) 2010-11-30 2010-11-30 Сегментный радиальный подшипник скольжения

Publications (2)

Publication Number Publication Date
RU2010149156A RU2010149156A (ru) 2012-06-10
RU2474737C2 true RU2474737C2 (ru) 2013-02-10

Family

ID=46679540

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010149156/11A RU2474737C2 (ru) 2010-11-30 2010-11-30 Сегментный радиальный подшипник скольжения

Country Status (1)

Country Link
RU (1) RU2474737C2 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112639394B (zh) * 2018-08-21 2023-05-12 瓦锡兰芬兰有限公司 滑动轴承紧余量高度测量方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU43816A1 (ru) * 1934-10-02 1935-07-31 Ф.И. Шибанов Переставное приспособление к стойкам лесов
SU634027A1 (ru) * 1976-11-02 1978-11-25 Предприятие П/Я А-7293 Опора скольжени
JPS5857514A (ja) * 1981-09-30 1983-04-05 Hitachi Ltd 立軸形案内軸受装置
EP0586861A1 (de) * 1992-09-05 1994-03-16 Asea Brown Boveri Ag Kombiniertes Trag- und Führungslager einer vertikalachsigen Wasserkraftmaschine
RU2092721C1 (ru) * 1992-07-08 1997-10-10 Акционерное общество открытого типа "Ленгидропроект" Направляющий подшипник вертикального вала

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU43816A1 (ru) * 1934-10-02 1935-07-31 Ф.И. Шибанов Переставное приспособление к стойкам лесов
SU634027A1 (ru) * 1976-11-02 1978-11-25 Предприятие П/Я А-7293 Опора скольжени
JPS5857514A (ja) * 1981-09-30 1983-04-05 Hitachi Ltd 立軸形案内軸受装置
RU2092721C1 (ru) * 1992-07-08 1997-10-10 Акционерное общество открытого типа "Ленгидропроект" Направляющий подшипник вертикального вала
EP0586861A1 (de) * 1992-09-05 1994-03-16 Asea Brown Boveri Ag Kombiniertes Trag- und Führungslager einer vertikalachsigen Wasserkraftmaschine

Also Published As

Publication number Publication date
RU2010149156A (ru) 2012-06-10

Similar Documents

Publication Publication Date Title
EP2643601B1 (en) Bridge spring centering device for squeeze film dampers
EP2453144B1 (en) Bearing device, bearing unit, and rotary machine
RU107299U1 (ru) Упорный подшипниковый узел скольжения
CN104632879B (zh) 用于流体机械应用的轴承单元
CN109268303B (zh) 磁力泵滑动轴承组件及磁力泵
RU2573150C1 (ru) Опорный узел
RU2474737C2 (ru) Сегментный радиальный подшипник скольжения
US20160061254A1 (en) Bearing assembly and method for assembling and mounting said bearing assembly with a component supporting said bearing assembly
WO2021236132A1 (en) Method and system for dynamically adjusting bearing support stiffness and damping
RU2351812C1 (ru) Подшипниковая опора скольжения
RU160032U1 (ru) Опорный узел
GB2415019A (en) A supporting arrangement for a roller bearing
KR102185112B1 (ko) 액시얼 슬라이딩 베어링
RU2542941C2 (ru) Способ компенсации упругих тепловых деформаций подшипников шпинделей металлообрабатывающих станков и устройство для его реализации
US20200291998A1 (en) Bearing whose load supporting position can be changed
RU2463492C1 (ru) Подшипник скольжения
RU2351813C1 (ru) Подшипник скольжения
RU2651961C1 (ru) Радиальный подшипник скольжения
CN103882905A (zh) 挖掘机用液压泵以及具有所述液压泵的挖掘机
RU2346193C1 (ru) Лепестковый газодинамический подшипниковый узел (варианты)
RU2534659C2 (ru) Осевой подшипник скольжения
CN211145138U (zh) 轴承板总成及轴承座组件
RU2268412C1 (ru) Подшипниковый узел (варианты)
WO2014010542A1 (ja) 転がり軸受、及びその使用方法
RU2308621C1 (ru) Подшипниковая опора для вертикального вала и способ ее установки