RU2473160C2 - Method and device for electrical energy transmission - Google Patents
Method and device for electrical energy transmission Download PDFInfo
- Publication number
- RU2473160C2 RU2473160C2 RU2009144909/07A RU2009144909A RU2473160C2 RU 2473160 C2 RU2473160 C2 RU 2473160C2 RU 2009144909/07 A RU2009144909/07 A RU 2009144909/07A RU 2009144909 A RU2009144909 A RU 2009144909A RU 2473160 C2 RU2473160 C2 RU 2473160C2
- Authority
- RU
- Russia
- Prior art keywords
- energy
- electric
- transmitting
- pipe
- electrical
- Prior art date
Links
Images
Landscapes
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Near-Field Transmission Systems (AREA)
Abstract
Description
Изобретение относится к области электротехники, в частности к способам и устройствам для передачи электрической энергии.The invention relates to the field of electrical engineering, in particular to methods and devices for transmitting electrical energy.
Известен способ и устройство для передачи электроэнергии по замкнутой цепи, состоящей из двух или более проводов, трансформаторных подстанций и линий электропередачи (Электропередачи переменного и постоянного тока. Электротехнический справочник. - М.: Энегроатомиздат, 1988, с.337-352).A known method and device for transmitting electricity in a closed circuit, consisting of two or more wires, transformer substations and power lines (Power transmission of alternating and direct current. Electrical reference book. - M .: Enegroatomizdat, 1988, s.337-352).
Недостатками известного способа являются потери в линиях, составляющие от 5% до 20% в зависимости от длины ЛЭП, и высокая стоимость оборудования. При этом цепь, соединяющая источник энергии и нагрузку, обязательно должна быть замкнутым контуром.The disadvantages of this method are losses in the lines, comprising from 5% to 20%, depending on the length of the power lines, and the high cost of the equipment. In this case, the circuit connecting the energy source and the load must necessarily be a closed loop.
Известен способ питания электротехнических устройств с использованием генератора переменного напряжения, подключаемого к потребителю, в котором напряжение генератора подают на низковольтную обмотку высокочастотного трансформатора, а один из выводов высоковольтной обмотки соединяют с одной из входных клемм электротехнического устройства, при этом изменением частоты генератора добиваются установления резонансных колебаний в образованной электрической цепи.A known method of powering electrical devices using an alternating voltage generator connected to a consumer, in which the voltage of the generator is supplied to the low-voltage winding of a high-frequency transformer, and one of the terminals of the high-voltage winding is connected to one of the input terminals of the electrical device, in this case, resonant oscillations are established by changing the frequency of the generator in the formed electric circuit.
Устройство, реализующее данный способ, представляет собой источник переменного напряжения с регулируемой частотой, высокочастотный трансформатор, один вывод высоковольтной секции которого изолирован, а второй предназначен для подачи энергии потребителю (патент РФ №2108649, 1998, Авраменко С.В., Способ питания электротехнических устройств и устройство для его осуществления).A device that implements this method is an AC voltage source with an adjustable frequency, a high-frequency transformer, one output of the high-voltage section of which is isolated, and the second is designed to supply energy to the consumer (RF patent No. 2108649, 1998, S. Avramenko, Power supply method for electrical devices and device for its implementation).
Недостатком известного способа является необходимость использования для передачи электроэнергии линии из опор, изоляторов, проводов или кабеля, что увеличивает стоимость передачи электроэнергии.A disadvantage of the known method is the need to use lines for transmission of electricity from poles, insulators, wires or cable, which increases the cost of electricity transmission.
Другим недостатком является невозможность прямого использования этого способа и устройства для непосредственного питания движущихся электрических транспортных средств: автомобилей, тракторов.Another disadvantage is the inability to directly use this method and device for the direct power supply of moving electric vehicles: cars, tractors.
Известен способ передачи электрической энергии путем создания резонансных колебаний повышенной частоты в цепи, состоящей из высокочастотного генератора и двух, понижающего и повышающего, высокочастотных трансформаторов Тесла, передачи высоковольтного потенциала и электрической энергии по однопроводной линии к понижающему трансформатору Тесла, понижения потенциала его высоковольтного вывода и передачи энергии нагрузке (патент РФ №2255406, 2003, Стребков Д.С., Авраменко С.В., Некрасов А.И., Способ и устройство для передачи электрической энергии).A known method of transmitting electrical energy by creating high-frequency resonant oscillations in a circuit consisting of a high-frequency generator and two step-down and step-up high-frequency Tesla transformers, transmission of high-voltage potential and electric energy through a single-wire line to a step-down Tesla transformer, lowering the potential of its high-voltage output and transmission energy load (RF patent №2255406, 2003, Strebkov D.S., Avramenko S.V., Nekrasov A.I., Method and device for transmitting electric energy gii).
Недостатком известного способа является необходимость для передачи энергии подключения передающего высокочастотного трансформатора Тесла к двум электрически потенциально различным носителям энергии (однопроводниковая линия и земля) либо к одной, электрически изолированной от земли и находящейся под высоким электрическим потенциалом однопроводниковой линии, что требует использования опор, изоляторов, проводов.The disadvantage of this method is the need for energy transfer of the transmitting Tesla high-frequency transformer to two electrically different energy carriers (a single-conductor line and ground) or to one that is electrically isolated from the ground and under a high electric potential of a single-conductor line, which requires the use of supports, insulators, wires.
Известен способ и устройство для передачи электрической энергии без металлических проводов с использованием в качестве проводящего канала транспортных трубопроводов с перемещаемым по ним жидким или газообразным веществом. В этом случае между источником и приемником электрической энергии формируют в электроизоляционной оболочке электропроводящий канал из вещества в жидкой, твердой или газообразной фазе. В проводящем канале генерируют электромагнитные колебания электрического поля между веществом в электроизоляционной оболочке и веществом, окружающим оболочку, при этом за счет резонансных колебаний создают в канале пучности напряжений, а энергию электрического поля канала преобразуют в активную энергию для потребителя (Патент РФ №2172546, 2000. Стребков Д.С., Авраменко С.В. Способ и устройство для передачи электрической энергии).A known method and device for transmitting electrical energy without metal wires using transport pipelines with a liquid or gaseous substance moving along them as a conductive channel. In this case, an electrically conductive channel is formed from the substance in the liquid, solid or gaseous phase between the source and the receiver of electrical energy. In the conductive channel, electromagnetic oscillations of the electric field between the substance in the insulating sheath and the substance surrounding the sheath are generated, while due to resonant vibrations they create voltage antinodes in the channel, and the channel electric field energy is converted into active energy for the consumer (RF Patent No. 2172546, 2000. Strebkov D.S., Avramenko S.V. Method and device for the transmission of electrical energy).
Недостатками известного способа являются необходимость формирования изолированного от окружающей среды проводящего канала, а также применения электрически высокопрочного материала для создания электроизолирующей оболочки проводящего канала, т.к. интенсивность передачи электроэнергии прямо пропорциональна квадрату напряжения в пучности напряжения, возбуждаемой в проводящем канале.The disadvantages of this method are the necessity of forming a conductive channel isolated from the environment, as well as the use of an electrically high-strength material to create an electrically insulating shell of the conductive channel, because the intensity of electric power transmission is directly proportional to the square of the voltage in the antinode of the voltage excited in the conductive channel.
Известны способы и устройства для обеспечения дистанционной передачи телеметрических данных при бурильных работах, использующие электрические и магнитные поля в окружающей среде, образуемые цилиндрическими либо тороидальными катушками, расположенными на бурильных колоннах (Пат. США 6,445,307 В1, 03.09.2002. Drill string telemetry; Пат. США 4,725,837, 16.02.1988. Toroidal coupled telemetry apparatus). Мощности переносящих информацию полей оказывается достаточно при высококачественной передаче информации в проводящей среде (ЕР 0699822 А2, 06.03.1996. A well data telemetry system).Known methods and devices for providing remote transmission of telemetry data during drilling operations, using electric and magnetic fields in the environment, formed by cylindrical or toroidal coils located on the drill string (US Pat. US 6,445,307 B1, 09/03/2002. Drill string telemetry; Pat. U.S. 4,725,837, 02.16.1988. Toroidal coupled telemetry apparatus). The power of the information transferring fields is sufficient for high-quality information transfer in a conductive medium (EP 0699822 A2, 03/06/1996. A well data telemetry system).
Недостатками известных способов для передачи электрической энергии являются малая величина передаваемой мощности, большие потери и низкий кпд передачи электрической энергии.The disadvantages of the known methods for transmitting electric energy are the small amount of transmitted power, large losses and low efficiency of the transmission of electric energy.
Задачей предлагаемого изобретения является создание способа и устройства для передачи электрической энергии с использованием неизолированных стальных или чугунных трубопроводов в качестве металлических проводников, снижение затрат на передачу электроэнергии за счет исключения таких элементов ЛЭП, как провода, изоляторы, кабели, а также повышение кпд передачи электрической энергии.The objective of the invention is the creation of a method and device for transmitting electric energy using uninsulated steel or cast iron pipelines as metal conductors, reducing the cost of electric power transmission by eliminating such power line elements as wires, insulators, cables, as well as increasing the efficiency of electric power transmission .
Положительный результат достигается тем, что в способе передачи электрической энергии, включающем передачу электрической энергии от источника электрической энергии к приемнику электрической энергии, между источником и приемником электрической энергии создают энергопроводящий канал в стальной трубе путем размещения на ней передающей и принимающей резонансных систем с электроемкостными обкладками, при помощи передающей резонансной системы возбуждают в стенке трубы и у ее поверхности в диапазоне 0,3÷300 кГц колебания электрического поля, ортогонально сориентированного по отношению к оси трубы, индуцируют в стенке трубы и у ее поверхности вихревое магнитное поле, передают вдоль трубы электромагнитную энергию, принимают ее в принимающей резонансной системе с электроемкостными обкладками и получают электроэнергию, которую используют для питания электропотребителей, или преобразуют в механическую или тепловую энергию любым известным способом.A positive result is achieved by the fact that in the method of transmitting electric energy, including the transmission of electric energy from an electric energy source to an electric energy receiver, an energy-conducting channel is created in the steel pipe between the source and the electric energy receiver by placing on it a transmitting and receiving resonant systems with electric capacitive plates, Using a transmitting resonant system, electric oscillations in the pipe wall and at its surface in the range 0.3–300 kHz are excited I, orthogonally oriented with respect to the axis of the pipe, induce a vortex magnetic field in the pipe wall and near its surface, transmit electromagnetic energy along the pipe, receive it in a receiving resonant system with electrical capacitive plates and receive electricity that is used to power electrical consumers, or converted into mechanical or thermal energy in any known manner.
В варианте способа энергопроводящий канал создают в стальной изолированной или вращающейся трубе, при этом передающую и принимающую резонансные системы с электроемкостными обкладками устанавливают на слой изоляции или на расстоянии от трубы, не препятствующем ее вращению и прохождению потока электромагнитной энергии.In an embodiment of the method, an energy-conducting channel is created in an insulated or rotating steel pipe, while the transmitting and receiving resonant systems with electrical capacitive plates are installed on the insulation layer or at a distance from the pipe that does not impede its rotation and the passage of electromagnetic energy.
В другом варианте способа энергопроводящий канал создают в стальной трубе, при этом передающую резонансную систему с электроемкостными обкладками устанавливают в середине стальной трубы, а принимающие резонансные системы с электроемкостными обкладками устанавливают на этой трубе по обе стороны от передающей резонансной системы.In another embodiment of the method, an energy-conducting channel is created in a steel pipe, while a transmitting resonant system with electric capacitive plates is installed in the middle of the steel pipe, and receiving resonant systems with electric capacitive plates are installed on this pipe on both sides of the transmitting resonant system.
В другом варианте способа принимающие резонансные системы с электроемкостными обкладками устанавливают в пазах соединительных муфт между двумя участками трубы совместно с электроприемником при установке очередной секции монтируемой бурильной колонны, обсадной трубы или нитки трубопровода.In another embodiment of the method, the receiving resonant systems with electrical capacitive plates are installed in the grooves of the couplings between the two pipe sections together with the electrical receiver when installing the next section of the drill string, casing or pipe string.
Устройство для передачи электрической энергии содержит энергопроводящую стальную или чугунную трубу с размещенными на ней передающей и принимающей резонансными системами с электроемкостными обкладками, при этом передающая система соединена с источником электрической энергии через генератор тока повышенной частоты в диапазоне 0,3÷300 кГц, а принимающая энергию электромагнитного поля резонансная система с электроемкостными обкладками соединена через преобразователь с приемником электрической энергии.A device for transmitting electric energy comprises an energy-conducting steel or cast-iron pipe with transmitting and receiving resonant systems with electric capacitive plates placed on it, while the transmitting system is connected to a source of electric energy through a high-frequency current generator in the range 0.3–300 kHz, and the receiving energy electromagnetic field, a resonant system with electrical capacitive plates is connected through a converter to a receiver of electrical energy.
В варианте устройство для передачи электрической энергии содержит энергопроводящую вращающуюся стальную или чугунную трубу с не препятствующими ее вращению передающей и принимающей резонансными системами с электроемкостными обкладками.In an embodiment, the device for transmitting electrical energy comprises an energy-conducting rotating steel or cast-iron pipe with transmitting and receiving resonant systems with electrical capacitive plates that do not interfere with its rotation.
В другом варианте устройства для передачи электрической энергии в качестве энергопроводящего канала используются различные стальные или чугунные металлические конструкции в виде рельса, бруса, стержня, уголка, полосы, двутавра и других профилей стального проката, обеспечивающие возможность ортогонального размещения электроемкостных обкладок для возбуждения, передачи и приема потока электромагнитной энергии.In another embodiment of the device for transmitting electrical energy, various steel or cast iron metal structures are used in the form of a rail, a beam, a rod, a corner, a strip, an I-beam and other profiles of rolled steel, providing the possibility of orthogonal placement of electrical capacitive plates for excitation, transmission and reception electromagnetic energy flow.
Используемые электроемкостные обкладки выполнены электроизолированными, плотно прилегают к энергопроводящей конструкции и повторяют в месте установки ее конфигурацию, а также не препятствуют выполнению основной функциональной задачи конструкции.The used electrical capacitive plates are made insulated, fit snugly to the energy-conducting structure and repeat its configuration at the installation site, and also do not impede the implementation of the main functional tasks of the structure.
Сущность изобретения иллюстрируется на фиг.1-6.The invention is illustrated in figures 1-6.
На фиг.1 представлена схема устройства для реализации предлагаемого способа.Figure 1 presents a diagram of a device for implementing the proposed method.
Устройство содержит источник питания 1, соединенный с генератором тока повышенной частоты 2, к которому подключена передающая резонансная электроемкостная система возбуждения 3, состоящая из двух противоположно размещенных на стальной трубе 8 электроемкостных обкладок 4 и находящимся между ними участком трубы, предназначенная для возбуждения электрического поля 5. Переменное во времени электрическое поле 5 создает в стенках трубы 8 и на ее поверхности переменное во времени вихревое магнитное поле 6. В результате взаимодействия переменных во времени магнитного 6 и электрического 5 полей возникает поток электромагнитной энергии 7, который передается вдоль стальной трубы 8 к приемной резонансной системе 9 с электроемкостными обкладками 10, соединенными с преобразователем 11, где осуществляется обратное преобразование энергии электромагнитного поля в электроэнергию требуемого стандарта для питания нагрузки 12.The device contains a
Для пояснения предлагаемого способа на фиг.2 и фиг.3 схематично представлены электрическое поле 5 и магнитное поле 6 в стальной трубе и около ее поверхности на участке размещения электроемкостных обкладок 4 передающей резонансной системы 3.To explain the proposed method in figure 2 and figure 3 schematically shows the
На фиг.2 представлено поперечное сечение стальной трубы 8 с расположенными на ней электроемкостными обкладками 4 резонансной системы возбуждения 3, силовыми линиями электрического поля 5 и вихревого магнитного поля 6 и линиями потока электромагнитной энергии 7, передающими энергию вдоль стальной трубы 8.Figure 2 presents the cross section of the
На фиг.3 представлено продольное сечение стальной трубы 8 с электроемкостными обкладками 4 резонансной системы возбуждения 3 и возбуждаемые на этом участке трубы силовыми линиями электрического поля 5, вихревого магнитного поля 6 и линиями потока электромагнитной энергии 7, передающего энергию вдоль стальной трубы 8 к приемнику энергии.Figure 3 presents a longitudinal section of a
Способ передачи электроэнергии осуществляется следующим образом.The method of power transmission is as follows.
Электрическую энергию от источника 1 подают на генератор тока повышенной частоты 2, который обеспечивает питанием током повышенной частоты 0,3÷300 кГц передающую резонансную систему 3, состоящую из двух электроемкостных обкладок возбуждения 4, создают переменным во времени вихревым электрическим полем 5 переменное во времени вихревое магнитное поле 6, получают поток электромагнитной энергии 7, передают энергию вдоль стальной трубы 8, принимают на другом участке трубы 8 приемной резонансной системой 9, состоящей из двух электроемкостных обкладок 10, осуществляют обратное преобразование энергии электромагнитного поля в электроэнергию требуемого стандарта в преобразователе 11 и подают к нагрузке 12.Electric energy from
Возбуждение электрического поля производится передающей резонансной системой 3 с электроемкостными обкладками 4, питаемыми генератором 2 электрической энергией на резонансной частоте системы. Внутри и снаружи стальной трубы, вокруг силовых линий переменного во времени электрического поля 5 индуцируется переменное во времени вихревое магнитное поле 6 с индукцией . Наличие переменных во времени электрического поля 5 с напряженностью и ортогонального к нему переменного во времени магнитного поля 6 с напряженностью порождает перемещающийся вдоль стальной трубы поток электромагнитной энергии . Плотность потока электромагнитной энергии определяется вектором Умова-Пойнтинга The electric field is excited by a transmitting resonant system 3 with electrical
Принимающая резонансная система конструктивно идентична передающей системе в силу чего, оказываясь в потоке электромагнитной энергии, генерирует на выходных клеммах ЭДС, которую преобразовывают и используют для питания электроприборов, получения механической или тепловой энергии.The receiving resonant system is structurally identical to the transmitting system, due to which, being in the flow of electromagnetic energy, it generates an emf at the output terminals, which is converted and used to power electrical appliances, to produce mechanical or thermal energy.
Генератор тока повышенной частоты 2 в зависимости от передаваемой мощности может быть выполнен либо в виде генератора непосредственно питающего передающую систему, либо в виде генератора с согласующим трансформатором, например, в виде трансформатора Тесла. Резонансные системы с электроемкостными обкладками, предназначенные для приема электрической энергии, устанавливают на стальной трубе в местах с максимальным значением амплитуды электромагнитной волны, в том числе на трубах, имеющих любое изоляционное или защитное покрытие.The high frequency
На фиг.4 представлена схема размещения на стальной трубе 8 передающей резонансной системы 3 с электроемкостными обкладками 4, при этом труба имеет возможность перемещаться вдоль своей оси или вращается вокруг нее. В этом случае передающую резонансную систему 3 с электроемкостными обкладками 4 устанавливают таким образом, чтобы не препятствовать перемещению либо вращению трубы 8 и прохождению электрического поля, необходимого для передачи энергии.Figure 4 presents the layout on the
На фиг.5 представлена схема размещения на стальной трубе 8 принимающих резонансных систем с электроемкостными обкладками 10 по обе стороны от передающей резонансной системы с электроемкостными обкладками 4, генерирующей поток электромагнитной энергии в обе стороны.Figure 5 presents the layout on a
В качестве проводящих энергию труб могут быть использованы стальные или чугунные трубы водопроводов, газопроводов или нефтепроводов, а также другие трубопроводы с изоляционным или защитным покрытием или без таковых, которые в силу технологической или иной необходимости находятся в земле или на ее поверхности, в обычной или морской воде или в других средах. В качестве передающих энергию труб могут быть использованы так же бурильные штанги, соединенные во вращающуюся колонну-жгут или обсадные трубы артезианских скважин. На вращающихся или перемещающихся в различных средах стальных или чугунных трубах передающие и принимающие резонансные системы электроемкостных накладок устанавливают в пазах соединительных муфт совместно с энергоприемником-датчиком.As energy-conducting pipes, steel or cast-iron pipes of water, gas or oil pipelines, as well as other pipelines with or without insulation or protective coating, which, due to technological or other necessity, are located in the ground or on its surface, in plain or sea, can be used water or other media. Drill rods connected to a rotating string-harness or casing of artesian wells can also be used as energy-transmitting pipes. On rotating or moving in various environments, steel or cast iron pipes, transmitting and receiving resonant systems of electrical capacitive plates are installed in the grooves of the couplings in conjunction with the power detector.
На фиг.6 представлены возможные для использования в качестве энергопроводящего канала варианты профилей поперечного сечения различных стальных конструкций - рельс 13, брус 14, круглый стержень 15 с размещенными на них электроемкостными обкладками 4 и 10.Figure 6 presents the possible options for use as an energy-conducting channel cross-sectional profiles of various steel structures -
Способ и устройство могут быть в первую очередь использованы для питания устройств электрохимической защиты магистральных газопроводов, датчиков бурильных колонн и других устройств контроля и передачи телеметрической и другой информации в трубопроводных и других системах.The method and device can be primarily used to power the electrochemical protection devices of gas pipelines, drill string sensors and other devices for monitoring and transmitting telemetry and other information in piping and other systems.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2009144909/07A RU2473160C2 (en) | 2009-12-04 | 2009-12-04 | Method and device for electrical energy transmission |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2009144909/07A RU2473160C2 (en) | 2009-12-04 | 2009-12-04 | Method and device for electrical energy transmission |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2009144909A RU2009144909A (en) | 2011-06-10 |
RU2473160C2 true RU2473160C2 (en) | 2013-01-20 |
Family
ID=44736384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2009144909/07A RU2473160C2 (en) | 2009-12-04 | 2009-12-04 | Method and device for electrical energy transmission |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2473160C2 (en) |
Cited By (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9496921B1 (en) | 2015-09-09 | 2016-11-15 | Cpg Technologies | Hybrid guided surface wave communication |
US9859707B2 (en) | 2014-09-11 | 2018-01-02 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US9857402B2 (en) | 2015-09-08 | 2018-01-02 | CPG Technologies, L.L.C. | Measuring and reporting power received from guided surface waves |
US9882397B2 (en) | 2014-09-11 | 2018-01-30 | Cpg Technologies, Llc | Guided surface wave transmission of multiple frequencies in a lossy media |
US9882436B2 (en) | 2015-09-09 | 2018-01-30 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US9887558B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Wired and wireless power distribution coexistence |
US9887587B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Variable frequency receivers for guided surface wave transmissions |
US9887557B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Hierarchical power distribution |
US9887585B2 (en) | 2015-09-08 | 2018-02-06 | Cpg Technologies, Llc | Changing guided surface wave transmissions to follow load conditions |
US9885742B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Detecting unauthorized consumption of electrical energy |
US9887556B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Chemically enhanced isolated capacitance |
US9893402B2 (en) | 2014-09-11 | 2018-02-13 | Cpg Technologies, Llc | Superposition of guided surface waves on lossy media |
US9893403B2 (en) | 2015-09-11 | 2018-02-13 | Cpg Technologies, Llc | Enhanced guided surface waveguide probe |
US9899718B2 (en) | 2015-09-11 | 2018-02-20 | Cpg Technologies, Llc | Global electrical power multiplication |
US9941566B2 (en) | 2014-09-10 | 2018-04-10 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9960470B2 (en) | 2014-09-11 | 2018-05-01 | Cpg Technologies, Llc | Site preparation for guided surface wave transmission in a lossy media |
US9973037B1 (en) | 2015-09-09 | 2018-05-15 | Cpg Technologies, Llc | Object identification system and method |
US9997040B2 (en) | 2015-09-08 | 2018-06-12 | Cpg Technologies, Llc | Global emergency and disaster transmission |
US10001553B2 (en) | 2014-09-11 | 2018-06-19 | Cpg Technologies, Llc | Geolocation with guided surface waves |
US10027177B2 (en) | 2015-09-09 | 2018-07-17 | Cpg Technologies, Llc | Load shedding in a guided surface wave power delivery system |
US10027131B2 (en) | 2015-09-09 | 2018-07-17 | CPG Technologies, Inc. | Classification of transmission |
US10027116B2 (en) | 2014-09-11 | 2018-07-17 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10031208B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10033197B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10033198B2 (en) | 2014-09-11 | 2018-07-24 | Cpg Technologies, Llc | Frequency division multiplexing for wireless power providers |
US10063095B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Deterring theft in wireless power systems |
US10062944B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Guided surface waveguide probes |
US10074993B2 (en) | 2014-09-11 | 2018-09-11 | Cpg Technologies, Llc | Simultaneous transmission and reception of guided surface waves |
US10079573B2 (en) | 2014-09-11 | 2018-09-18 | Cpg Technologies, Llc | Embedding data on a power signal |
US10084223B2 (en) | 2014-09-11 | 2018-09-25 | Cpg Technologies, Llc | Modulated guided surface waves |
US10103452B2 (en) | 2015-09-10 | 2018-10-16 | Cpg Technologies, Llc | Hybrid phased array transmission |
US10101444B2 (en) | 2014-09-11 | 2018-10-16 | Cpg Technologies, Llc | Remote surface sensing using guided surface wave modes on lossy media |
US10122218B2 (en) | 2015-09-08 | 2018-11-06 | Cpg Technologies, Llc | Long distance transmission of offshore power |
US10135301B2 (en) | 2015-09-09 | 2018-11-20 | Cpg Technologies, Llc | Guided surface waveguide probes |
US10141622B2 (en) | 2015-09-10 | 2018-11-27 | Cpg Technologies, Llc | Mobile guided surface waveguide probes and receivers |
US10175048B2 (en) | 2015-09-10 | 2019-01-08 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10175203B2 (en) | 2014-09-11 | 2019-01-08 | Cpg Technologies, Llc | Subsurface sensing using guided surface wave modes on lossy media |
US10193595B2 (en) | 2015-06-02 | 2019-01-29 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US10193229B2 (en) | 2015-09-10 | 2019-01-29 | Cpg Technologies, Llc | Magnetic coils having cores with high magnetic permeability |
US10205326B2 (en) | 2015-09-09 | 2019-02-12 | Cpg Technologies, Llc | Adaptation of energy consumption node for guided surface wave reception |
US10230270B2 (en) | 2015-09-09 | 2019-03-12 | Cpg Technologies, Llc | Power internal medical devices with guided surface waves |
US10274527B2 (en) | 2015-09-08 | 2019-04-30 | CPG Technologies, Inc. | Field strength monitoring for optimal performance |
US10312747B2 (en) | 2015-09-10 | 2019-06-04 | Cpg Technologies, Llc | Authentication to enable/disable guided surface wave receive equipment |
US10324163B2 (en) | 2015-09-10 | 2019-06-18 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10396566B2 (en) | 2015-09-10 | 2019-08-27 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408916B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408915B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10447342B1 (en) | 2017-03-07 | 2019-10-15 | Cpg Technologies, Llc | Arrangements for coupling the primary coil to the secondary coil |
US10498006B2 (en) | 2015-09-10 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave transmissions that illuminate defined regions |
US10498393B2 (en) | 2014-09-11 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave powered sensing devices |
US10559866B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Inc | Measuring operational parameters at the guided surface waveguide probe |
US10560147B1 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Guided surface waveguide probe control system |
US10559867B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Minimizing atmospheric discharge within a guided surface waveguide probe |
US10559893B1 (en) | 2015-09-10 | 2020-02-11 | Cpg Technologies, Llc | Pulse protection circuits to deter theft |
US10581492B1 (en) | 2017-03-07 | 2020-03-03 | Cpg Technologies, Llc | Heat management around a phase delay coil in a probe |
US10630111B2 (en) | 2017-03-07 | 2020-04-21 | Cpg Technologies, Llc | Adjustment of guided surface waveguide probe operation |
US10680306B2 (en) | 2013-03-07 | 2020-06-09 | CPG Technologies, Inc. | Excitation and use of guided surface wave modes on lossy media |
US10998993B2 (en) | 2015-09-10 | 2021-05-04 | CPG Technologies, Inc. | Global time synchronization using a guided surface wave |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4806928A (en) * | 1987-07-16 | 1989-02-21 | Schlumberger Technology Corporation | Apparatus for electromagnetically coupling power and data signals between well bore apparatus and the surface |
US4914433A (en) * | 1988-04-19 | 1990-04-03 | Hughes Tool Company | Conductor system for well bore data transmission |
US4948987A (en) * | 1989-02-21 | 1990-08-14 | Weber Harold J | Secondary electric power source produced by current flow through a primary a.c. power circuit |
DE4136058A1 (en) * | 1991-10-31 | 1993-05-06 | Siegfried O-1055 Berlin De Stargard | Laser based wireless transmission of HV power - using laser rod array transmitting current matching earths ballistic properties to receiving aerial resembling lightning conductor |
RU2013825C1 (en) * | 1991-06-27 | 1994-05-30 | Гужавин Геннадий Геннадиевич | Gear for transfer of electromagnetic energy over pipe-line |
RU2040691C1 (en) * | 1992-02-14 | 1995-07-25 | Сергей Феодосьевич Коновалов | System for transmission of electric power and information in column of joined pipes |
RU96121928A (en) * | 1995-11-15 | 1999-01-20 | АББ Менеджмент АГ | INSTALLATION FOR TRANSMISSION OF ELECTRIC ENERGY AT LEAST WITH ONE HIGH VOLTAGE CONDUCTOR LAYED UNDER GROUND AND METHOD FOR PRODUCING SUCH INSTALLATION |
RU2172546C1 (en) * | 2000-01-24 | 2001-08-20 | Стребков Дмитрий Семенович | Method and device for electrical energy transmission |
US6465912B1 (en) * | 2000-02-02 | 2002-10-15 | Mitsubishi Denki Kabushiki Kaisha | Power transfer device |
RU2245598C1 (en) * | 2003-07-11 | 2005-01-27 | Стребков Дмитрий Семенович | Method and device for electrical energy transmission |
RU2307438C1 (en) * | 2006-04-25 | 2007-09-27 | Институт проблем управления им. В.А. Трапезникова РАН | Method for transmitting electrical energy over long distances in three-phase system |
-
2009
- 2009-12-04 RU RU2009144909/07A patent/RU2473160C2/en not_active IP Right Cessation
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4806928A (en) * | 1987-07-16 | 1989-02-21 | Schlumberger Technology Corporation | Apparatus for electromagnetically coupling power and data signals between well bore apparatus and the surface |
US4914433A (en) * | 1988-04-19 | 1990-04-03 | Hughes Tool Company | Conductor system for well bore data transmission |
US4948987A (en) * | 1989-02-21 | 1990-08-14 | Weber Harold J | Secondary electric power source produced by current flow through a primary a.c. power circuit |
RU2013825C1 (en) * | 1991-06-27 | 1994-05-30 | Гужавин Геннадий Геннадиевич | Gear for transfer of electromagnetic energy over pipe-line |
DE4136058A1 (en) * | 1991-10-31 | 1993-05-06 | Siegfried O-1055 Berlin De Stargard | Laser based wireless transmission of HV power - using laser rod array transmitting current matching earths ballistic properties to receiving aerial resembling lightning conductor |
RU2040691C1 (en) * | 1992-02-14 | 1995-07-25 | Сергей Феодосьевич Коновалов | System for transmission of electric power and information in column of joined pipes |
RU96121928A (en) * | 1995-11-15 | 1999-01-20 | АББ Менеджмент АГ | INSTALLATION FOR TRANSMISSION OF ELECTRIC ENERGY AT LEAST WITH ONE HIGH VOLTAGE CONDUCTOR LAYED UNDER GROUND AND METHOD FOR PRODUCING SUCH INSTALLATION |
RU2172546C1 (en) * | 2000-01-24 | 2001-08-20 | Стребков Дмитрий Семенович | Method and device for electrical energy transmission |
US6465912B1 (en) * | 2000-02-02 | 2002-10-15 | Mitsubishi Denki Kabushiki Kaisha | Power transfer device |
RU2245598C1 (en) * | 2003-07-11 | 2005-01-27 | Стребков Дмитрий Семенович | Method and device for electrical energy transmission |
RU2307438C1 (en) * | 2006-04-25 | 2007-09-27 | Институт проблем управления им. В.А. Трапезникова РАН | Method for transmitting electrical energy over long distances in three-phase system |
Cited By (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10680306B2 (en) | 2013-03-07 | 2020-06-09 | CPG Technologies, Inc. | Excitation and use of guided surface wave modes on lossy media |
US9941566B2 (en) | 2014-09-10 | 2018-04-10 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US10998604B2 (en) | 2014-09-10 | 2021-05-04 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US10224589B2 (en) | 2014-09-10 | 2019-03-05 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US10381843B2 (en) | 2014-09-11 | 2019-08-13 | Cpg Technologies, Llc | Hierarchical power distribution |
US10355481B2 (en) | 2014-09-11 | 2019-07-16 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US9859707B2 (en) | 2014-09-11 | 2018-01-02 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US9887587B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Variable frequency receivers for guided surface wave transmissions |
US9887557B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Hierarchical power distribution |
US10177571B2 (en) | 2014-09-11 | 2019-01-08 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US10135298B2 (en) | 2014-09-11 | 2018-11-20 | Cpg Technologies, Llc | Variable frequency receivers for guided surface wave transmissions |
US9887556B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Chemically enhanced isolated capacitance |
US9893402B2 (en) | 2014-09-11 | 2018-02-13 | Cpg Technologies, Llc | Superposition of guided surface waves on lossy media |
US10175203B2 (en) | 2014-09-11 | 2019-01-08 | Cpg Technologies, Llc | Subsurface sensing using guided surface wave modes on lossy media |
US10079573B2 (en) | 2014-09-11 | 2018-09-18 | Cpg Technologies, Llc | Embedding data on a power signal |
US9882397B2 (en) | 2014-09-11 | 2018-01-30 | Cpg Technologies, Llc | Guided surface wave transmission of multiple frequencies in a lossy media |
US9960470B2 (en) | 2014-09-11 | 2018-05-01 | Cpg Technologies, Llc | Site preparation for guided surface wave transmission in a lossy media |
US10498393B2 (en) | 2014-09-11 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave powered sensing devices |
US10101444B2 (en) | 2014-09-11 | 2018-10-16 | Cpg Technologies, Llc | Remote surface sensing using guided surface wave modes on lossy media |
US10001553B2 (en) | 2014-09-11 | 2018-06-19 | Cpg Technologies, Llc | Geolocation with guided surface waves |
US10084223B2 (en) | 2014-09-11 | 2018-09-25 | Cpg Technologies, Llc | Modulated guided surface waves |
US10153638B2 (en) | 2014-09-11 | 2018-12-11 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10027116B2 (en) | 2014-09-11 | 2018-07-17 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10355480B2 (en) | 2014-09-11 | 2019-07-16 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10193353B2 (en) | 2014-09-11 | 2019-01-29 | Cpg Technologies, Llc | Guided surface wave transmission of multiple frequencies in a lossy media |
US10033198B2 (en) | 2014-09-11 | 2018-07-24 | Cpg Technologies, Llc | Frequency division multiplexing for wireless power providers |
US10320045B2 (en) | 2014-09-11 | 2019-06-11 | Cpg Technologies, Llc | Superposition of guided surface waves on lossy media |
US10320200B2 (en) | 2014-09-11 | 2019-06-11 | Cpg Technologies, Llc | Chemically enhanced isolated capacitance |
US10074993B2 (en) | 2014-09-11 | 2018-09-11 | Cpg Technologies, Llc | Simultaneous transmission and reception of guided surface waves |
US10193595B2 (en) | 2015-06-02 | 2019-01-29 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US10320233B2 (en) | 2015-09-08 | 2019-06-11 | Cpg Technologies, Llc | Changing guided surface wave transmissions to follow load conditions |
US10467876B2 (en) | 2015-09-08 | 2019-11-05 | Cpg Technologies, Llc | Global emergency and disaster transmission |
US10274527B2 (en) | 2015-09-08 | 2019-04-30 | CPG Technologies, Inc. | Field strength monitoring for optimal performance |
US9997040B2 (en) | 2015-09-08 | 2018-06-12 | Cpg Technologies, Llc | Global emergency and disaster transmission |
US10122218B2 (en) | 2015-09-08 | 2018-11-06 | Cpg Technologies, Llc | Long distance transmission of offshore power |
US10132845B2 (en) | 2015-09-08 | 2018-11-20 | Cpg Technologies, Llc | Measuring and reporting power received from guided surface waves |
US9857402B2 (en) | 2015-09-08 | 2018-01-02 | CPG Technologies, L.L.C. | Measuring and reporting power received from guided surface waves |
US9887585B2 (en) | 2015-09-08 | 2018-02-06 | Cpg Technologies, Llc | Changing guided surface wave transmissions to follow load conditions |
US10516303B2 (en) | 2015-09-09 | 2019-12-24 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US10027131B2 (en) | 2015-09-09 | 2018-07-17 | CPG Technologies, Inc. | Classification of transmission |
US9887558B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Wired and wireless power distribution coexistence |
US9885742B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Detecting unauthorized consumption of electrical energy |
US10536037B2 (en) | 2015-09-09 | 2020-01-14 | Cpg Technologies, Llc | Load shedding in a guided surface wave power delivery system |
US9882436B2 (en) | 2015-09-09 | 2018-01-30 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US10135301B2 (en) | 2015-09-09 | 2018-11-20 | Cpg Technologies, Llc | Guided surface waveguide probes |
US9973037B1 (en) | 2015-09-09 | 2018-05-15 | Cpg Technologies, Llc | Object identification system and method |
US10205326B2 (en) | 2015-09-09 | 2019-02-12 | Cpg Technologies, Llc | Adaptation of energy consumption node for guided surface wave reception |
US9882606B2 (en) | 2015-09-09 | 2018-01-30 | Cpg Technologies, Llc | Hybrid guided surface wave communication |
US10230270B2 (en) | 2015-09-09 | 2019-03-12 | Cpg Technologies, Llc | Power internal medical devices with guided surface waves |
US10148132B2 (en) | 2015-09-09 | 2018-12-04 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US10027177B2 (en) | 2015-09-09 | 2018-07-17 | Cpg Technologies, Llc | Load shedding in a guided surface wave power delivery system |
US10062944B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Guided surface waveguide probes |
US10063095B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Deterring theft in wireless power systems |
US10033197B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10425126B2 (en) | 2015-09-09 | 2019-09-24 | Cpg Technologies, Llc | Hybrid guided surface wave communication |
US9496921B1 (en) | 2015-09-09 | 2016-11-15 | Cpg Technologies | Hybrid guided surface wave communication |
US10333316B2 (en) | 2015-09-09 | 2019-06-25 | Cpg Technologies, Llc | Wired and wireless power distribution coexistence |
US10031208B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10103452B2 (en) | 2015-09-10 | 2018-10-16 | Cpg Technologies, Llc | Hybrid phased array transmission |
US10559893B1 (en) | 2015-09-10 | 2020-02-11 | Cpg Technologies, Llc | Pulse protection circuits to deter theft |
US10324163B2 (en) | 2015-09-10 | 2019-06-18 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10396566B2 (en) | 2015-09-10 | 2019-08-27 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408916B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408915B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10998993B2 (en) | 2015-09-10 | 2021-05-04 | CPG Technologies, Inc. | Global time synchronization using a guided surface wave |
US10141622B2 (en) | 2015-09-10 | 2018-11-27 | Cpg Technologies, Llc | Mobile guided surface waveguide probes and receivers |
US10312747B2 (en) | 2015-09-10 | 2019-06-04 | Cpg Technologies, Llc | Authentication to enable/disable guided surface wave receive equipment |
US10498006B2 (en) | 2015-09-10 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave transmissions that illuminate defined regions |
US10193229B2 (en) | 2015-09-10 | 2019-01-29 | Cpg Technologies, Llc | Magnetic coils having cores with high magnetic permeability |
US10175048B2 (en) | 2015-09-10 | 2019-01-08 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10601099B2 (en) | 2015-09-10 | 2020-03-24 | Cpg Technologies, Llc | Mobile guided surface waveguide probes and receivers |
US10326190B2 (en) | 2015-09-11 | 2019-06-18 | Cpg Technologies, Llc | Enhanced guided surface waveguide probe |
US9893403B2 (en) | 2015-09-11 | 2018-02-13 | Cpg Technologies, Llc | Enhanced guided surface waveguide probe |
US9899718B2 (en) | 2015-09-11 | 2018-02-20 | Cpg Technologies, Llc | Global electrical power multiplication |
US10355333B2 (en) | 2015-09-11 | 2019-07-16 | Cpg Technologies, Llc | Global electrical power multiplication |
US10560147B1 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Guided surface waveguide probe control system |
US10559867B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Minimizing atmospheric discharge within a guided surface waveguide probe |
US10559866B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Inc | Measuring operational parameters at the guided surface waveguide probe |
US10581492B1 (en) | 2017-03-07 | 2020-03-03 | Cpg Technologies, Llc | Heat management around a phase delay coil in a probe |
US10630111B2 (en) | 2017-03-07 | 2020-04-21 | Cpg Technologies, Llc | Adjustment of guided surface waveguide probe operation |
US10447342B1 (en) | 2017-03-07 | 2019-10-15 | Cpg Technologies, Llc | Arrangements for coupling the primary coil to the secondary coil |
Also Published As
Publication number | Publication date |
---|---|
RU2009144909A (en) | 2011-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2473160C2 (en) | Method and device for electrical energy transmission | |
RU2409883C1 (en) | Electric energy transmission method and device | |
RU2273939C1 (en) | Method and device for transferring electric energy (variants) | |
RU2459340C2 (en) | Method and device for transmission of power | |
EP3204603B1 (en) | Apparatus and methods for enhancing petroleum extraction | |
AU2004247900B2 (en) | System and method for transmitting electric power into a bore | |
EP2475062A2 (en) | Non-contact power feeding apparatus for implementing magnetic resonance method | |
EP2659496B1 (en) | Device for transfer of electrical signals and/or electrical energy | |
CN108934096A (en) | Electromagnetic induction heater | |
CN104393690A (en) | Underground wireless power transmission system for oilfield | |
CA2890683C (en) | Shielded multi-pair arrangement as supply line to an inductive heating loop in heavy oil deposits | |
US11624239B1 (en) | Pulse power drilling assembly transformer with a core having insulative and electrically conductive materials | |
RU2577522C2 (en) | Method and device for transmission of electric power | |
RU2567181C1 (en) | System for very low-frequency and extremely low-frequency communication with deep-sunk and remote objects - 1 | |
Vittal et al. | Analysis of subsea inductive power transfer performances using planar coils | |
WO2018164963A1 (en) | Guided surface waveguide probe superstructure | |
RU2611603C1 (en) | Communication system of very low and extremely low frequency range with deep-seated and distant objects | |
RU2245598C1 (en) | Method and device for electrical energy transmission | |
RU2661505C1 (en) | Coaxial induction cable, heating device and heating method | |
US20180259590A1 (en) | Anchoring a guided surface waveguide probe | |
WO2018164957A1 (en) | Measuring operational parameters at the guided surface waveguide probe | |
Lervik et al. | Direct electrical heating of subsea pipelines | |
JP2008132880A (en) | Method and device for reducing electromagnetically-induced voltage of underground pipeline | |
WO2013191576A1 (en) | Method for transmitting electromagnetic energy and device for implementing same | |
EP2954544A1 (en) | Transmission of electric power |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FA92 | Acknowledgement of application withdrawn (lack of supplementary materials submitted) |
Effective date: 20111029 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20131205 |