RU2471847C2 - Композиции и способ разрушения текучих сред гидравлического разрыва - Google Patents

Композиции и способ разрушения текучих сред гидравлического разрыва Download PDF

Info

Publication number
RU2471847C2
RU2471847C2 RU2011114109/03A RU2011114109A RU2471847C2 RU 2471847 C2 RU2471847 C2 RU 2471847C2 RU 2011114109/03 A RU2011114109/03 A RU 2011114109/03A RU 2011114109 A RU2011114109 A RU 2011114109A RU 2471847 C2 RU2471847 C2 RU 2471847C2
Authority
RU
Russia
Prior art keywords
thousand
ester
component
gaul
fluid
Prior art date
Application number
RU2011114109/03A
Other languages
English (en)
Other versions
RU2011114109A (ru
Inventor
Джозеф ТОМПСОН
Саркис Ранка КАКАДЖИАН
Хосе Л. ГАРСА
Фрэнк ЗАМОРА
Original Assignee
КЛИАРВОТЕР ИНТЕРНЭШНЛ ЭлЭлСи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by КЛИАРВОТЕР ИНТЕРНЭШНЛ ЭлЭлСи filed Critical КЛИАРВОТЕР ИНТЕРНЭШНЛ ЭлЭлСи
Publication of RU2011114109A publication Critical patent/RU2011114109A/ru
Application granted granted Critical
Publication of RU2471847C2 publication Critical patent/RU2471847C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/665Compositions based on water or polar solvents containing inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • C09K8/685Compositions based on water or polar solvents containing organic compounds containing cross-linking agents
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/26Gel breakers other than bacteria or enzymes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Lubricants (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к разрушающим композициям для регулированного разрушения текучих сред разрыва боратного структурирования и способу их получения и использования, при этом композиция включает окислительный компонент и сложноэфирный компонент. Разрушающая композиция текучей среды гидравлического разрыва боратного структурирования, содержащая окислительный компонент, включающий водный раствор, по меньшей мере, одного хлорита щелочного металла в отсутствие или в присутствии окислительной добавки и сложноэфирный компонент, включающий, по меньшей мере, один сложный эфир карбоновой кислоты, имеющей от 2 до 20 атомов углерода, где сложноэфирной группой является карбильная группа, имеющая от 1 до 10 атомов углерода, один или более атомов углерода может быть замещен атомами кислорода, и отношение окислительного компонента к сложноэфирному компоненту составляет от около 4:1 до около 20:1. Композиция текучей среды разрыва, содержащая текучую среду разрыва боратного структурирования, включает структурируемый гель, боратный структурирующий агент и эффективное количество указанной выше разрушающей композиции. Способ воздействия на пласт содержит закачивание в пласт в условиях разрыва указанной выше текучей среды разрыва. Разрушающая композиция снижает вязкость текучей среды разрыва регулируемым образом, снижая вязкость текучей среды в течение заданного промежутка времени. Технический результат - уменьшение образования остатков и снижение их восстановления при снижении температуры и рН. Изобретение развито в зависимых пунктах формы. 3 н. и 19 з.п. ф-лы, 3 пр., 3 ил.

Description

Предпосылки создания изобретения
Область техники, к которой относится изобретение
Варианты осуществления настоящего изобретения относятся к разрушающей композиции для регулированного разрушения текучей среды гидравлического разрыва боратного структурирования и к способу ее получения и использования.
В частности, варианты осуществления настоящего изобретения относятся к разрушающей композиции для регулированного разрушения текучей среды гидравлического разрыва боратного структурирования, к способу получения и использованию ее, при этом композиция включает в себя окислительный компонент и сложноэфирный компонент.
Уровень техники
Одной из ключевых проблем использования воды с добавками, снижающими трение, линейных гелей и структурированных текучих сред для воздействия на пласт и гидравлического разрыва является создание композиции и/или способа, которые бы позволили контролируемым образом разрушить данные загущенные полимерами системы в условиях скважины. Идеальными разрушающими агентами являются те, которые находятся в жидком состоянии и могут доставляться в регулированных или регулируемых условиях, достаточных для снижения вязкости скважинной текучей среды до желательно низкой величины в ходе воздействия на пласт, т.е., в течение промежутка времени, не менее и не более, чем время, необходимое для завершения воздействия на пласт.
Существует много эффективных окислительных разрушающих агентов, кислотных разрушающих агентов, терпеновых разрушающих агентов и ферментативных разрушающих агентов или их комбинаций в форме чистого материала, раствора, суспензии, или в инкапсулированной форме, которые в течение большей части времени вызывают разрушение текучей среды за более короткий или длинный промежуток времени, чем необходимый для завершения воздействия на пласт. Данные разрушающие агенты эффективны только в узких интервалах температур, которые необязательно идентичны или одинаковы с условиями в скважине. Данные системы внедрены и широко применяются обслуживающими компаниями, включая в числе прочих Hilliburton, Shlumberger, B1 Services, Weatherford, MI, Baroid, Baker Hughes.
В патенте США № 5413178 предложена композиция и способ разрушения загущенных полимерами текучей среды с использованием хлорита щелочного металла или гипохлорита, который выделяет оксид хлора регулированным образом с разрушением полимерной структуры и, как следствие, снижением вязкости загущенных полимерами текучих сред.
Исторически, разрушение текучей среды гидравлического разрыва боратного структурирования было основано на окислительных агентах, вызывающих разрушение, внедренных Halliburton, Schlumberger и BI Services, либо на внедренных позднее ферментативных и сложноэфирных вызывающих разрушение агентах, внедренных BI Services.
Патент США № 5067566 раскрывает использование сложных эфиров, которые медленно гидролизуются с образованием кислот, поэтому в сочетании с ферментами способствуют ферментативному разрушению галактомана при рН ниже 9,0. Патент США № 5413178 раскрывает использование систем на основе хлорита и гипохлорита в качестве окислительных разрушающих агентов для стабилизированных загущенных текучих сред.
Хотя существуют многочисленные разрушающие композиции для использования в текучих средах гидравлического разрыва боратного структурирования, но сохраняется потребность в данной области в новых разрушающих системах, особенно в разрушающих системах для боратных текучих сред гидравлического разрыва, образующих меньше остатков и снижающих их восстановление при снижении температуры или рН.
Краткое изложение сущности изобретения
Варианты осуществления изобретения относится к разрушающей системе, включающей в себя гидролизуемый под действием тепла сложноэфирный компонент, при этом сложные эфиры гидролизуются в температурном интервале между приблизительно 100°F и приблизительно 260°F с образованием органических кислот на месте, и разрушающая система адаптирована для разрушения текучих сред гидравлического разрыва боратного структурирования регулированным образом с образованием меньшего количества остатков и снижением их восстановления при снижении температуры и/или величины рН. В некоторых вариантах осуществления изобретения сложноэфирный компонент включает смесь сложных эфиров дикарбоновых кислот, содержащих число атомов углерода между 2 и 20.
Варианты осуществления настоящего изобретения относятся к разрушающей системе, включающей в себя сложноэфирный компонент, содержащий смесь гидролизуемых под действием тепла сложных эфиров и окислительный компонент, при этом сложные эфиры гидролизуются в температурном интервале между приблизительно 100°F и приблизительно 260°F с образованием органических кислот на месте, и разрушающая система адаптирована для разрушения текучих сред гидравлического разрыва боратного структурирования регулированным образом с образованием меньшего количества остатков и снижением их восстановления при снижении температуры и/или величины рН. В некоторых вариантах осуществления изобретения сложноэфирный компонент включает в себя смесь сложных эфиров дикарбоновых кислот, имеющих от 2 до 20 атомов углерода.
Варианты осуществления настоящего изобретения относятся к способу разрушения текучей среды гидравлического разрыва боратного структурирования, включающего добавление эффективного количества разрушающий системы, включающей в себя гидролизуемый под действием тепла сложноэфирный компонент и окислительный компонент, при этом сложные эфиры гидролизуются в температурном интервале между приблизительно 100°F и приблизительно 260°F с образованием органических кислот на месте регулированным образом, и к текучей среде гидравлического разрыва боратного структурирования. Разрушающая система образует меньшее количество остатков, и уменьшается ее восстановление при снижении температуры и/или величины рН. Эффективное количество представляет количество, достаточное для достижения желательной скорости разрушения текучей среды гидравлического разрыва боратного структурирования. В некоторых вариантах осуществления изобретения сложноэфирный компонент включает смесь сложных эфиров дикарбоновых кислот, содержащих от 2 до 20 атомов углерода.
Варианты осуществления настоящего изобретения относятся к способу гидравлического разрыва пласта, включающему нагнетание в пласт, на который оказывается воздействие, текучей среды гидравлического разрыва, включающего эффективное количество разрушающей системы, содержащей гидролизуемый под действием тепла сложноэфирный компонент и окислительный компонент, при этом сложные эфиры гидролизуются в температурном интервале между приблизительно 100°F и приблизительно 260°F с образованием органических кислот на месте боратной системы регулированным образом. Разрушающая система образует меньшее количество остатков, и уменьшается ее восстановление при снижении температуры и/или величины рН. Эффективное количество представляет количество, достаточное для достижения желательной скорости разрушения текучей среды гидравлического разрыва боратного структурирования. В некоторых вариантах осуществления изобретения сложноэфирный компонент включает смесь сложных эфиров дикарбоновых кислот, содержащих от 2 до 20 атомов углерода.
Краткое описание чертежей
Изобретение может быть лучше понято при рассмотрении следующего подробного описания изобретения вместе с прилагаемыми пояснительными чертежами, на которых одинаковые элементы пронумерованы одинаково.
На фигуре 1 представлен график зависимости изменения реологических свойств разрушающей системы настоящего изобретения во времени при температуре выдержки 180°F.
На фигуре 2 представлен график зависимости изменения реологических свойств разрушающей системы настоящего изобретения во времени при температуре выдержки 200°F.
На фигуре 3 представлен график зависимости изменения реологических свойств разрушающей системы настоящего изобретения во времени при температуре выдержки 220°F.
Определения, использованные в описании изобретения
Термин «гидравлический разрыв» относится к процессу и способам разлома геологического пласта, т.е., пласта из горных пород вокруг ствола скважины, путем нагнетания текучей среды при очень высоком давлении, чтобы увеличить производительность добычи из нефтеносного слоя. Способы гидравлического разрыва настоящего изобретения предусматривают использование традиционных методов, известных в данной области.
Термин «расклинивающий наполнитель» относится к гранулированному материалу, суспендированному в текучей среде гидравлического разрыва в процессе операции гидравлического разрыва, который служит для предотвращения смыкания трещин в пласте после снятия давления. Расклинивающие наполнители, предусмотренные настоящим изобретением, включают, но не ограничиваются ими, традиционные расклинивающие наполнители, известные специалистам в данной области, такие как песок, песок калибром 20-40 меш, песок с полимерным покрытием, прокаленный боксит, стеклянные шарики и аналогичные материалы.
Термин «поверхностно-активное вещество» относится к растворимому или частично растворимому соединению, которое снижает поверхностное натяжение жидкостей или снижает межповерхностное натяжение между двумя жидкостями, или жидкостями или твердыми веществами, собирающимися и ориентирующимися на данных поверхностях.
Подробное описание изобретения
Авторы настоящего изобретения установили, что разрушающие композиции или системы для текучих сред гидравлического разрыва боратного структурирования могут быть получены при использовании комбинации сложноэфирного компонента и окислительного компонента, при этом сложноэфирный компонент включает один или несколько медленно гидролизуемых сложных эфиров. Авторы настоящего изобретения установили, что разрушающая композиция или система способствует выделению кислорода, ускоряющего механизм радикального разрушения текучих сред гидравлического разрыва боратного структурирования, и снижению или минимизации восстановления гелевой системы при падении рН ниже 9,0 или при снижении температуры.
Варианты осуществления настоящего изобретения относятся к разрушающим композициям текучей среды гидравлического разрыва боратного структурирования или гелевой системы, при этом композиция включает сложноэфирный компонент и окислительный компонент, адаптированный для снижения вязкости боратной текучей среды до желательной низкой величины в условиях скважины в течение промежутка времени, совпадающего с временем воздействия на пласт, при этом композиция разрушает текучую среду гидравлического разрыва регулированным образом, образуя меньше остатков и снижая восстановление его при снижении температуры и/или рН. В некоторых вариантах осуществления изобретения сложноэфирный компонент включает смесь сложных эфиров дикарбоновых кислот, имеющих число атомов углерода между 2 и 20.
Варианты осуществления настоящего изобретения относятся к разрушающим композициям для текучей среды гидравлического разрыва боратного структурирования или гелевой системы, при этом композиция включает сложноэфирный компонент и окислительный компонент, адаптированный для снижения вязкости боратной текучей среды до желательной низкой величины в условиях скважины в течение промежутка времени, совпадающего с временем воздействия на пласт, обычно между приблизительно 30 мин и 195 мин, при этом композиция разрушает текучую среду гидравлического разрыва регулированным образом, образуя меньше остатков и снижая восстановление его при снижении температуры и/или рН. В некоторых вариантах осуществления изобретения сложноэфирный компонент включает смесь сложных эфиров дикарбоновых кислот, имеющих число атомов углерода между 2 и 20.
Варианты осуществления настоящего изобретения относятся к способу разрушения текучей среды гидравлического разрыва боратного структурирования, включающему добавление эффективного количества разрушающей композиции, включающей сложноэфирный компонент и окислительный компонент, в текучую среду гидравлического разрыва боратного структурирования, при этом разрушающая композиция разрушает текучую среду регулированным образом, снижая вязкость текучей среды в течение данного промежутка времени, образуя меньше остатков и снижая восстановление его при снижении температуры и/или рН. В некоторых вариантах осуществления изобретения сложноэфирный компонент включает смесь сложных эфиров дикарбоновых кислот, имеющих от 2 до 20 атомов углерода.
Варианты осуществления настоящего изобретения относятся к способу воздействия на пласт, включающему стадию нагнетания в пласт в условиях гидравлического разрыва текучей среды гидравлического разрыва, включающего эффективное количество разрушающей композиции, включающей сложноэфирный компонент и окислительный компонент, в текучую среду гидравлического разрыва боратного структурирования, при этом разрушающая композиция разрушает текучую среду регулированным образом, снижая вязкость текучей среды в течение данного промежутка времени, образуя меньше остатков и снижая восстановление его при снижении температуры и/или рН. В некоторых вариантах осуществления изобретения сложноэфирный компонент включает смесь сложных эфиров дикарбоновых кислот, имеющих число атомов углерода между 2 и 20.
Разрушающие композиции настоящего изобретения включают от 1 галл./тыс.галл. до приблизительно 20 галл./тыс.галл. окислительного компонента и от приблизительно 0,1 галл./тыс.галл. до приблизительно 5 галл./тыс.галл. сложноэфирного компонента. В некотором варианте осуществления изобретения разрушающие композиции настоящего изобретения включают от приблизительно 2 галл./тыс.галл. до приблизительно 18 галл./тыс.галл. окислительного компонента и от приблизительно 0,5 галл./тыс.галл. до приблизительно 5 галл./тыс.галл. сложноэфирного компонента. В некотором варианте осуществления изобретения разрушающие композиции настоящего изобретения включают от приблизительно 4 галл./тыс.галл. до приблизительно 18 галл./тыс.галл. окислительного компонента и от приблизительно 0,5 галл./тыс.галл. до приблизительно 5 галл./тыс.галл. сложноэфирного компонента. В некотором варианте осуществления изобретения разрушающие композиции настоящего изобретения включают от приблизительно 6 галл./тыс.галл. до приблизительно 18 галл./тыс.галл. окислительного компонента и от приблизительно 0,5 галл./тыс.галл. до приблизительно 5 галл./тыс.галл. сложноэфирного компонента. В некотором варианте осуществления изобретения разрушающие композиции настоящего изобретения включают от приблизительно 8 галл./тыс.галл. до приблизительно 16 галл./тыс.галл. окислительного компонента и от приблизительно 0,5 галл./тыс.галл. до приблизительно 4 галл./тыс.галл. сложноэфирного компонента. В некотором варианте осуществления изобретения разрушающие композиции настоящего изобретения включают от приблизительно 10 галл./тыс.галл. до приблизительно 14 галл./тыс.галл. окислительного компонента и от приблизительно 0,5 галл./тыс.галл. до приблизительно 3 галл./тыс.галл. сложноэфирного компонента. В некотором варианте осуществления изобретения разрушающие композиции настоящего изобретения включают от приблизительно 10 галл./тыс.галл. до приблизительно 14 галл./тыс.галл. окислительного компонента и от приблизительно 0,5 галл./тыс.галл. до приблизительно 2 галл./тыс.галл. сложноэфирного компонента.
Разрушающие композиции настоящего изобретения включают окислительный компонент и сложноэфирный компонент, присутствующие в отношении по галл./тыс.галл. приблизительно 4:1 до приблизительно 20:1. Для использования при температуре приблизительно 180°F отношение составляет от приблизительно 5:1 до приблизительно 8:1. Для использования при температуре приблизительно 200°F отношение составляет от приблизительно 8:1 до приблизительно 11:1. Для использовании при температуре приблизительно 220°F отношение составляет от приблизительно 11:1 до приблизительно 13:1. Данные отношения подобраны так, чтобы профиль разрушения разрушающих систем являлся по существу одинаковым при данных температурах. По мере роста температуры относительное количество сложноэфирных компонентов снижается, чтобы сохранить аналогичный профиль разрушения.
В некоторых вариантах осуществления изобретения количество сложноэфирного компонента, добавленного к окислительному компоненту, является достаточным для достижения профиля разрушения, включая время до разрушения и максимальной вязкости текучей среды гидравлического разрыва, по существу такого же, независимо от температуры, где по существу означает, что время до разрушения и максимальной вязкости текучей среды гидравлического разрыва находится в пределах приблизительно 20% для каждой температуры. В других вариантах осуществления изобретения время до разрушения и максимальной вязкости текучей среды гидравлического разрыва находится в пределах приблизительно 15% для каждой температуры. В других вариантах осуществления изобретения время до разрушения и максимальной вязкости текучей среды гидравлического разрыва находится в пределах приблизительно 10% для каждой температуры.
Подходящие реагенты
Подходящие окислительные компоненты для использования в изобретении включают, без ограничения, водные растворы хлорита щелочного металла. Окислительные компоненты обычно содержатся в воде в количестве от приблизительно 1 мас.% до приблизительно 20 мас.%. В некоторых вариантах осуществления изобретения окислительный компонент содержится в количестве от приблизительно 5 мас.% до приблизительно 15 мас.%. Примеры хлоритов щелочных металлов включают хлориты лития, натрия, калия, рубидия и/или цезия. В некоторых вариантах осуществления изобретения окислительный компонент включает водный раствор хлорита натрия. Окислительные компоненты также могут включать добавку, выбранную из группы, состоящей из добавки, выбранной из группы, состоящей из хлората щелочного металла, хлорида щелочного металла и их смесей или комбинаций, где щелочной металл включает литий, натрий, калий, рубидий и/или цезий. В некоторых вариантах осуществления изобретения добавка выбрана из группы, состоящей из хлората натрия, хлората калия, хлорида натрия, хлорида калия и их смесей или комбинаций. Добавки обычно содержатся в количестве от приблизительно 0,5 мас.% до 10 мас.%.
Подходящие сложные эфиры для использования в сложноэфирном компоненте настоящего изобретения включают, без ограничений, сложный эфир карбоновой кислоты или смеси сложных эфиров карбоновых кислот, где карбоновые кислоты могут иметь число атомов углерода между 2 и 20, а сложноэфирными группами являются карбильные группы, имеющие число атомов углерода между 1 и 10, при этом один или несколько атомов углерода могут быть замещены атомом кислорода. В некоторых вариантах осуществления изобретения карбоновые кислоты включают линейные или разветвленные дикарбоновые кислоты. В некоторых вариантах осуществления изобретения дикарбоновые кислоты являются линейными дикарбоновыми кислотами, имеющими число атомов углерода между 3 и 20. В других вариантах осуществления изобретения дикарбоновые кислоты являются линейными дикарбоновыми кислотами, имеющими число атомов углерода между 4 и 10. Сложными эфирами являются сложные карбиловые эфиры, имеющие число атомов углерода между 1 и 10. В некоторых вариантах осуществления изобретения сложные эфиры имеют число атомов углерода между 1 и 5. В некоторых вариантах осуществления изобретения сложноэфирный компонент включает сложный дикарбиловый эфир дикарбоновой кислоты или смесь дикарбиловых сложных эфиров дикарбоновых кислот. В других вариантах осуществления изобретения сложноэфирный компонент включает сложный диалкиловый эфир дикарбоновой кислоты или смесь диалкиловых сложных эфиров дикарбоновых кислот, где дикарбоновые кислоты включают от 3 до 8 атомов углерода, а алкильные группы включают от 1 до 5 атомов углерода. В других вариантах осуществления изобретения сложноэфирный компонент включает смесь диалкиловых сложных эфиров дикарбоновых кислот, где дикарбоновые кислоты включают от 4 до 6 атомов углерода, а алкильные группы включают от 1 до 2 атомов углерода. Примеры диалкилдикарбоновых кислот включают, без ограничения, диметилмалоновую (С3 линейную дикарбоновую) кислоту, диэтилмалоновую кислоту, этилметилмалоновую кислоту, диэтилмалоновую кислоту, диметилянтарную (С4 линейную дикарбоновую) кислоту, диэтилянтарную кислоту, этилметилянтарную кислоту, диэтилянтарную кислоту, диметилглутаровую (С5 линейную карбоновую кислоту), диэтилглутаровую кислоту, этилметилглутаровую кислоту, диэтилглутаровую кислоту, диметиладипиновую (С6 линейную дикарбоновую) кислоту, диэтиладипиновую кислоту, этилметиладипиновую кислоту, диэтиладипиновую кислоту, диметилпимелиновую (С7 линейную дикарбоновую) кислоту, диэтилпимелиновую кислоту, этилметилпимелдиновую кислоту, диэтилпимелиновую кислоту, диметилсубериновую (С8 линейную дикарбоновую) кислоту, диэтилсубериновую кислоту, этилметилсубериновую кислоту, диэтилсубериновую кислоту, диметилазлаиновую (С9 линейную дикарбоновую) кислоту, диэтилазелаиновую кислоту, этилметилазелаиновую кислоту, диэтилазелаиновую кислоту, диметилсебациновую (С10 линейную дикарбоновую) кислоту, диэтилсебациновую кислоту, этилметилсебациновую кислоту, диэтилсебациновую кислоту и их смеси. В других вариантах осуществления изобретения сложноэфирный компонент включает смесь С4-С6 сложных эфиров линейной дикарбоновой кислоты. В других вариантах осуществления изобретения сложноэфирный компонент включает от приблизительно 17 мас.% до 27 мас.% диметилсукцината, от приблизительно 57 мас.% до приблизительно 73 мас.% диметилглутарата и от приблизительно 10 мас.% до 20 мас.% диметиладипата.
Подходящие гидратируемые водорастворимые полимеры для использования в текучих средах гидравлического разрыва по изобретению включают, без ограничения, полисахариды, полиакриламиды и полиакриламидные сополимеры. Подходящие полисахариды включают галактоманновую камедь и производные целлюлозы. В некоторых вариантах осуществления изобретения полисахариды включают гуаровую камедь, смолу стручков рожкового дерева, карбоксиметилгуар, гидроксиэтилгуар, гидроксипропилгуар, карбоксиметилдиоксипропилгуар, карбоксиметилгидроксиэтилгуар, гидроксимектилцеллюлозу, карбоксиметилгидроксиэтилцеллюлозу и гидроксиэтилцеллюлозу.
Гидратируемым полимером, используемым в настоящем изобретении, может быть любой из гидратируемых полисахаридов, содержащих компоненты галактозы или маннозы и известных специалистам сервисных отраслей промышленности. Данные полисахариды способны к гелеобразованию в присутствии структурирующего агента с образованием текучей среды на основе геля. Например, подходящими гидратируемыми полисахаридами являются галактоманновые камеди, гуары и дериватизированные гуары. Конкретными примерами являются гуаровая камедь и производные гуаровой камеди. Подходящими гелеобразующими агентами являются гуаровая камедь, гидроксипропилгуар и карбоксиметилгидроксипропилгуар. В некоторых вариантах осуществления изобретения гидратируемыми полимерами для настоящего изобретения являются гуаровая камедь и карбоксиметилгидроксипропилгуар и гидроксипропилгуар. Другие примеры составов текучей среды гидравлического разрыва раскрыты в патентах США № 5201370 и 6138760, которые введены в настоящий документ в порядке ссылки.
Гидратируемый полимер добавляется в водную текучую среду в концентрациях, лежащих в интервале от приблизительно 0,12% до 0,96% по массе водной текучей среды. В некоторых вариантах осуществления изобретения интервал для настоящего изобретения составляет от приблизительно 0,3% до приблизительно 0,48% по массе.
Помимо гидратируемого полимера текучей среды гидравлического разрыва по изобретению включают боратную сшивающую систему. В случае боратных структурирующих агентов сшивающим агентом является любой материал, который выделяет в раствор борат-ионы. Таким образом, структурирующим агентом может быть любой удобный источник борат-ионов, например бораты щелочных и щелочноземельных металлов и борная кислота. В некоторых вариантах осуществления изобретения структурирующей добавкой является декакристаллогидрат бората натрия. В некоторых вариантах осуществления изобретения данная структурирующая добавка составляет величину в интервале от приблизительно 0,024% до величины, превышающей 0,18% по массе водной текучей среды. В некоторых вариантах осуществления изобретения концентрация структурирующего агента лежит в интервале от приблизительно 0,024% до приблизительно 0,09% по массе водной текучей среды.
Расклинивающие агенты обычно добавляют в базовую текучую среду до добавления структурирующего агента. Расклинивающие агенты включают, например, кварц и гравий, стеклянные и керамические шарики, скорлупу грецкого ореха, алюминиевые гранулы, найлоновые гранулы и т.п. Расклинивающие агенты обычно используют в концентрациях между приблизительно 1 и 18 фунтов на галлон композиции текучей среды гидравлического разрыва, но если необходимо, могут быть использованы более высокие или низкие концентрации. Базовая текучая среда также может содержать другие традиционные добавки, известные в промышленности по обслуживанию скважин, такие как поверхностно-активные вещества и т.п.
В типичных операциях гидравлического разрыва текучую среду гидравлического разрыва нагнетают со скоростью, достаточной для инициирования и расширения у трещины в пласте и размещения в трещине расклинивающих агентов. Типичная обработка по гидравлическому разрыву проводится при гидратировании от 0,24% до 0,72% (масса/объем [м/о]) полимера на основе галактоманна, такого как гуар, в 2% (м/о) растворе КОН. Помимо инкапсулированных микробов, снижающих вязкость, текучая среда гидравлического разрыва может включать добавки, такие как структурирующий агент, расклинивающий наполнитель и другие добавки.
Текучие среды гидравлического разрыва
В целом, обработка гидравлического разрыва включает нагнетание не содержащего расклинивающего наполнителя вязкой текучей среды или набивки, обычно воды с некоторыми жидкими присадками, с возникновением высокой вязкости в скважину быстрее, чем текучая среда может проникнуть в пласт, так что давление растет, и порода пласта растрескивается, создавая искусственный разлом и/или расширяя существующую трещину. После разрыва пласта вводят расклинивающий агент, обычно твердый материал, такой как песок, в текучую среду с получением суспензии, которая закачивается во вновь возникшие трещины в пласте для предупреждения их от смыкания при снятии давления. Транспортирующая способность расклинивающего наполнителя базовой текучей среды зависит от типа загущающих присадок, добавленных к водному основанию.
Текучие среды гидравлического разрыва на водной основе с водорастворимыми полимерами, добавленными с целью получения загущенного раствора, широко используются в области дробления пластов. С конца 1950-х более половины обработок по дроблению пластов проводится с использованием текучих сред, включающих гуаровые камеди, высокомолекулярные полисахариды, состоящие из сахаров маннозы и галактозы, или производные гуара, такие как гидропропилгуар (ГПГ), карбоксиметилгуар (КМГ), карбоксиметилгидропропилгуар (КМГПГ). Структурирующие агенты на основе соединений бора или борона и одного или нескольких комплексов титана, циркония или алюминия обычно используются для увеличения эффективной молекулярной массы полимера и создания повышенной пригодности их использования в высокотемпературных скважинах.
В меньшей степени используются также производные целлюлозы, такие как гидроксиэтилцеллюлоза (ГЭЦ) или гидроксипропилцеллюлоза (ГПГ) и карбоксиметилгидроксиэтилцеллюлоза (КМГПЦ), с или без структурирующих агентов. Показано, что ксантан и склероглюкан, два биополимера, обладают отличной расклинивающей - суспендирующей способностью, хотя они более дорогие, чем производные гуара, и поэтому используются не так часто. Полиакриламидные и полиакрилатные полимеры и сополимеры обычно используются для высокотемпературных областей применения или в качестве агентов, понижающих трение, при низких концентрациях для всех температурных интервалов.
Не содержащие полимеров водные текучие среды для разлома пластов могут быть получены при использовании вязкоупругих поверхностно-активных веществ. Данные текучие среды обычно получают смешением в соответствующих количествах подходящих поверхностно-активных веществ, таких как анионные, катионные, неионогенные и амфотерные поверхностно-активные вещества. Вязкость вязкоупругих поверхностно-активных веществ обусловлена пространственной структурой, образованной компонентами в текучих средах. Когда концентрация поверхностно-активных веществ в вязкоупругой текучей среде значительно превышает критическую концентрацию, и в большинстве случаев, в присутствии электролита, молекулы поверхностно-активного вещества агрегируют с образованием таких структур, как мицеллы, которые могут взаимодействовать с образованием сетки, проявляющей вязкие и упругие свойства.
Расклинивающим наполнителем может быть песок, керамические расклинивающие наполнители промежуточной прочности (доступные от Carbo Ceramics, Norton Proppants и т.д.), прокаленные бокситы и другие материалы, известные в промышленности. Любой из данных основных расклинивающих агентов может быть дополнительно покрыт смолой (доступной от Santrol, Division of Fairmount Industries, Borden Chemical, и т.д.) для возможного улучшения способности образовывать кластеры расклинивающего наполнителя. Кроме того, расклинивающий наполнитель может быть покрыт смолой, или одновременно может быть закачан, например, регулирующий агент текучести расклинивающего наполнителя, такой как волокно. Выбором расклинивающих наполнителей, имеющих отличие по одному из данных свойств, такому как плотность, размер и концентрации, будут достигаться различные скорости осаждения.
«Гидравлический разрыв с применением загущенной воды в качестве жидкости разрыва» предусматривают использование дешевых низковязких текучих сред, чтобы воздействовать на нефтеносные слои с очень низкой проницаемостью. Сообщается об успешных результатах (с измерением производительности скважины и экономических показателей), основанных на механизмах создания неровностей (растрескивание горных пород), сдвигового смещения горной породы и локализации высокой концентрации расклинивающего наполнителя с созданием соответствующей проницаемости. Последний из трех механизмов является в наибольшей степени ответственным за проницаемость, достигаемую при «гидравлическом разрыве с применением загущенной воды в качестве жидкости разрыва». Механизм может быть рассмотрен как аналог расклинивающего расщепления древесины.
Текучая среда гидравлического разрыва может быть получена смешением гидратируемого полимера с водной базовой текучей средой. Базовой водной текучей средой может быть, например, вода или солевой раствор. Для данного процесса может быть использовано любое подходящее смесительное устройство. В случае периодического смешения гидратируемый полимер и водная текучая среда смешивают в течение промежутка времени, достаточного для образования гидратированного золя.
Методы гидравлического разрыва широко используются для интенсификации добычи нефти и газа из подземных пластов. В ходе гидравлического разрыва текучую среду нагнетают в ствол скважины под высоким давлением. Как только давление в природном нефтеносном слое превышается, текучая среда гидроразрыва инициирует растрескивание в пласте, которое обычно продолжает расти в ходе закачивания скважины. По мере расширения трещины до подходящей ширины в ходе воздействия в текучую среду затем также добавляют расклинивающий агент. Схема воздействия обычно требует достижения текучей средой максимальной вязкости при его вхождении в трещину, что влияет на длину и ширину трещины. Вязкость большинства текучих сред гидравлического разрыва обусловлена водорастворимыми полисахаридами, такими как галактоманны или производные целлюлозы. Использование структурирующих агентов, таких как борат-ион, титанат-ион или ион циркония, может дополнительно повысить вязкость. Загущенная текучая среда может сопровождаться введением расклинивающего агента (т.е. расклинивающего наполнителя), что приводит к размещению расклинивающего наполнителя внутри полученной таким образом трещины. Расклинивающий наполнитель остается в образовавшейся трещине, предотвращает полное смыкание трещины и способствует образованию проницаемого канала, проходящего от ствола скважины в пласт, на который оказывается воздействие, как только текучая среда гидравлического разрыва извлечена.
Чтобы воздействие на пласт было успешным, в некоторых вариантах осуществления изобретения вязкость текучей среды неизбежно снижают до уровней, приближающихся к уровням вязкости воды после размещения расклинивающего наполнителя. Это позволяет извлечь часть текучей среды воздействия без получения избыточных количеств расклинивающего наполнителя после открытия скважины и возвращения ее в режим эксплуатации. Извлечение текучей среды гидравлического разрыва сопровождается снижением вязкости текучей среды до более низкой величины, так что она протекает естественным образом от пласта под влиянием пластовых текучих сред. Данное снижение вязкости или конверсия называется «разрушение» и может сопровождаться введением в исходный гель химических агентов, называемых «вызывающих разрушение агентами».
Некоторые гели текучих сред разрыва, как те, что основаны на полимерах гуара, претерпевают естественное разрушение без воздействия агента, вызывающего разрушение. Однако время разрушения для таких гелеобразных текучих сред обычно велико и непрактично и составляет в интервале от более 24 часов до недель, месяцев и лет, в зависимости от условий в нефтеносном слое. Соответственно, чтобы снизить время разрушения гелей, использованных при разрыве пласта, в гель обычно вводят химические агенты, которые становятся частью самого геля. Обычно данные агенты являются либо окислителями, либо ферментами, под действием которых разрушается структура полимерного геля. Основная часть деструкции или «разрушения» вызвано окислительными агентами, такими как персульфатные соли (используемые либо как таковые или инкапсулированные), хромовые соли, органические пероксиды или пероксидные соли щелочноземельных металлов или цинка, или ферментами.
Помимо важности обеспечения механизма разрушения для гелеобразной текучей среды с ускорением извлечения текучей среды и с возобновлением добычи, важное значение имеет также продолжительность разрушения. Гели, которые разрушаются постоянно, могут вызвать осаждение из геля суспендированного материала расклинивающего наполнителя до введения на достаточную глубину в образовавшуюся трещину. Преждевременное разрушение может также привести к преждевременному снижению вязкости текучей среды, приводящей к меньшей, чем желательная, ширине трещины в пласте, вызывая избыточное давление нагнетания и преждевременное завершение воздействия.
С другой стороны, гелеобразная текучая среда, которая разрушается слишком медленно, может вызвать медленное извлечение текучей среды разрыва из образовавшейся трещины, сопровождаемое задержкой в возобновлении добычи пластовых текучих сред и резким ухудшением предполагаемого объема добычи углеводорода. Могут возникнуть дополнительные проблемы, такие как тенденция расклинивающего наполнителя вытесняться из разлома, что сопровождается по меньшей мере частичной закупоркой и снижением эффективности операции разрыва пласта. В некоторых вариантах осуществления изобретения гель разрыва должен начинать разрушаться, когда завершаются операции закачивания. Для практических целей в некоторых вариантах осуществления изобретения гель должен быть полностью разрушен в пределах приблизительно 24 часов после завершения процесса разрыва пласта. Гели, используемые в этой связи, включают те, которые раскрыты в патентах США № 3960736; 5224546; 6756345 и 6793018, введенные в настоящий документ в порядке ссылки.
Подходящие растворители для использования в настоящем изобретении включают, без ограничения объема притязаний, воду. Растворителем может быть водный раствор хлорида калия.
Подходящие гидратируемые полимеры, которые могут быть использованы в вариантах осуществления изобретения, включают любой из гидратируемых полисахаридов, который способен образовывать гель в присутствии структурирующего агента. Например, подходящие гидратируемые полисахариды включают, но не ограничиваются ими, галактоманновые смолы, глюкоманновые смолы, гуары, дериватизированные гуары и производные целлюлозы. Конкретными примерами являются гуаровая смола, производные гуаровой смолы, смола из плодов рожкового дерева, смола караи, карбоксиметилцеллюлоза, карбоксиметилгидроксиэтилцеллюлоза и гидроксиэтилцеллюлоза. В некоторых вариантах осуществления изобретения гелеобразующие агенты включают, но не ограничиваются ими, гуаровые смолы, гидроксипропилгуар, карбоксиметилгидроксипропилгуар, карбоксиметилгуар и карбоксиметилгидроксиэтилцеллюлозу. Подходящие гидратируемые полимеры могут также включать синтетические полимеры, такие как поливиниловый спирт, полиакриламиды, поли-2-амино-2-метилпропансульфоновая кислота и различные другие синтетические полимеры и сополимеры. Другие подходящие полимеры известны специалистам в данной области.
Гидратируемый полимер может содержаться в текучей среде в концентрационном интервале от приблизительно 0,10% до приблизительно 5,0% по массе водной текучей среды. В некоторых вариантах осуществления изобретения интервал для гидратируемого полимера составляет от приблизительно 0,20% до приблизительно 0,80% по массе.
Подходящим структурирующим агентом может быть любое соединение, которое увеличивает вязкость текучей среды за счет химического структурирования, физического структурирования или любого другого механизма. Например, гелеобразование гидратируемого полимера может быть достигнуто структурированием полимера ионами металлов, включающими соединения бора в комбинации с соединениями, содержащими цирконий и титан. Количество используемого структурирующего агента также зависит от условий в скважине и типа проводимого воздействия, но обычно лежит в интервале от приблизительно 10 млн.ч. до приблизительно 1000 млн.ч. иона металла структурирующего агента в гидратируемой полимерной текучей среде. В некоторых областях применения реакция структурирующего агента может быть замедлена, так что образования вязкого геля не происходит до желательного момента времени.
Борсодержащая составляющая может быть выбрана из группы, состоящей из борной кислоты, тетрабората натрия и их смесей. Они рассмотрены в патенте США № 4514309, руды на основе боратов, такие как улексит и колеманит. В некоторых вариантах осуществления изобретения композиция текучей среды для воздействия на скважину может дополнительно включать расклинивающий наполнитель.
«Преждевременное разрушение», как использовано в настоящем описании, относится к явлению, при котором вязкость геля падает до нежелательного уровня до того как вся текучая среда введена в пласт, который подвергается разрыву. Таким образом, в некоторых вариантах осуществления изобретения вязкость геля должна оставаться в интервале от приблизительно 50% до приблизительно 75% от начальной вязкости геля в течение, по меньшей мере, двух часов воздействия ожидаемой рабочей температуры. В некоторых вариантах осуществления изобретения текучая среда должна иметь вязкость выше 100 сантипуаз при 100 сек-1 при закачивании в нефтеносный слой, измеренную на вискозиметре Фанна (Fann) 50C в лаборатории.
«Полное разрушение», как использовано в настоящем описании, относится к явлению, при котором вязкость геля снижается до такого уровня, что гель может быть вымыт из пласта протекающими пластовыми текучими средами, или что он может быть извлечен операцией откачивания. В лабораторных условиях полностью разрушенным неструктурированным гелем является гель, чья вязкость составляет приблизительно 10 сП или меньше, измеренная на вискозиметре Фанна Model 35, имеющем ротор R1B1 и узел подвески, вращающийся со скоростью 300 об/мин.
Величина рН водной текучей среды, которая содержит гидратируемый полимер, может быть отрегулирована при необходимости так, чтобы придать ему совместимость со структурирующим агентом. В некоторых вариантах осуществления изобретения материал регулирования рН добавляют в водную текучую среду после добавления полимера к водной текучей среде. Типичными материалами для регулирования рН являются традиционно используемые кислоты, кислотные буферы и смеси кислот и оснований. Например, бикарбонат натрия, карбонат калия, гидроксид натрия, гидроксид калия и карбонат натрия являются типичными агентами регулирования рН. Приемлемые величины рН для текучей среды могут лежать в интервале от нейтральных до щелочных, т.е. между приблизительно 5 и приблизительно 14. В некоторых вариантах осуществления изобретения рН поддерживают в нейтральном или щелочном диапазоне, т.е. между приблизительно 7 и приблизительно 14. В другом варианте осуществления изобретения рН лежит между приблизительно 8 и приблизительно 12.
Термин «вызывающий разрушение агент» или «разрушающий агент» относится к любому химическому соединению, которое способно снижать вязкость гелеобразной текучей среды. Как рассмотрено выше, после образования текучей среды разрыва и нагнетания ее в подземный пласт обычно желательно превратить высоковязкий гель в текучую среду более низкой вязкости. Это позволяет текучей среде легко и эффективно выходить из пласта и позволяет желательному материалу, такому как нефть или газ, затекать в ствол скважины. Данное снижение вязкости воздействующей текучей среды обычно называют «разрушением». Соответственно, химические соединения, используемые для снижения вязкости текучей среды, называются вызывающими разрушение агентами или разрушающими агентами.
Существуют различные методы для разрушения текучей среды разрыва или воздействующей текучей среды. Обычно текучие среды разрушаются после какого-то промежутка времени и/или длительного воздействия высоких температур. Однако желательно иметь возможность прогнозировать и регулировать разрушение в относительно узких пределах. Слабые окислители используются в качестве разрушающих агентов, когда текучую среду используют при относительно высокой температуре пласта. Хотя температуры пласта 300°F (149°C) или выше будут, как правило, вызывать относительно быстрое разрушение текучей среды без использования окислителя.
Обычно температура и рН текучей среды разрыва определяют скорость гидролиза сложного эфира. Для операций в забое скважины трудно регулировать или изменять статическую температуру в забое скважины. рН текучей среды разрыва обычно доводят до уровня, обеспечивающего необходимые эксплуатационные свойства текучей среды в ходе операции образования трещин. Поэтому скорость гидролиза сложного эфира не может быть легко изменена путем изменения BHST или рН текучей среды разрыва. Однако скорость гидролиза может контролироваться количеством сложного эфира, использованного в текучей среде разрыва. Для высокотемпературных областей применения гидролиз сложного эфира может быть замедлен или задержан путем растворения сложного эфира в углеводородном растворителе. Более того, время задержки можно регулировать путем подбора сложных эфиров, которые обеспечивают большую или меньшую растворимость в воде. Например, для низкотемпературных областей применения рекомендуются поликарбоновые сложные эфиры, полученные из низкомолекулярных спиртов, таких как метанол или этанол. Интервал температур применения данных сложных эфиров может составлять от приблизительно 100°F до приблизительно 260°F (от приблизительно 37,7°С до приблизительно 126,6°С). В других вариантах осуществления изобретения для высокотемпературных областей применения или более длительных времен закачивания должны быть использованы сложные эфиры, полученные из высокомолекулярных спиртов. Высокомолекулярные спирты включают, но не ограничиваются ими, C3-C6 спирты, например н-пропанол, гексанол и циклогексанол.
Расклинивающие агенты или расклинивающие наполнители обычно добавляют к текучей среде разрыва перед добавлением структурирующего агента. Однако расклинивающие наполнители могут быть введены таким образом, который обеспечивает достижение желательного результата. В вариантах осуществления настоящего изобретения может быть использован любой расклинивающий наполнитель. Примеры подходящих расклинивающих наполнителей включают, но не ограничиваются ими, кварцевый песок, стеклянные и керамические шарики, скорлупу грецкого ореха, алюминиевые таблетки, гранулы найлона и т.п. Расклинивающие наполнители обычно используются в концентрациях между приблизительно 1 и 8 фунтов на галлон текучей среды разрыва, хотя при желании могут быть использованы также и более высокие или низкие концентрации. Текучая среда разрыва также может содержать другие присадки, такие как поверхностно-активные вещества, ингибиторы коррозии, совместные растворители, стабилизаторы, парафиновые ингибиторы, метки для мониторинга обратного потока текучей среды и т.д.
Композиция текучей среды воздействия на скважину согласно вариантам осуществления настоящего изобретения имеет много областей применения. Например, она может быть использована при гидравлическом разрыве, в операциях гравийного наполнения, в образовании водного барьера, для установки временных пробок в целях изоляции ствола скважины и/или регулирования поглощения бурового раствора и в других операциях заканчивания скважины. Одной из областей применения композиции текучей среды является использование ее в качестве текучей среды гидравлического разрыва. Соответственно, варианты осуществления настоящего изобретения также относятся к способу воздействия на подземный пласт. Способ включает приготовление текучей среды гидравлического разрыва, включающего водную текучую среду, гидратируемый полимер, структурирующий агент, неорганический вызывающий разрушение агент и сложноэфирное соединение, и нагнетание текучей среды гидравлического разрыва в ствол скважины с осуществлением контакта, по меньшей мере, части пласта с текучей средой гидравлического разрыва под достаточным давлением для образования трещин в горной породе. Первоначально вязкость текучей среды гидравлического разрыва должна поддерживаться выше, по меньшей мере, 300 сП при 100 сек-1 в ходе закачивания, а затем должна быть снижена менее чем до 100 сП при 100 сек-1. После того как вязкость текучей среды гидравлического разрыва снизится до приемлемого уровня, по меньшей мере, часть текучей среды гидравлического разрыва удаляют из пласта. В ходе процесса гидравлического разрыва расклинивающий наполнитель может быть закачан в пласт одновременно с текучей средой гидравлического разрыва. В некоторых вариантах осуществления изобретения текучая среда гидравлического разрыва имеет рН порядка или выше приблизительно 7. В некоторых вариантах осуществления изобретения текучая среда гидравлического разрыва имеет рН в интервале от приблизительно 8 до приблизительно 12.
Следует понимать, что вышерассмотренный способ является лишь одним из путей воплощения изобретения. Следующие патенты США раскрывают различные методы проведения гидравлического разрыва, которые могут быть применены в вариантах осуществления изобретения с модификациями или без них. Патенты США № 6169058; 6135205; 6123394; 6016871; 5755286; 5722490; 5711396; 5551516; 5497831; 5488083; 5482116; 5472049; 5411091; 5402846; 5392195; 5363919; 5228510; 5074359; 5024276; 5005645; 4938286; 4926940; 4892147; 4869322; 4852650; 4848468; 4846277; 4830106; 4817717; 4779680; 4479041; 4739834; 4724905; 4718490; 4714115; 4705113; 4660643; 4657081; 4623021; 4549608; 4541935; 4378845; 4067389; 4007792; 3965982 и 3933205.
Жидким носителем обычно может быть любой жидкий носитель, подходящий для использования в нефте- и газодобывающих скважинах. В некоторых вариантах осуществления изобретения жидким носителем является вода. Жидкий носитель может включать воду, может состоять по существу из воды или может состоять из воды. Вода обычно будет основным компонентом по массе текучей среды. Вода может быть питьевой или не питьевой. Вода может быть жесткой или может содержать другие материалы, типичные для источников воды, находящихся в или вблизи нефтяных месторождений. Например, можно использовать свежую воду, солевой раствор или даже воду, к которой добавлена какая-либо соль, например, соль щелочного металла или щелочноземельного металла (NaCO3), NaCl, KCl и т.п.). В некоторых вариантах осуществления изобретения жидкий носитель используется в количестве, по меньшей мере, приблизительно 80% по массе. Конкретные примеры количества жидкого носителя включают 80%, 85%, 90% и 95% по массе.
Экспериментальная часть настоящего изобретения
Пример 1
Данный пример иллюстрирует реологию вызывающей разрушение композиции настоящего изобретения, использованной с текучей средой гидравлического разрыва боратного структурирования при 180°F.
Текучая среда гидравлического разрыва включает вызывающую разрушение композицию, включающую 12 галл./тыс.галл. WBK-1451, окислительного агента, вызывающий его разрушение, включающего 10% м/м раствор хлорида натрия, доступный от Clearwater International, LLC of Elmendorf, TX, и 2 галл./тыс.галл. WBK-1461, смеси диметилглутариата, диметилсукцината и диметиладипата, доступной от Clearwater International, LLC of Elmendorf, TX, и загущающую композицию, включающую 1 галл./тыс.галл. WXL-1011, структурирующего агента, включающего смесь колематита и улексита, доступного от Clearwater International, LLC of Elmendorf, TX, и 0,9 галл./тыс.галл. WXL-1051, структурирующего агента, включающего раствор боракса, доступного от Clearwater International, LLC of Elmendorf, TX, и 2 галл./тыс.галл. WGS-160L, стабилизатора геля, доступного от Clearwater International, LLC of Elmendorf, TX.
Пример 2
Данный пример иллюстрирует реологию вызывающей разрушение композиции настоящего изобретения, использованной с текучей средой гидравлического разрыва боратного структурирования при 200°F.
Текучая среда гидравлического разрыва включает вызывающую разрушение композицию, включающую 12 галл./тыс.галл. WBK-1451, окислительного агента, вызывающего разрушение, включающего 10% м/м раствор хлорида натрия, доступного от Clearwater International, LLC of Elmendorf, TX, и 14 галл./тыс.галл. WBK-1461, смеси диметилглутарата, диметилсукцината и диметиладипата, доступной от Clearwater International, LLC of Elmendorf, TX, и загущающую композицию, включающую 1 галл./тыс.галл. WXL-1011, структурирующего агента, включающего смесь колематита и улексита, доступную от Clearwater International, LLC of Elmendorf, TX, и 0,9 галл./тыс.галл. WXL-1051, структурирующего агента, включающего раствор боракса, доступного от Clearwater International, LLC of Elmendorf, TX, и 3 галл./тыс.галл. WGS-160L, стабилизатора геля, доступного от Clearwater International, LLC of Elmendorf, TX.
Пример 3
Данный пример иллюстрирует реологию разрушающий композиции настоящего изобретения, использованной с текучей средой гидравлического разрыва боратного структурирования при 220°F.
Текучая среда гидравлического разрыва включает вызывающую разрушение композицию, включающую 12 галл./тыс.галл. WBK-1451, окислительного агента, вызывающего разрушение, включающего 10% м/м раствор хлорида натрия, доступного от Clearwater International, LLC of Elmendorf, TX, и 1 галл./тыс.галл. WBK-1461, смеси диметилглутарата, диметилсукцината и диметиладипата, доступной от Clearwater International, LLC of Elmendorf, TX и загущающую композицию, включающую 1 галл./тыс.галл. WXL-1011, структурирующего агента, включающего смесь колематита и улексита, доступную от Clearwater International, LLC of Elmendorf, TX, и 0,9 галл./тыс.галл. WXL-1051, структурирующего агента, включающего раствор боракса, доступного от Clearwater International, LLC of Elmendorf, TX, и 3 галл./тыс.галл. WGS-160L, стабилизатора геля, включающего 85 масс.% раствора тиосульфата, доступного от Clearwater International, LLC of Elmendorf, TX.
Все ссылки, цитированные в настоящем описании, введены в него в порядке ссылки. Хотя изобретение раскрыто с ссылкой на варианты его осуществления, при знакомстве с настоящим описанием любой специалист может понять изменения и модификации, которые могут быть сделаны и которые не отклоняются от объема притязаний и существа изобретения, как рассмотрено выше и в прилагаемой формуле изобретения ниже по тексту.

Claims (22)

1. Разрушающая композиция текучей среды гидравлического разрыва боратного структурирования, содержащая окислительный компонент, включающий в себя водный раствор, по меньшей мере, одного хлорита щелочного металла в отсутствие или в присутствии окислительной добавки и сложноэфирный компонент, включающий в себя, по меньшей мере, один сложный эфир карбоновой кислоты, при этом карбоновая кислота имеет от 2 до 20 атомов углерода, а сложноэфирной группой является карбильная группа, имеющая от 1 до 10 атомов углерода, при этом, по меньшей мере, один атом углерода может быть замещен атомом кислорода, и отношение окислительного компонента к сложноэфирному компоненту составляет от около 4:1 до около 20:1.
2. Композиция по п.1, в которой указанный водный раствор включает в себя, по меньшей мере, один хлорит щелочного металла в количестве от около 0,5 мас.% до около 20 мас.%.
3. Композиция по п.1, в которой указанный водный раствор включает в себя, по меньшей мере, один хлорит щелочного металла в количестве от около 5 мас.% до около 10 мас.%.
4. Композиция по п.1, в которой хлорит щелочного металла включает в себя хлорит лития, хлорит натрия, хлорит калия, хлорит рубидия, хлорит цезия.
5. Композиция по п.2, в которой окислительный компонент включает в себя водный раствор, содержащий хлорит натрия в количестве от около 5 мас.% и до около 10 мас.%.
6. Композиция по п.1, в которой окислительная добавка выбрана из группы, состоящей из хлората щелочного металла, хлорида щелочного металла и их смесей или комбинаций, при этом щелочной металл включает в себя литий, натрий, калий, рубидий и/или цезий.
7. Композиция по п.1, в которой окислительная добавка выбрана из группы, состоящей из хлората натрия, хлората калия, хлорида натрия, хлорида калия и их смесей или комбинаций.
8. Композиция по п.7, в которой добавка содержится в количестве от около 0,5 мас.% до около 15 мас.%.
9. Композиция по п.1, в которой карбоновая кислота включает в себя линейную или разветвленную дикарбоновую кислоту.
10. Композиция по п.9, в которой дикарбоновые кислоты являются линейными дикарбоновыми кислотами, содержащими от 3 до 20 атомов углерода.
11. Композиция по п.9, в которой дикарбоновая кислота является линейной дикарбоновой кислотой, содержащей от 4 до 10 атомов углерода.
12. Композиция по п.1, в которой сложноэфирной группой является карбильная группа, содержащая от 1 до 5 атомов углерода.
13. Композиция по п.1, в которой сложноэфирный компонент включает в себя дикарбиловый эфир дикарбоновой кислоты или смесь сложных дикарбиловых эфиров дикарбоновых кислот.
14. Композиция по п.1, в которой сложноэфирный компонент включает в себя сложный диалкиловый эфир дикарбоновой кислоты или смесь сложных диалкиловых эфиров дикарбоновых кислот, при этом дикарбоновые кислоты имеют от 3 до 8 атомов углерода и алкильные группы имеют от 1 до 5 атомов углерода.
15. Композиция по п.1, в которой сложноэфирный компонент включает в себя смесь сложных диалкиловых эфиров дикарбоновых кислот, при этом дикарбоновые кислоты имеют от 4 до 6 атомов углерода и алкильная группы имеет от 1 до 2 атомов углерода.
16. Композиция текучей среды разрыва, содержащая текучую среду разрыва боратного структурирования, включающую в себя структурируемый гель, боратный структурирующий агент и эффективное количество разрушающей композиции, которая содержит окислительный компонент, включающий в себя водный раствор, по меньшей мере, одного хлорита щелочного металла в отсутствие или в присутствии окислительной добавки, и сложноэфирный компонент, включающий в себя, по меньшей мере, один сложный эфир карбоновой кислоты, при этом карбоновая кислота имеет от 2 до 20 атомов углерода, сложноэфирная группа является карбильной группой, содержащей от 1 до 10 атомов углерода, и указанное эффективное количество составляет около 1 галл./тыс. галл. до около 20 галл./тыс. галл. окислительного компонента и от около 0,1 галл./тыс. галл. до около 5 галл./тыс. галл. сложноэфирного компонента.
17. Композиция по п.16, в которой указанное эффективное количество составляет от около 1 галл./тыс. галл. до около 18 галл./тыс. галл. окислительного компонента и от около 0,1 галл./тыс. галл. до около 5 галл./тыс. галл. сложноэфирного компонента.
18. Композиция по п.16, в которой указанное эффективное количество составляет от около 4 галл./тыс. галл. до около 16 галл./тыс. галл. окислительного компонента и от около 0,5 галл./тыс. галл. до около 4 галл./тыс. галл. сложноэфирного компонента.
19. Композиция по п.16, в которой указанное эффективное количество составляет от около 8 до около 14 галл./тыс. галл. окислительного компонента и от около 0,5 галл./тыс. галл. до около 3 галл./тыс. галл. сложноэфирного компонента.
20. Композиция по п.16, в которой эффективное количество составляет от около 8 до около 14 галл./тыс. галл. окислительного компонента и от около 0,5 галл./тыс. галл. до около 2 галл./тыс. галл. сложноэфирного компонента.
21. Композиция по п.16, в которой относительные количества окислительного компонента и сложноэфирного компонента подобраны так, что профиль разрушения текучей среды, по существу, является одинаковым при температурном интервале от около 100°F до около 260°F, при этом относительное количество сложноэфирного компонента снижается с повышением температуры.
22. Способ воздействия на пласт, содержащий закачивание в пласт в условиях разрыва текучей среды разрыва, содержащей структурируемый гель, боратный структурирующий агент и эффективное количество разрушающей композиции, содержащей окислительный компонент, включающий в себя водный раствор, по меньшей мере, одного хлорита щелочного металла в отсутствие или в присутствии окислительной добавки, и сложноэфирный компонент, включающий в себя, по меньшей мере, один сложный эфир карбоновой кислоты, при этом карбоновая кислота имеет от 2 до 20 атомов углерода, а сложноэфирной группой является карбильная группа, имеющая от 1 до 10 атомов углерода, при этом, по меньшей мере, один атом углерода может быть замещен атомом кислорода, и отношение окислительного компонента к сложноэфирному компоненту составляет от около 4:1 до около 20% 1, при этом разрушающая композиция снижает вязкость текучей среды в течение заданного промежутка времени, образуя меньше остатков и снижая восстановление при снижении температуры и/или величины рН, причем указанное эффективное количество составляет от около 1 галл./тыс. галл. до около 20 галл./тыс. галл. окислительного компонента и от около 0,1 галл./тыс. галл. до около 5 галл./тыс. галл. сложноэфирного компонента.
RU2011114109/03A 2010-04-12 2011-04-11 Композиции и способ разрушения текучих сред гидравлического разрыва RU2471847C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/758,466 US8835364B2 (en) 2010-04-12 2010-04-12 Compositions and method for breaking hydraulic fracturing fluids
US12/758,466 2010-04-12

Publications (2)

Publication Number Publication Date
RU2011114109A RU2011114109A (ru) 2012-10-20
RU2471847C2 true RU2471847C2 (ru) 2013-01-10

Family

ID=44227975

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011114109/03A RU2471847C2 (ru) 2010-04-12 2011-04-11 Композиции и способ разрушения текучих сред гидравлического разрыва

Country Status (9)

Country Link
US (2) US8835364B2 (ru)
EP (1) EP2374861B1 (ru)
AR (1) AR080885A1 (ru)
AU (1) AU2011201574B2 (ru)
BR (1) BRPI1101503B1 (ru)
CA (1) CA2737191C (ru)
MX (1) MX2011003853A (ru)
PL (1) PL2374861T3 (ru)
RU (1) RU2471847C2 (ru)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563481B2 (en) 2005-02-25 2013-10-22 Clearwater International Llc Corrosion inhibitor systems for low, moderate and high temperature fluids and methods for making and using same
US8871694B2 (en) 2005-12-09 2014-10-28 Sarkis R. Kakadjian Use of zeta potential modifiers to decrease the residual oil saturation
US8084401B2 (en) 2006-01-25 2011-12-27 Clearwater International, Llc Non-volatile phosphorus hydrocarbon gelling agent
US8728989B2 (en) 2007-06-19 2014-05-20 Clearwater International Oil based concentrated slurries and methods for making and using same
US7956217B2 (en) 2008-07-21 2011-06-07 Clearwater International, Llc Hydrolyzed nitrilotriacetonitrile compositions, nitrilotriacetonitrile hydrolysis formulations and methods for making and using same
US9909404B2 (en) 2008-10-08 2018-03-06 The Lubrizol Corporation Method to consolidate solid materials during subterranean treatment operations
US9945220B2 (en) 2008-10-08 2018-04-17 The Lubrizol Corporation Methods and system for creating high conductivity fractures
US8835364B2 (en) 2010-04-12 2014-09-16 Clearwater International, Llc Compositions and method for breaking hydraulic fracturing fluids
US8851174B2 (en) 2010-05-20 2014-10-07 Clearwater International Llc Foam resin sealant for zonal isolation and methods for making and using same
US8899328B2 (en) 2010-05-20 2014-12-02 Clearwater International Llc Resin sealant for zonal isolation and methods for making and using same
US8841240B2 (en) 2011-03-21 2014-09-23 Clearwater International, Llc Enhancing drag reduction properties of slick water systems
US9022120B2 (en) 2011-04-26 2015-05-05 Lubrizol Oilfield Solutions, LLC Dry polymer mixing process for forming gelled fluids
US9464504B2 (en) 2011-05-06 2016-10-11 Lubrizol Oilfield Solutions, Inc. Enhancing delaying in situ gelation of water shutoff systems
US8944164B2 (en) 2011-09-28 2015-02-03 Clearwater International Llc Aggregating reagents and methods for making and using same
US8932996B2 (en) 2012-01-11 2015-01-13 Clearwater International L.L.C. Gas hydrate inhibitors and methods for making and using same
US9090814B2 (en) * 2012-08-09 2015-07-28 Baker Hughes Incorporated Well treatment fluids containing an ylide or a vitamin B and methods of using the same
US10604693B2 (en) 2012-09-25 2020-03-31 Weatherford Technology Holdings, Llc High water and brine swell elastomeric compositions and method for making and using same
EP2961923A4 (en) * 2013-02-27 2016-10-19 Arkema Inc Promoters for peroxides in aqueous treatment fluids
US11254856B2 (en) * 2013-03-14 2022-02-22 Flotek Chemistry, Llc Methods and compositions for use in oil and/or gas wells
US9994761B2 (en) 2013-09-04 2018-06-12 Halliburton Energy Services, Inc. Hydrolyzable compounds for treatment of a subterranean formation and methods of using the same
US10669468B2 (en) 2013-10-08 2020-06-02 Weatherford Technology Holdings, Llc Reusable high performance water based drilling fluids
US10202828B2 (en) 2014-04-21 2019-02-12 Weatherford Technology Holdings, Llc Self-degradable hydraulic diversion systems and methods for making and using same
WO2016043977A1 (en) 2014-09-19 2016-03-24 Arkema Inc. Compositions and methods for breaking hydraulic fracturing fluids
WO2016074949A1 (en) * 2014-11-12 2016-05-19 Tougas Oilfield Solutions Gmbh Method for reducing the viscosity of viscosified fluids for applications in natural gas and oil fields
US10001769B2 (en) 2014-11-18 2018-06-19 Weatherford Technology Holdings, Llc Systems and methods for optimizing formation fracturing operations
EP3277772A4 (en) 2015-03-25 2018-12-05 Arkema Inc. Colored organic peroxide compositions and methods for breaking hydraulic fracturing fluids
US10358559B2 (en) 2015-03-25 2019-07-23 Arkema Inc. Colored organic peroxide compositions
AU2016301235B2 (en) 2015-08-03 2020-08-20 Championx Usa Inc. Compositions and methods for delayed crosslinking in hydraulic fracturing fluids
AU2017206066B2 (en) 2016-01-07 2020-04-02 M-I L.L.C. Methods of logging
CA3030763A1 (en) 2016-07-15 2018-01-18 Ecolab Usa Inc. Compositions and methods for delayed crosslinking in hydraulic fracturing fluids
CN109825274B (zh) * 2017-11-23 2021-04-13 中国石油化工股份有限公司 水基压裂液组合物和水基压裂液
CN109825275B (zh) * 2017-11-23 2021-04-13 中国石油化工股份有限公司 水基压裂液组合物和水基压裂液
US11235975B2 (en) 2019-05-06 2022-02-01 Trudx, Inc. Stabilized sodium chlorite solution and a method of remediating an aqueous system using the solution
US11999633B2 (en) 2020-04-21 2024-06-04 Truox Inc. Method and system for the remediation of aquatic facilities
US12037263B2 (en) 2020-04-21 2024-07-16 Truox, Inc. Method and system for the remediation of aquatic facilities
CN112431570B (zh) * 2020-11-06 2023-06-30 中国石油天然气股份有限公司 一种用于暂堵酸压的暂堵剂的试验方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5067566A (en) * 1991-01-14 1991-11-26 Bj Services Company Low temperature degradation of galactomannans
US5413178A (en) * 1994-04-12 1995-05-09 Halliburton Company Method for breaking stabilized viscosified fluids
RU2122633C1 (ru) * 1993-04-29 1998-11-27 Клинсорб Лимитед Способ кислотной обработки подземных пластов
WO2001051767A2 (en) * 2000-01-14 2001-07-19 Schlumberger Technology Corporation Addition of solids to generate viscosity downhole
RU2173772C2 (ru) * 1999-04-21 2001-09-20 Магадова Любовь Абдулаевна Состав полисахаридного геля для гидравлического разрыва пласта
RU2338872C2 (ru) * 2003-05-29 2008-11-20 Хэллибертон Энерджи Сервисиз, Инк. Способы и составы для разрушения загущенных жидкостей
RU2344283C2 (ru) * 2003-07-07 2009-01-20 Хэллибертон Энерджи Сервисиз, Инк. Способы и составы для увеличения прочности уплотнения расклинивающего наполнителя в подземных разрывах
EP2113547A1 (en) * 2007-05-22 2009-11-04 Halliburton Energy Services, Inc. Viscosified fluids for remediating subterranean damage background

Family Cites Families (222)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2196042A (en) 1938-02-01 1940-04-02 Pyrene Minimax Corp Fire extinguishing foam stabilizer
US2390153A (en) 1940-06-26 1945-12-04 Kern Rudolf Condensation products and process of producing same
NL190730A (ru) 1953-10-09
US2805958A (en) 1955-03-08 1957-09-10 Gen Electric Preparation of hydrophobic silicas
IT649855A (ru) 1960-05-05
US3059909A (en) 1960-12-09 1962-10-23 Chrysler Corp Thermostatic fuel mixture control
US3163219A (en) 1961-06-22 1964-12-29 Atlantic Refining Co Borate-gum gel breakers
US3301848A (en) 1962-10-30 1967-01-31 Pillsbury Co Polysaccharides and methods for production thereof
US3301723A (en) 1964-02-06 1967-01-31 Du Pont Gelled compositions containing galactomannan gums
GB1073338A (en) 1965-07-21 1967-06-21 British Titan Products Mixed coating process
US3303896A (en) 1965-08-17 1967-02-14 Procter & Gamble Process for drilling boreholes in the earth utilizing amine oxide surfactant foaming agent
US3565176A (en) 1969-09-08 1971-02-23 Clifford V Wittenwyler Consolidation of earth formation using epoxy-modified resins
US3856921A (en) 1970-07-22 1974-12-24 Exxon Research Engineering Co Promoting scrubbing of acid gases
FR2224466B1 (ru) 1973-04-04 1978-12-01 Basf Ag
US3933205A (en) 1973-10-09 1976-01-20 Othar Meade Kiel Hydraulic fracturing process using reverse flow
AR207130A1 (es) 1973-12-12 1976-09-15 Dow Chemical Co Un metodo de reducir la viscosidad de un liquido organico
US3888312A (en) 1974-04-29 1975-06-10 Halliburton Co Method and compositions for fracturing well formations
US3960736A (en) 1974-06-03 1976-06-01 The Dow Chemical Company Self-breaking viscous aqueous solutions and the use thereof in fracturing subterranean formations
US3937283A (en) 1974-10-17 1976-02-10 The Dow Chemical Company Formation fracturing with stable foam
US3965982A (en) 1975-03-31 1976-06-29 Mobil Oil Corporation Hydraulic fracturing method for creating horizontal fractures
AU506199B2 (en) 1975-06-26 1979-12-20 Exxon Research And Engineering Company Absorbtion of co2 from gaseous feeds
US4007792A (en) 1976-02-02 1977-02-15 Phillips Petroleum Company Hydraulic fracturing method using viscosified surfactant solutions
US4067389A (en) 1976-07-16 1978-01-10 Mobil Oil Corporation Hydraulic fracturing technique
US4113631A (en) 1976-08-10 1978-09-12 The Dow Chemical Company Foaming and silt suspending agent
FR2439230A1 (fr) 1978-10-17 1980-05-16 Seppic Sa Utilisation d'amines grasses pour ameliorer les proprietes des mousses, et les agents moussants ameliores contenant ces amines
NO148995C (no) 1979-08-16 1986-06-12 Elkem As Fremgangsmaate for fremstilling av sementslurry med lav egenvekt for bruk ved sementering av olje- og gassbroenner.
US4725372A (en) 1980-10-27 1988-02-16 The Dow Chemical Company Aqueous wellbore service fluids
US4378845A (en) 1980-12-30 1983-04-05 Mobil Oil Corporation Sand control method employing special hydraulic fracturing technique
US4683068A (en) 1981-10-29 1987-07-28 Dowell Schlumberger Incorporated Fracturing of subterranean formations
US4561985A (en) 1982-06-28 1985-12-31 Union Carbide Corporation Hec-bentonite compatible blends
US4705113A (en) 1982-09-28 1987-11-10 Atlantic Richfield Company Method of cold water enhanced hydraulic fracturing
US4541935A (en) 1982-11-08 1985-09-17 The Dow Chemical Company Hydraulic fracturing process and compositions
US4479041A (en) 1982-11-22 1984-10-23 General Electric Company Pneumatic ball contact switch
US4514309A (en) 1982-12-27 1985-04-30 Hughes Tool Company Cross-linking system for water based well fracturing fluids
US4748011A (en) 1983-07-13 1988-05-31 Baize Thomas H Method and apparatus for sweetening natural gas
US4506734A (en) 1983-09-07 1985-03-26 The Standard Oil Company Fracturing fluid breaker system which is activated by fracture closure
US4695389A (en) 1984-03-16 1987-09-22 Dowell Schlumberger Incorporated Aqueous gelling and/or foaming agents for aqueous acids and methods of using the same
US4549608A (en) 1984-07-12 1985-10-29 Mobil Oil Corporation Hydraulic fracturing method employing special sand control technique
US4623021A (en) 1984-11-14 1986-11-18 Mobil Oil Corporation Hydraulic fracturing method employing a fines control technique
US4686052A (en) 1985-07-08 1987-08-11 Dowell Schlumberger Incorporated Stabilized fracture fluid and crosslinker therefor
US4654266A (en) 1985-12-24 1987-03-31 Kachnik Joseph L Durable, high-strength proppant and method for forming same
US4660643A (en) 1986-02-13 1987-04-28 Atlantic Richfield Company Cold fluid hydraulic fracturing process for mineral bearing formations
US4657081A (en) 1986-02-19 1987-04-14 Dowell Schlumberger Incorporated Hydraulic fracturing method using delayed crosslinker composition
US4739834A (en) 1986-02-24 1988-04-26 Exxon Research And Engineering Company Controlled hydraulic fracturing via nonaqueous solutions containing low charge density polyampholytes
US4724905A (en) 1986-09-15 1988-02-16 Mobil Oil Corporation Sequential hydraulic fracturing
US6262125B1 (en) 1986-12-02 2001-07-17 University Of Florida Research Foundation, Inc. Sterically hindered tetraamines and method for their production
US4714115A (en) 1986-12-08 1987-12-22 Mobil Oil Corporation Hydraulic fracturing of a shallow subsurface formation
US4848468A (en) 1986-12-08 1989-07-18 Mobil Oil Corp. Enhanced hydraulic fracturing of a shallow subsurface formation
US4718490A (en) 1986-12-24 1988-01-12 Mobil Oil Corporation Creation of multiple sequential hydraulic fractures via hydraulic fracturing combined with controlled pulse fracturing
US4741401A (en) 1987-01-16 1988-05-03 The Dow Chemical Company Method for treating subterranean formations
US4779680A (en) 1987-05-13 1988-10-25 Marathon Oil Company Hydraulic fracturing process using a polymer gel
BR8702856A (pt) 1987-06-05 1988-12-20 Petroleo Brasileiro Sa Processo continuo de fraturamento hidraulico com espuma
US4795574A (en) 1987-11-13 1989-01-03 Nalco Chemical Company Low temperature breakers for gelled fracturing fluids
US4892147A (en) 1987-12-28 1990-01-09 Mobil Oil Corporation Hydraulic fracturing utilizing a refractory proppant
US4817717A (en) 1987-12-28 1989-04-04 Mobil Oil Corporation Hydraulic fracturing with a refractory proppant for sand control
US4852650A (en) 1987-12-28 1989-08-01 Mobil Oil Corporation Hydraulic fracturing with a refractory proppant combined with salinity control
US4830106A (en) 1987-12-29 1989-05-16 Mobil Oil Corporation Simultaneous hydraulic fracturing
US4926940A (en) 1988-09-06 1990-05-22 Mobil Oil Corporation Method for monitoring the hydraulic fracturing of a subsurface formation
US4869322A (en) 1988-10-07 1989-09-26 Mobil Oil Corporation Sequential hydraulic fracturing of a subsurface formation
US4978512B1 (en) 1988-12-23 1993-06-15 Composition and method for sweetening hydrocarbons
CA2007965C (en) 1989-02-13 1996-02-27 Jerry J. Weers Suppression of the evolution of hydrogen sulfide gases from petroleum residua
US5169411A (en) 1989-03-03 1992-12-08 Petrolite Corporation Suppression of the evolution of hydrogen sulfide gases from crude oil, petroleum residua and fuels
US4938286A (en) 1989-07-14 1990-07-03 Mobil Oil Corporation Method for formation stimulation in horizontal wellbores using hydraulic fracturing
JPH087313Y2 (ja) 1989-10-13 1996-03-04 三菱重工業株式会社 冷凍装置の制御装置
US5074359A (en) 1989-11-06 1991-12-24 Atlantic Richfield Company Method for hydraulic fracturing cased wellbores
US5024276A (en) 1989-11-28 1991-06-18 Shell Oil Company Hydraulic fracturing in subterranean formations
US5110486A (en) 1989-12-14 1992-05-05 Exxon Research And Engineering Company Breaker chemical encapsulated with a crosslinked elastomer coating
US5005645A (en) 1989-12-06 1991-04-09 Mobil Oil Corporation Method for enhancing heavy oil production using hydraulic fracturing
US5082579A (en) 1990-01-16 1992-01-21 Bj Services Company Method and composition for delaying the gellation of borated galactomannans
DE4027300A1 (de) 1990-08-29 1992-03-05 Linde Ag Verfahren zur selektiven entfernung anorganischer und/oder organischen schwefelverbindungen
US5106518A (en) 1990-11-09 1992-04-21 The Western Company Of North America Breaker system for high viscosity fluids and method of use
US5099923A (en) 1991-02-25 1992-03-31 Nalco Chemical Company Clay stabilizing method for oil and gas well treatment
US5224546A (en) 1991-03-18 1993-07-06 Smith William H Method of breaking metal-crosslinked polymers
CA2073806C (en) 1991-07-24 2003-09-23 S. Bruce Mcconnell Delayed borate crosslinking fracturing fluid
US5877127A (en) 1991-07-24 1999-03-02 Schlumberger Technology Corporation On-the-fly control of delayed borate-crosslinking of fracturing fluids
US5424284A (en) 1991-10-28 1995-06-13 M-I Drilling Fluids Company Drilling fluid additive and method for inhibiting hydration
US5908814A (en) 1991-10-28 1999-06-01 M-I L.L.C. Drilling fluid additive and method for inhibiting hydration
US5201370A (en) 1992-02-26 1993-04-13 Bj Services Company Enzyme breaker for galactomannan based fracturing fluid
US5259455A (en) 1992-05-18 1993-11-09 Nimerick Kenneth H Method of using borate crosslinked fracturing fluid having increased temperature range
US5228510A (en) 1992-05-20 1993-07-20 Mobil Oil Corporation Method for enhancement of sequential hydraulic fracturing using control pulse fracturing
US5624886A (en) 1992-07-29 1997-04-29 Bj Services Company Controlled degradation of polysaccharides
US5246073A (en) 1992-08-31 1993-09-21 Union Oil Company Of California High temperature stable gels
US5347004A (en) 1992-10-09 1994-09-13 Baker Hughes, Inc. Mixtures of hexahydrotriazines useful as H2 S scavengers
US5330005A (en) 1993-04-05 1994-07-19 Dowell Schlumberger Incorporated Control of particulate flowback in subterranean wells
CA2119316C (en) 1993-04-05 2006-01-03 Roger J. Card Control of particulate flowback in subterranean wells
CA2125513A1 (en) 1993-07-30 1995-01-31 Kishan Bhatia Method of treating sour gas and liquid hydrocarbon streams
US5402846A (en) 1993-11-15 1995-04-04 Mobil Oil Corporation Unique method of hydraulic fracturing
US5363919A (en) 1993-11-15 1994-11-15 Mobil Oil Corporation Simultaneous hydraulic fracturing using fluids with different densities
US5411091A (en) 1993-12-09 1995-05-02 Mobil Oil Corporation Use of thin liquid spacer volumes to enhance hydraulic fracturing
US5482116A (en) 1993-12-10 1996-01-09 Mobil Oil Corporation Wellbore guided hydraulic fracturing
US6001887A (en) 1993-12-17 1999-12-14 Th. Goldschmidt Ag Defoamer emulsion based on organofunctionally modified polysiloxanes
US5571315A (en) 1994-03-14 1996-11-05 Clearwater, Inc. Hydrocarbon gels useful in formation fracturing
US5488083A (en) 1994-03-16 1996-01-30 Benchmark Research And Technology, Inc. Method of gelling a guar or derivatized guar polymer solution utilized to perform a hydraulic fracturing operation
US5472049A (en) 1994-04-20 1995-12-05 Union Oil Company Of California Hydraulic fracturing of shallow wells
US5465792A (en) 1994-07-20 1995-11-14 Bj Services Company Method of controlling production of excess water in oil and gas wells
EP0770169B1 (en) 1994-08-05 1999-11-03 Bp Exploration Operating Company Limited Hydrate inhibition
US5688478A (en) 1994-08-24 1997-11-18 Crescent Holdings Limited Method for scavenging sulfides
US5980845A (en) 1994-08-24 1999-11-09 Cherry; Doyle Regeneration of hydrogen sulfide scavengers
US5462721A (en) 1994-08-24 1995-10-31 Crescent Holdings Limited Hydrogen sulfide scavenging process
US5539044A (en) 1994-09-02 1996-07-23 Conoco In. Slurry drag reducer
US5497831A (en) 1994-10-03 1996-03-12 Atlantic Richfield Company Hydraulic fracturing from deviated wells
DE4438930C1 (de) 1994-10-31 1995-10-26 Daimler Benz Ag Zahnstangenlenkung bzw. -steuerung mit Servomotor
JP3154631B2 (ja) 1994-11-28 2001-04-09 三井化学株式会社 メチレン架橋ポリフェニレンポリアミンの製造方法
US5551516A (en) 1995-02-17 1996-09-03 Dowell, A Division Of Schlumberger Technology Corporation Hydraulic fracturing process and compositions
US5635458A (en) 1995-03-01 1997-06-03 M-I Drilling Fluids, L.L.C. Water-based drilling fluids for reduction of water adsorption and hydration of argillaceous rocks
US6047772A (en) 1995-03-29 2000-04-11 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5833000A (en) 1995-03-29 1998-11-10 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5787986A (en) 1995-03-29 1998-08-04 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5775425A (en) 1995-03-29 1998-07-07 Halliburton Energy Services, Inc. Control of fine particulate flowback in subterranean wells
US5674377A (en) 1995-06-19 1997-10-07 Nalco/Exxon Energy Chemicals, L.P. Method of treating sour gas and liquid hydrocarbon
CA2231378C (en) 1995-09-11 2009-06-30 M-I L.L.C. Glycol based drilling fluid
US5744024A (en) 1995-10-12 1998-04-28 Nalco/Exxon Energy Chemicals, L.P. Method of treating sour gas and liquid hydrocarbon
US5807812A (en) 1995-10-26 1998-09-15 Clearwater, Inc. Controlled gel breaker
US5722490A (en) 1995-12-20 1998-03-03 Ely And Associates, Inc. Method of completing and hydraulic fracturing of a well
US5649596A (en) 1996-02-27 1997-07-22 Nalco/Exxon Energy Chemicals, L.P. Use of breaker chemicals in gelled hydrocarbons
US5669447A (en) 1996-04-01 1997-09-23 Halliburton Energy Services, Inc. Methods for breaking viscosified fluids
US5806597A (en) 1996-05-01 1998-09-15 Bj Services Company Stable breaker-crosslinker-polymer complex and method of use in completion and stimulation
JP3868027B2 (ja) 1996-06-12 2007-01-17 三井化学株式会社 トリアミノジフェニルメタン類を主要成分とするメチレン架橋ポリフェニレンポリアミンの製造方法
JP3696993B2 (ja) 1996-10-09 2005-09-21 石原産業株式会社 二酸化チタン顔料の製造方法
US5964295A (en) 1996-10-09 1999-10-12 Schlumberger Technology Corporation, Dowell Division Methods and compositions for testing subterranean formations
US6267938B1 (en) 1996-11-04 2001-07-31 Stanchem, Inc. Scavengers for use in reducing sulfide impurities
US6330916B1 (en) 1996-11-27 2001-12-18 Bj Services Company Formation treatment method using deformable particles
US6059034A (en) 1996-11-27 2000-05-09 Bj Services Company Formation treatment method using deformable particles
US6169058B1 (en) 1997-06-05 2001-01-02 Bj Services Company Compositions and methods for hydraulic fracturing
US6258859B1 (en) 1997-06-10 2001-07-10 Rhodia, Inc. Viscoelastic surfactant fluids and related methods of use
US5908073A (en) 1997-06-26 1999-06-01 Halliburton Energy Services, Inc. Preventing well fracture proppant flow-back
GB9714102D0 (en) 1997-07-04 1997-09-10 Ciba Geigy Ag Compounds
GB2330585B (en) 1997-10-16 2001-08-01 Nalco Exxon Energy Chem Lp Gelling agent for hydrocarbon liquid and method of use
US6016871A (en) 1997-10-31 2000-01-25 Burts, Jr.; Boyce D. Hydraulic fracturing additive, hydraulic fracturing treatment fluid made therefrom, and method of hydraulically fracturing a subterranean formation
US6035936A (en) 1997-11-06 2000-03-14 Whalen; Robert T. Viscoelastic surfactant fracturing fluids and a method for fracturing subterranean formations
AUPP209498A0 (en) 1998-03-02 1998-03-26 Commonwealth Scientific And Industrial Research Organisation Hydraulic fracturing of ore bodies
US6135205A (en) 1998-04-30 2000-10-24 Halliburton Energy Services, Inc. Apparatus for and method of hydraulic fracturing utilizing controlled azumith perforating
US6069118A (en) 1998-05-28 2000-05-30 Schlumberger Technology Corporation Enhancing fluid removal from fractures deliberately introduced into the subsurface
US6162766A (en) 1998-05-29 2000-12-19 3M Innovative Properties Company Encapsulated breakers, compositions and methods of use
US6004908A (en) 1998-11-25 1999-12-21 Clearwater, Inc. Rapid gel formation in hydrocarbon recovery
US6138760A (en) 1998-12-07 2000-10-31 Bj Services Company Pre-treatment methods for polymer-containing fluids
US6228812B1 (en) 1998-12-10 2001-05-08 Bj Services Company Compositions and methods for selective modification of subterranean formation permeability
US6283212B1 (en) 1999-04-23 2001-09-04 Schlumberger Technology Corporation Method and apparatus for deliberate fluid removal by capillary imbibition
US6133205A (en) 1999-09-08 2000-10-17 Nalco/Exxon Energy Chemical L.P. Method of reducing the concentration of metal soaps of partially esterified phosphates from hydrocarbon flowback fluids
US6875728B2 (en) 1999-12-29 2005-04-05 Bj Services Company Canada Method for fracturing subterranean formations
US6311773B1 (en) 2000-01-28 2001-11-06 Halliburton Energy Services, Inc. Resin composition and methods of consolidating particulate solids in wells with or without closure pressure
US6247543B1 (en) 2000-02-11 2001-06-19 M-I Llc Shale hydration inhibition agent and method of use
US6756345B2 (en) 2000-05-15 2004-06-29 Bj Services Company Well service composition and method
CA2432160C (en) 2001-01-09 2010-04-13 Bj Services Company Well treatment fluid compositions and methods for their use
US6528568B2 (en) 2001-02-23 2003-03-04 Millennium Inorganic Chemicals, Inc. Method for manufacturing high opacity, durable pigment
US8273693B2 (en) 2001-12-12 2012-09-25 Clearwater International Llc Polymeric gel system and methods for making and using same in hydrocarbon recovery
US6725931B2 (en) 2002-06-26 2004-04-27 Halliburton Energy Services, Inc. Methods of consolidating proppant and controlling fines in wells
EP2045439B1 (en) 2002-05-24 2010-07-21 3M Innovative Properties Company Use of surface-modified nanoparticles for oil recovery
US6832650B2 (en) 2002-09-11 2004-12-21 Halliburton Energy Services, Inc. Methods of reducing or preventing particulate flow-back in wells
US7017665B2 (en) 2003-08-26 2006-03-28 Halliburton Energy Services, Inc. Strengthening near well bore subterranean formations
US7204311B2 (en) 2003-08-27 2007-04-17 Halliburton Energy Services, Inc. Methods for controlling migration of particulates in a subterranean formation
US7140433B2 (en) 2003-12-12 2006-11-28 Clearwater International, Llc Diamine terminated primary amine-aldehyde sulfur converting compositions and methods for making and using same
US9018145B2 (en) 2003-12-23 2015-04-28 Lubrizol Oilfield Solutions, Inc. Foamer composition and methods for making and using same
JP3925932B2 (ja) 2004-01-08 2007-06-06 株式会社 東北テクノアーチ 有機修飾金属酸化物ナノ粒子の製造法
US7517447B2 (en) 2004-01-09 2009-04-14 Clearwater International, Llc Sterically hindered N-methylsecondary and tertiary amine sulfur scavengers and methods for making and using same
US7971659B2 (en) 2004-05-05 2011-07-05 Clearwater International, Llc Foamer/sulfur scavenger composition and methods for making and using same
US7595284B2 (en) 2004-06-07 2009-09-29 Crews James B Metal-mediated viscosity reduction of fluids gelled with viscoelastic surfactants
US7268100B2 (en) 2004-11-29 2007-09-11 Clearwater International, Llc Shale inhibition additive for oil/gas down hole fluids and methods for making and using same
US8563481B2 (en) 2005-02-25 2013-10-22 Clearwater International Llc Corrosion inhibitor systems for low, moderate and high temperature fluids and methods for making and using same
US7767628B2 (en) 2005-12-02 2010-08-03 Clearwater International, Llc Method for foaming a hydrocarbon drilling fluid and for producing light weight hydrocarbon fluids
US8871694B2 (en) 2005-12-09 2014-10-28 Sarkis R. Kakadjian Use of zeta potential modifiers to decrease the residual oil saturation
US8946130B2 (en) 2005-12-09 2015-02-03 Clearwater International Llc Methods for increase gas production and load recovery
US7350579B2 (en) 2005-12-09 2008-04-01 Clearwater International Llc Sand aggregating reagents, modified sands, and methods for making and using same
US7392847B2 (en) 2005-12-09 2008-07-01 Clearwater International, Llc Aggregating reagents, modified particulate metal-oxides, and methods for making and using same
US8950493B2 (en) 2005-12-09 2015-02-10 Weatherford Technology Holding LLC Method and system using zeta potential altering compositions as aggregating reagents for sand control
US8097567B2 (en) 2006-01-09 2012-01-17 Clearwater International, Llc Well drilling fluids having clay control properties
US8084401B2 (en) 2006-01-25 2011-12-27 Clearwater International, Llc Non-volatile phosphorus hydrocarbon gelling agent
US7712535B2 (en) * 2006-10-31 2010-05-11 Clearwater International, Llc Oxidative systems for breaking polymer viscosified fluids
CA2778843C (en) 2007-01-23 2014-03-25 Halliburton Energy Services, Inc. Compositions and methods for breaking a viscosity increasing polymer at very low temperature used in downhole well applications
US8172952B2 (en) 2007-02-21 2012-05-08 Clearwater International, Llc Reduction of hydrogen sulfide in water treatment systems or other systems that collect and transmit bi-phasic fluids
US7992653B2 (en) 2007-04-18 2011-08-09 Clearwater International Foamed fluid additive for underbalance drilling
US7565933B2 (en) 2007-04-18 2009-07-28 Clearwater International, LLC. Non-aqueous foam composition for gas lift injection and methods for making and using same
US8158562B2 (en) 2007-04-27 2012-04-17 Clearwater International, Llc Delayed hydrocarbon gel crosslinkers and methods for making and using same
US7942201B2 (en) 2007-05-11 2011-05-17 Clearwater International, Llc Apparatus, compositions, and methods of breaking fracturing fluids
US8034750B2 (en) 2007-05-14 2011-10-11 Clearwater International Llc Borozirconate systems in completion systems
US8728989B2 (en) 2007-06-19 2014-05-20 Clearwater International Oil based concentrated slurries and methods for making and using same
US8099997B2 (en) 2007-06-22 2012-01-24 Weatherford/Lamb, Inc. Potassium formate gel designed for the prevention of water ingress and dewatering of pipelines or flowlines
US8065905B2 (en) 2007-06-22 2011-11-29 Clearwater International, Llc Composition and method for pipeline conditioning and freezing point suppression
US8028755B2 (en) 2007-12-14 2011-10-04 Clearwater International Llc Quick lock wireline valve/blow-out preventor and methods for making and using same
US7989404B2 (en) 2008-02-11 2011-08-02 Clearwater International, Llc Compositions and methods for gas well treatment
US20090247430A1 (en) * 2008-03-28 2009-10-01 Diankui Fu Elongated particle breakers in low pH fracturing fluids
ITVA20080030A1 (it) 2008-05-21 2009-11-22 Lamberti Spa Additivi anti-aggreganti per fluidi di perforazione
US8141661B2 (en) 2008-07-02 2012-03-27 Clearwater International, Llc Enhanced oil-based foam drilling fluid compositions and method for making and using same
US7956217B2 (en) 2008-07-21 2011-06-07 Clearwater International, Llc Hydrolyzed nitrilotriacetonitrile compositions, nitrilotriacetonitrile hydrolysis formulations and methods for making and using same
US8287640B2 (en) 2008-09-29 2012-10-16 Clearwater International, Llc Stable foamed cement slurry compositions and methods for making and using same
US9909404B2 (en) 2008-10-08 2018-03-06 The Lubrizol Corporation Method to consolidate solid materials during subterranean treatment operations
US7932214B2 (en) 2008-11-14 2011-04-26 Clearwater International, Llc Foamed gel systems for fracturing subterranean formations, and methods for making and using same
US8011431B2 (en) 2009-01-22 2011-09-06 Clearwater International, Llc Process and system for creating enhanced cavitation
US8093431B2 (en) 2009-02-02 2012-01-10 Clearwater International Llc Aldehyde-amine formulations and method for making and using same
US9328285B2 (en) 2009-04-02 2016-05-03 Weatherford Technology Holdings, Llc Methods using low concentrations of gas bubbles to hinder proppant settling
US8466094B2 (en) 2009-05-13 2013-06-18 Clearwater International, Llc Aggregating compositions, modified particulate metal-oxides, modified formation surfaces, and methods for making and using same
US20100305010A1 (en) 2009-05-28 2010-12-02 Clearwater International, Llc High density phosphate brines and methods for making and using same
US20100311620A1 (en) 2009-06-05 2010-12-09 Clearwater International, Llc Winterizing agents for oil base polymer slurries and method for making and using same
US20110001083A1 (en) 2009-07-02 2011-01-06 Clearwater International, Llc Environmentally benign water scale inhibitor compositions and method for making and using same
US7915203B2 (en) 2009-07-27 2011-03-29 Clearwater International, Llc Secondary emulsifiers for inverted emulsion fluids and methods for making and using same
US9447657B2 (en) 2010-03-30 2016-09-20 The Lubrizol Corporation System and method for scale inhibition
US8835364B2 (en) 2010-04-12 2014-09-16 Clearwater International, Llc Compositions and method for breaking hydraulic fracturing fluids
US8851174B2 (en) 2010-05-20 2014-10-07 Clearwater International Llc Foam resin sealant for zonal isolation and methods for making and using same
US8899328B2 (en) 2010-05-20 2014-12-02 Clearwater International Llc Resin sealant for zonal isolation and methods for making and using same
US8846585B2 (en) 2010-09-17 2014-09-30 Clearwater International, Llc Defoamer formulation and methods for making and using same
US8524639B2 (en) 2010-09-17 2013-09-03 Clearwater International Llc Complementary surfactant compositions and methods for making and using same
US9085724B2 (en) 2010-09-17 2015-07-21 Lubri3ol Oilfield Chemistry LLC Environmentally friendly base fluids and methods for making and using same
US9062241B2 (en) 2010-09-28 2015-06-23 Clearwater International Llc Weight materials for use in cement, spacer and drilling fluids
US8841240B2 (en) 2011-03-21 2014-09-23 Clearwater International, Llc Enhancing drag reduction properties of slick water systems
US9022120B2 (en) 2011-04-26 2015-05-05 Lubrizol Oilfield Solutions, LLC Dry polymer mixing process for forming gelled fluids
US9464504B2 (en) 2011-05-06 2016-10-11 Lubrizol Oilfield Solutions, Inc. Enhancing delaying in situ gelation of water shutoff systems
US20120295820A1 (en) 2011-05-17 2012-11-22 Clearwater International, Llc Management of corrosion in phosphate brines
US20120302468A1 (en) 2011-05-27 2012-11-29 Clearwater International, Llc Formulations and uses of drilling fluids containing viscosified phosphate brine
US8944164B2 (en) 2011-09-28 2015-02-03 Clearwater International Llc Aggregating reagents and methods for making and using same
US20130081820A1 (en) 2011-09-30 2013-04-04 Clearwater International, Llc Hostile environment stable compositions and drilling and fracturing fluids containing same
US9758658B2 (en) 2011-10-06 2017-09-12 Weatherford/Lamb, Inc. Enhanced oilfield swellable elastomers and methods for making and using same
US8932996B2 (en) 2012-01-11 2015-01-13 Clearwater International L.L.C. Gas hydrate inhibitors and methods for making and using same
US20130175477A1 (en) 2012-01-11 2013-07-11 Clearwater International, Llc Corrosion inhibitor for high temperature environments
US9664009B2 (en) 2012-04-04 2017-05-30 Weatherford Technologies, LLC Apparatuses, systems, and methods for forming in-situ gel pills to lift liquids from horizontal wells
US10604693B2 (en) 2012-09-25 2020-03-31 Weatherford Technology Holdings, Llc High water and brine swell elastomeric compositions and method for making and using same
US10047267B2 (en) 2012-10-31 2018-08-14 Weatherford Technology Holdings, Llc Strontium carbonate bridging materials and methods for making and using same
US9169717B2 (en) 2012-11-06 2015-10-27 Lubrizol Oilfield Solutions Inc. High uptake sulfur solvent systems and methods for making and using same
PE20151194A1 (es) 2012-12-14 2015-09-04 Lubrizol Oilfield Chemistry LLC Sistemas de elastomeros cargados novedosos para uso en cemento, fluidos de perforacion y separadores
US20140262287A1 (en) 2013-03-15 2014-09-18 Clearwater International, Llc Environmentally friendly quaternary salts of amines and their use as temporary and/or permanent clay stabilizers and methods for making and using same
US20140318793A1 (en) 2013-04-19 2014-10-30 Clearwater International, Llc Hydraulic diversion systems to enhance matrix treatments and methods for using same
WO2015001498A1 (en) 2013-07-03 2015-01-08 Clearwater International, Llc Visco elastic surfactant crosslinked with divalent ions
US20150072901A1 (en) 2013-09-09 2015-03-12 Clearwater International Llc Lost circulation and fluid loss materials containing guar chaff and methods for making and using same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5067566A (en) * 1991-01-14 1991-11-26 Bj Services Company Low temperature degradation of galactomannans
RU2122633C1 (ru) * 1993-04-29 1998-11-27 Клинсорб Лимитед Способ кислотной обработки подземных пластов
US5413178A (en) * 1994-04-12 1995-05-09 Halliburton Company Method for breaking stabilized viscosified fluids
RU2173772C2 (ru) * 1999-04-21 2001-09-20 Магадова Любовь Абдулаевна Состав полисахаридного геля для гидравлического разрыва пласта
WO2001051767A2 (en) * 2000-01-14 2001-07-19 Schlumberger Technology Corporation Addition of solids to generate viscosity downhole
RU2338872C2 (ru) * 2003-05-29 2008-11-20 Хэллибертон Энерджи Сервисиз, Инк. Способы и составы для разрушения загущенных жидкостей
RU2344283C2 (ru) * 2003-07-07 2009-01-20 Хэллибертон Энерджи Сервисиз, Инк. Способы и составы для увеличения прочности уплотнения расклинивающего наполнителя в подземных разрывах
EP2113547A1 (en) * 2007-05-22 2009-11-04 Halliburton Energy Services, Inc. Viscosified fluids for remediating subterranean damage background

Also Published As

Publication number Publication date
CA2737191A1 (en) 2011-10-12
US9175208B2 (en) 2015-11-03
EP2374861B1 (en) 2014-03-05
CA2737191C (en) 2015-05-26
US20140318795A1 (en) 2014-10-30
EP2374861A1 (en) 2011-10-12
US8835364B2 (en) 2014-09-16
MX2011003853A (es) 2011-10-27
BRPI1101503B1 (pt) 2020-06-02
AR080885A1 (es) 2012-05-16
BRPI1101503A2 (pt) 2012-08-21
AU2011201574B2 (en) 2013-03-14
AU2011201574A1 (en) 2011-10-27
US20110247821A1 (en) 2011-10-13
RU2011114109A (ru) 2012-10-20
PL2374861T3 (pl) 2014-07-31

Similar Documents

Publication Publication Date Title
RU2471847C2 (ru) Композиции и способ разрушения текучих сред гидравлического разрыва
US9328285B2 (en) Methods using low concentrations of gas bubbles to hinder proppant settling
US10822541B2 (en) Method of using Sophorolipids in well treatment operations
AU2008202070B2 (en) Apparatus, Compositions, and Methods of Breaking Fracturing Fluids
US6794340B2 (en) Method for removing drill cuttings from wellbores and drilling fluids
CA2631000C (en) Apparatus, compositions, and methods of breaking fracturing fluids
US9951268B2 (en) Wellbore servicing materials and methods of making and using same
US6706769B2 (en) Aminocarboxylic acid breaker compositions for fracturing fluids
CA3073386C (en) Breaker systems for wellbore treatment operations
CA2668561C (en) Use of anionic surfactants as hydration aid for fracturing fluids

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20160505