RU2470257C1 - Способ определения толщины однородного нанослоя в инфракрасном излучении - Google Patents

Способ определения толщины однородного нанослоя в инфракрасном излучении Download PDF

Info

Publication number
RU2470257C1
RU2470257C1 RU2012106057/28A RU2012106057A RU2470257C1 RU 2470257 C1 RU2470257 C1 RU 2470257C1 RU 2012106057/28 A RU2012106057/28 A RU 2012106057/28A RU 2012106057 A RU2012106057 A RU 2012106057A RU 2470257 C1 RU2470257 C1 RU 2470257C1
Authority
RU
Russia
Prior art keywords
sew
radiation
layer
thickness
substrate
Prior art date
Application number
RU2012106057/28A
Other languages
English (en)
Inventor
Алексей Константинович Никитин
Анатолий Павлович Кирьянов
Герман Николаевич Жижин
Галина Константиновна Чудинова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский университет дружбы народов" (РУДН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский университет дружбы народов" (РУДН) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский университет дружбы народов" (РУДН)
Priority to RU2012106057/28A priority Critical patent/RU2470257C1/ru
Application granted granted Critical
Publication of RU2470257C1 publication Critical patent/RU2470257C1/ru

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

Способ включает нанесение слоя на подложку, способную направлять поверхностную электромагнитную волну (ПЭВ), воздействие зондирующим излучением на подложку, преобразование излучения в ПЭВ, регистрацию изменений ПЭВ в результате пробега ей макроскопического расстояния Δх, расчет толщины слоя по результатам измерений и значениям оптических постоянных вещества слоя и материала подложки. ПЭВ преобразуют в объемную волну, совмещают пучок зондирующего излучения и объемную волну, регистрируют результирующую интенсивность интерферирующих волн до и после пробега ПЭВ расстояния Δх и рассчитывают толщину нанослоя с учетом приращения фазы ПЭВ на расстоянии Δх. Технический результат изобретения заключается в повышении точности определения толщины однородного нанослоя в ИК-излучении. 2 ил.

Description

Изобретение относится к оптическим методам контроля слоев наноразмерной толщины в инфракрасном (ИК) излучении и может быть использовано как в физико-химических исследованиях динамики роста переходного слоя на проводящей поверхности, так и в технологических процессах для контроля толщины и однородности тонкослойных покрытий металлизированных изделий и полупроводниковых подложек.
Для исследования однородных слоев субволновой толщины в ИК-излучении используют известный способ эллипсометрии, включающий нанесение слоя на твердотельную подложку, воздействие на слой излучением с ненулевыми р- и s-компонентами поля, измерение изменений интенсивностей и фаз компонент в результате взаимодействия излучения со слоем и поддерживающей его подложкой, расчет толщины слоя по результатам измерений [Hofmann Т., Herzinger C.M., Boosalis A., Tiwald Т.Е., Woollam J.A., and Schubert М. Variable-wavelength frequency-domain terahertz ellipsometry // Rev. Sci. Instrum., 2010, v.81, 023101]. Основным недостатком эллипсометрии при исследовании нанослоев ИК-излучением является низкая точность измерений, что обусловлено малой длиной взаимодействия излучения с исследуемым слоем и, как следствие этого, малыми изменениями степени поляризации зондирующего излучения.
Наиболее близким по технической сущности к заявляемому способу является способ определения толщины однородного нанослоя в ИК-излучении, включающий нанесение слоя на подложку, способную направлять поверхностную электромагнитную волну (ПЭВ), преобразование излучения в направляемую подложкой ПЭВ, регистрацию изменения интенсивности ПЭВ в результате пробега волной макроскопического расстояния и расчет толщины слоя по результатам измерений и значениям оптических постоянных вещества слоя и материала подложки [Жижин Г.Н., Никитин А.К., Богомолов Г.Д., Завьялов В.В., Джонг Юнг Ук, Ли Банг Чол, Сеонг Хи Пак, Хек Джин Ча. Поглощение поверхностных плазмонов терагерцового диапазона в структуре "металл - покровный слой - воздух" // Оптика и спектроскопия, 2006, т.100, №5, с.798-802]. Основным недостатком способа является недостаточно высокая точность измерений, обусловленная слабой чувствительностью интенсивности поля ПЭВ к изменениям толщины слоя, ввиду слабого затухания ИК ПЭВ.
Технический результат заключается в повышении точности определения толщины однородного нанослоя в ИК-излучении.
Технический результат достигается тем, что в способе определения толщины однородного нанослоя в инфракрасном излучении, включающем нанесение слоя на подложку, способную направлять поверхностную электромагнитную волну (ПЭВ), воздействие зондирующим излучением на подложку, преобразование излучения в ПЭВ, регистрацию изменений ПЭВ в результате пробега ею макроскопического расстояния Δх, расчет толщины слоя по результатам измерений и значениям оптических постоянных вещества слоя и материала подложки, ПЭВ преобразуют в объемную волну, совмещают пучок зондирующего излучения и объемную волну, регистрируют результирующую интенсивность интерферирующих волн до и после пробега ПЭВ расстояния Δх и рассчитывают толщину нанослоя с учетом приращения фазы ПЭВ на расстоянии Δх.
Повышение точности определения толщины слоя d достигается в результате неприращения интенсивности ΔJ, обусловленного затуханием ПЭВ.
При измерении Δφ методом интерферометрии, так и при измерении ΔJ после изменения пробега ПЭВ на расстояние Δх, измеряют интенсивность (либо совмещенных пучков зондирующего и порожденного ПЭВ-излучения, либо поля ПЭВ в данной точке ее трека). В первом случае изменение интенсивности (интерферограммы) может принимать значение в пределах от нуля до 4Jo, где Jo - интенсивность опорного и измерительного пучков в плоскости интерферограммы при Δх=0; во втором случае (при регистрации экспоненциально затухающей интенсивности поля ПЭВ) максимальное значение ΔJ не превышает Jo. Поэтому одинаковое значение ΔJ (равное, в частности, точности измерения интенсивности) и пропорциональное толщине слоя d достигается при прочих равных условиях на значительно меньшем расстоянии, пробегаемом ПЭВ при интерферометрических измерениях, чем при амплитудных. Этим и обусловлено достижение поставленной в изобретении цели - повышение точности определения толщины d однородного слоя на поверхности, направляющей ИК ПЭВ.
Изобретение поясняется чертежами: на рис.1 - схема устройства, реализующего способ; на рис.2 - расчетные зависимости величины набега фазы Δφ ПЭВ от толщины слоя d при расстоянии Δх=50 мм, пройденного ПЭВ с λ=50 мкм в структуре "Au подложка - слой ZnS толщиной d - воздух".
Предлагаемый способ может быть реализован с использованием устройства, описанного в работе [Жижин Г.Н., Никитин А.К., Балашов А.А., Рыжова Т.А. Плазменный спектрометр терагерцового диапазона для исследования проводящей поверхности // Патент РФ на изобретение №2318192. Бюл. №6 от 27.02.2008 г.], и схема которого приведена на рис.1, где цифрами обозначены: 1 - источник р-поляризованного монохроматического излучения, 2 - лучеразделитель, расщепляющий пучок падающего излучения на измерительный и реперный пучки, 3 - элемент преобразования объемного излучения измерительного пучка в ПП, 4 - твердотельный проводящий образец, имеющий две плоские смежные грани, на одной из которых размещен элемент 3, а на другой - элемент преобразования 5 ПП в объемную волну, 6 - заслонка, перекрывающая реперный пучок при регистрации интенсивности излучения измерительного пучка или измерительный пучок при регулировании интенсивности реперного пучка, 7 - регулируемый поглотитель излучения реперного пучка, 8 - зеркало, 9 - лучеразделитель, совмещающий измерительный и реперный пучки и жестко сопряженный с элементом 5, 10 - фокусирующий объектив, 11 - фотоприемное устройство.
На рис.2 приведены расчетные зависимости величины набега фазы Δφ от толщины слоя d при расстоянии Δх=50 мм, пройденного ПЭВ с λ=50 мкм в структуре "Au подложка - слой ZnS толщиной d - воздух".
Способ реализуется следующим образом. Излучение источника 1 с длиной волны λ направляют на лучеразделитель 2, расщепляющий падающее излучение на измерительный и опорный пучки. Излучение измерительного пучка падает на элемент 3 и преобразуется в поверхностную волну. ПЭВ пробегает до скругленного ребра (радиус закругления R>10λ), образованного двумя смежными плоскими гранями проводящей подложки 4, преодолевает это ребро (с некоторыми радиационными потерями) и продолжает распространяться по второй грани до элемента 5 (наклонного плоского зеркала, примыкающего одним краем к поверхности подложки и сопряженного с лучеразделителем 9). Зеркало 5 сообщает ПЭВ отрицательный импульс, что приводит к уменьшению модуля волнового вектора ПЭВ до значения меньшего величины модуля волнового вектора объемной волны в окружающей среде и, как следствие этого, - к преобразованию ПЭВ в объемную волну, направляемую на разделитель 9. На другую сторону разделителя 9 поступает вторая объемная волна, отраженная прежде от разделителя 2, и прошедшая мимо заслонки 6 через регулируемый поглотитель 7, и отраженная зеркалом 8. Разделитель 9 сбивает вместе обе объемные волны и направляет их через объектив 10 на фотоприемное устройство 11. Вследствие интерференции объемных волн освещенность апертуры приемника 11 при беспрепятственном прохождении обоих пучков по описанным траекториям определяется как амплитудами полей обоих пучков, так и соотношением их фаз.
До начала измерений исследуемый слой из материала с известным показателем преломления наносят на подложку 4 с известной диэлектрической проницаемостью и рассчитывают зависимости Δφ(d) для некоторого расстояния пробега Δх ПЭВ в данной волноведущей структуре, содержащей исследуемый слой с искомой толщиной d.
На первом этапе измерений зеркало 5 размещают за (по ходу ПЭВ) скругленным ребром подложки 4 и с помощью заслонки 6 и поглотителя 7 добиваются равенства интенсивностей пучков, когда каждый из пучков порождает фототек величиной Io. Затем, при открытой для обоих пучков заслонке 6 зеркало 5 помещают в такую точку трека, когда фототок на выходе приемника 11 максимален и равен 4Io, что соответствует синфазному изменению полей обоих пучков (Δφ=0) и равенству результирующей интенсивности величине 4Jo (в силу пропорциональности силы фототока интенсивности светового потока, поступающего на вход фотоприемника 11).
На втором этапе измерений зеркало 5 перемещают вдоль трека в направлении края подложки 4 на расстояние Δх и регистрируют изменение силы фототока I. Принимая во внимание малость затухания ПЭВ ИК-диапазона (κ”≈10-4÷10-5, здесь κ” - мнимая часть показателя преломления ПЭВ), изменением интенсивности ПЭВ на расстоянии Δx<<L (где L - длина распространения ПЭВ) можно пренебречь. Поэтому в результате интерференции волн пучков интенсивность J-излучения на апертуре фотоприемника изменяется в зависимости от Δх по закону:
Figure 00000001
где Δφ=(2π/λ)·(κ'-ncp)·Δх - разность фаз, обусловленная отличием фазовой скорости ПЭВ от фазовой скорости плоской волны в окружающей среде с показателем преломления ncp; κ' - действительная часть показателя преломления ПЭВ. По закону (1) изменяется и сила фототока I. Поэтому по измеренным I и Io можно однозначно определить величину Δφ. А затем, используя предварительно рассчитанную зависимость Δφ(d) для выбранного Δх, можно определить и значение толщины d исследуемого слоя.
В качестве примера применения заявляемого способа рассмотрим возможность определения толщины d слоя ZnS, характеризуемого показателем преломления 3,48 и показателем поглощения 0,03, в излучении с λ=50 мкм. Для этого нанесем слой на золотую подложку, снабженную элементом преобразования объемного излучения в ПЭВ. Используя дисперсионное уравнение ПЭВ для трехслойной структуры [Bell R.J., Alexander R.W., Ward C.A. and Tyler I.L. Introductory theory for surface electromagnetic wave spectroscopy // Surface Science, 1975, v.48, p.253-287], предварительно рассчитаем зависимость комплексного показателя преломления ПЭВ κ=κ'+i·κ” от толщины слоя d. Необходимую для расчетов диэлектрическую проницаемость золота вычислим по модели Друде, полагая столкновительную частоту свободных электронов, равной 215 см-1, а плазменную - 72800 см-1 [Ordal M.A., Bell R.J., Alexander R.W. et al. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W // Applied Optics, 1985, v.24(24), p.4493-4499]. Выбрав расстояние Δх, пробегаемое ПЭВ, равным 50 мм, и используя полученную зависимость κ'(d), построим зависимость Δφ(d) (рис.1).
Выполнив интерферометрические и амплитудные измерения при Δх=50 мм и длине распространения ПЭВ L≈1 м, получим: в первом случае увеличение толщины слоя d на 10 нм приводит к Δφ≈0,1 радиана, что обуславливает относительное изменение интенсивности ΔJ≈0,06; во втором - показатель поглощения ПЭВ κ” возрастает на 1,2·10-6, что обуславливает ΔJ≈0,01. Таким образом, на одной и той же длине взаимодействия Δх-излучения в форме ПЭВ с образцом (золотой подложкой со слоем ZnS на ней), изменения регистрируемой интенсивности ΔJ в рассматриваемом примере при интерферометрических измерениях в 6 раз превосходят величину ΔJ при амплитудных измерениях. Поэтому при данной точности измерения интенсивности точность определения толщины d слоя ZnS по изменению фазы ПЭВ Δφ превосходит точность определения d по затуханию интенсивности поля ПЭВ также примерно в 5-6 раз.
Таким образом, точность определения толщины нанослоя заявляемым способом превышает точность способа-прототипа не менее чем в 5 раз.

Claims (1)

  1. Способ определения толщины однородного нанослоя в инфракрасном излучении, включающий нанесение слоя на подложку, способную направлять поверхностную электромагнитную волну (ПЭВ), воздействие зондирующим излучением на подложку, преобразование излучения в ПЭВ, регистрацию изменений ПЭВ в результате пробега ею макроскопического расстояния Δх, расчет толщины слоя по результатам измерений и значениям оптических постоянных вещества слоя и материала подложки, отличающийся тем, что ПЭВ преобразуют в объемную волну, совмещают пучок зондирующего излучения и объемную волну, регистрируют результирующую интенсивность интерферирующих волн до и после пробега ПЭВ расстояния Δх и рассчитывают толщину нанослоя с учетом приращения фазы ПЭВ на расстоянии Δх.
RU2012106057/28A 2012-02-21 2012-02-21 Способ определения толщины однородного нанослоя в инфракрасном излучении RU2470257C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012106057/28A RU2470257C1 (ru) 2012-02-21 2012-02-21 Способ определения толщины однородного нанослоя в инфракрасном излучении

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012106057/28A RU2470257C1 (ru) 2012-02-21 2012-02-21 Способ определения толщины однородного нанослоя в инфракрасном излучении

Publications (1)

Publication Number Publication Date
RU2470257C1 true RU2470257C1 (ru) 2012-12-20

Family

ID=49256593

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012106057/28A RU2470257C1 (ru) 2012-02-21 2012-02-21 Способ определения толщины однородного нанослоя в инфракрасном излучении

Country Status (1)

Country Link
RU (1) RU2470257C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2629928C2 (ru) * 2016-02-09 2017-09-04 Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) Способ определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1037065A1 (ru) * 1982-05-20 1983-08-23 Институт Прикладной Физики Ан Бсср Устройство дл контрол толщины тонких пленок
KR20040094582A (ko) * 2003-05-03 2004-11-10 송석호 실시간 두께, 굴절률 측정기
US20050025676A1 (en) * 2000-02-11 2005-02-03 Wolfgang Ehrfeld Method for quantitatively and/or qualitatively detecting layer thicknesses, a microreaction vessel and titre plate
US20080030738A1 (en) * 1997-02-04 2008-02-07 Biacore Ab Analytical method and apparatus
RU2318192C1 (ru) * 2006-06-09 2008-02-27 Государственное образовательное учреждение высшего профессионального образования "Российский университет дружбы народов" (РУДН) Плазмонный спектрометр терагерцового диапазона для исследования проводящей поверхности

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1037065A1 (ru) * 1982-05-20 1983-08-23 Институт Прикладной Физики Ан Бсср Устройство дл контрол толщины тонких пленок
US20080030738A1 (en) * 1997-02-04 2008-02-07 Biacore Ab Analytical method and apparatus
US20050025676A1 (en) * 2000-02-11 2005-02-03 Wolfgang Ehrfeld Method for quantitatively and/or qualitatively detecting layer thicknesses, a microreaction vessel and titre plate
KR20040094582A (ko) * 2003-05-03 2004-11-10 송석호 실시간 두께, 굴절률 측정기
RU2318192C1 (ru) * 2006-06-09 2008-02-27 Государственное образовательное учреждение высшего профессионального образования "Российский университет дружбы народов" (РУДН) Плазмонный спектрометр терагерцового диапазона для исследования проводящей поверхности

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ЖИЖИН Г.Н. НИКИТИН А.К. и др. Поглощение поверхностных плазмонов терагерцового диапазона в структуре "металл - покровный слой - воздух". Оптика и спектроскопия, 2006, т.100, No.5, с.798-802. *
ЖИЖИН Г.Н. НИКИТИН А.К. и др. Поглощение поверхностных плазмонов терагерцового диапазона в структуре "металл - покровный слой - воздух". Оптика и спектроскопия, 2006, т.100, №5, с.798-802. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2629928C2 (ru) * 2016-02-09 2017-09-04 Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) Способ определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона

Similar Documents

Publication Publication Date Title
US7271914B2 (en) Biomolecular sensor system utilizing a transverse propagation wave of surface plasmon resonance (SPR)
RU2318192C1 (ru) Плазмонный спектрометр терагерцового диапазона для исследования проводящей поверхности
EP2449363B1 (en) Optical sensing device and method for detecting samples
US20140125983A1 (en) Interferometery on a planar substrate
US8958999B1 (en) Differential detection for surface plasmon resonance sensor and method
JP2009300108A (ja) テラヘルツ分光装置
Kivioja et al. Thickness measurement of thin polymer films by total internal reflection Raman and attenuated total reflection infrared spectroscopy
Nikitin et al. In-plane interferometry of terahertz surface plasmon polaritons
RU2470257C1 (ru) Способ определения толщины однородного нанослоя в инфракрасном излучении
RU2645008C1 (ru) Устройство для измерения длины распространения инфракрасной поверхностной электромагнитной волны
US20100195110A1 (en) Measurement instrument of optical characteristics for sample flowing in passage
RU2477841C2 (ru) Инфракрасный амплитудно-фазовый плазмонный спектрометр
US9012849B2 (en) Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes
RU2380664C1 (ru) Устройство для измерения длины распространения поверхностных электромагнитных волн инфракрасного диапазона
RU2400714C1 (ru) Способ определения коэффициента затухания поверхностной электромагнитной волны инфракрасного диапазона за время одного импульса излучения
RU2380665C1 (ru) Устройство для определения коэффициента поглощения поверхностных электромагнитных волн инфракрасного диапазона
Nikitin et al. Quality control of solid surfaces by the method of surface plasmon interferometry in the terahertz range
RU2709600C1 (ru) Интерферометр Майкельсона для определения показателя преломления поверхностных плазмон-поляритонов терагерцевого диапазона
RU2345351C1 (ru) Устройство для получения спектров поглощения тонких слоев в терагерцовой области спектра
RU2786377C1 (ru) Способ определения диэлектрической проницаемости металлов в терагерцовом диапазоне
RU2477842C1 (ru) Плазмонный фурье-спектрометр терагерцового диапазона
Bogomolov et al. Generation of surface electromagnetic waves in terahertz spectral range by free-electron laser radiation and their refractive index determination
Gerasimov et al. Experimental Demonstration of Surface Plasmon Michelson Interferometer at the Novosibirsk Terahertz Free-Electron Laser
Nikitin et al. Surface plasmon dispersive spectroscopy of thin films at terahertz frequencies
Zhizhin et al. Dispersive Fourier-transform spectroscopy of surface plasmons in the infrared frequency range

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170222