RU2468545C1 - Источник тормозного излучения - Google Patents

Источник тормозного излучения Download PDF

Info

Publication number
RU2468545C1
RU2468545C1 RU2011141400/07A RU2011141400A RU2468545C1 RU 2468545 C1 RU2468545 C1 RU 2468545C1 RU 2011141400/07 A RU2011141400/07 A RU 2011141400/07A RU 2011141400 A RU2011141400 A RU 2011141400A RU 2468545 C1 RU2468545 C1 RU 2468545C1
Authority
RU
Russia
Prior art keywords
windings
bias
poles
turns
ampere
Prior art date
Application number
RU2011141400/07A
Other languages
English (en)
Inventor
Владимир Борисович Сорокин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет"
Priority to RU2011141400/07A priority Critical patent/RU2468545C1/ru
Application granted granted Critical
Publication of RU2468545C1 publication Critical patent/RU2468545C1/ru

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Abstract

Изобретение относится к ускорительной технике и может быть использовано в средствах неразрушающего контроля материалов и изделий. Устройство содержит магнитопровод, полюсы, обмотки возбуждения, центральные вкладыши, ускорительную камеру, мишень, три системы обмоток смещения. Обмотки смещения первой и второй систем расположены между ускорительной камерой и магнитопроводом, в обмотках первой системы, образуемой ближними к полюсам обмотками, направление импульсных токов совпадает с направлением токов в обмотках возбуждения, а обмотки второй системы расположены между обмотками первой системы с зазорами относительно обмоток первой системы и между собой. Направления импульсных ампер-витков обмоток первой и второй систем противоположные. Первая система обмоток выполнена с импульсными ампер-витками в конце цикла ускорения, меньшими импульсных ампер-витков второй системы обмоток. Обмотки смещения третьей системы выполнены с радиальным размером, меньшим радиуса равновесной орбиты, и направлением импульсных ампер-витков, одинаковым с направлением импульсных ампер-витков первой системы обмоток смещения. Техническим результатом является уменьшение размера фокусного пятна тормозного излучения в аксиальном направлении с возможностью регулирования соотношения размеров фокусного пятна в аксиальном и радиальном направлениях. 5 ил.

Description

Изобретение относится к ускорительной технике и может быть использовано в средствах неразрушающего контроля материалов и изделий.
Известен источник тормозного излучения (Л.М Ананьев., А.А.Воробьев, В.И.Горбунов. Индукционный ускоритель электронов - бетатрон. - М.: Госатомиздат, 1961, с.228-231), содержащий магнитопровод, полюсы, обмотки возбуждения на полюсах, центральные вкладыши, ускорительную камеру между полюсами, мишень, расположенную в ускорительной камере, обмотки смещения ускоренных электронов на мишень с импульсными ампер-витками в конце цикла ускорения, расположенные на центральных вкладышах или на полюсах.
В этом источнике смещение электронов с равновесной орбиты на мишень реализуется за счет их доускорения импульсным магнитным полем обмоток смещения.
Известен источник тормозного излучения (Москалев В.А. Бетатроны. - М.: Энергоиздат, 1981, с.38), выбранный в качестве прототипа, содержащий магнитопровод, полюсы, обмотки возбуждения на полюсах, центральные вкладыши, ускорительную камеру между полюсами, мишень, расположенную в ускорительной камере на радиусе, большем радиуса равновесной орбиты, две системы расположенных на полюсах обмоток смещения с одинаковыми по величине и противоположно направленными импульсными ампер-витками в конце цикла ускорения и радиальными размерами, меньшими радиуса равновесной орбиты ускоряемых электронов у обмоток смещения первой системы, и радиальными размерами, большими радиуса равновесной орбиты ускоряемых электронов у обмоток смещения второй системы.
В этом источнике смещение электронов с равновесной орбиты на мишень реализуется за счет уменьшения индукции в области равновесной орбиты импульсным магнитным полем обмоток смещения.
Известные источники тормозного излучения имеют достаточно малые размеры (до 0,2 мм) фокусного пятна только в радиальном направлении, но при гораздо больших размерах, превышающих 2 мм, в направлении, перпендикулярном плоскости ускорения - в аксиальном направлении. Такое соотношение ограничивает, например, функциональные параметры промышленных томографов на основе этих источников.
Большие размеры фокусного пятна в аксиальном направлении являются следствием больших амплитуд колебаний электронов в этом направлении в процессе смещения электронов с равновесной орбиты на мишень из-за малых сил, действующих на отклоняющиеся от плоскости ускорения электроны, величины которых определяются малыми величинами радиальной составляющей индукции между ускорительными полюсами вблизи плоскости ускорения в процессе смещения.
Задачей настоящего изобретения является уменьшение размера фокусного пятна тормозного излучения в аксиальном направлении с возможностью регулирования соотношения размеров фокусного пятна в аксиальном и радиальном направлениях.
Поставленная задача достигается тем, что в источнике тормозного излучения, который содержит магнитопровод, полюсы, обмотки возбуждения на полюсах, центральные вкладыши, ускорительную камеру между полюсами, мишень, расположенную в ускорительной камере на радиусе, большем радиуса равновесной орбиты, две системы обмоток смещения с противоположно направленными импульсными ампер-витками в конце цикла ускорения, обмотки смещения расположены между ускорительной камерой и магнитопроводом, в обмотках смещения первой системы, образуемой ближними к полюсам обмотками смещения, направление импульсных ампер-витков совпадает с направлением токов в обмотках возбуждения на полюсах, а обмотки смещения второй системы расположены между обмотками смещения первой системы с зазорами относительно обмоток смещения первой системы и между собой, причем первая система обмоток выполнена с импульсными ампер-витками в конце цикла ускорения, меньшими импульсных ампер-витков второй системы обмоток, и введена третья система обмоток с направлением импульсных ампер-витков, одинаковым с направлением импульсных ампер-витков в обмотках смещения первой системы, и радиальным размером, меньшим радиуса равновесной орбиты.
Отличительными от прототипа признаками являются расположение обмоток смещения между ускорительной камерой и магнитопроводом, совпадение направлений импульсных ампер-витков в обмотках смещения первой системы ближних к полюсам обмоток смещения с направлением токов в обмотках возбуждения на полюсах, расположение обмоток смещения второй системы с зазором относительно обмоток смещения первой системы ближних к полюсам обмоток смещения и между собой, выполнение первой системы обмоток смещения с импульсными ампер-витками в конце цикла ускорения, меньшими импульсных ампер-витков второй системы обмоток смещения, и введение третьей системы обмоток смещения с направлением импульсных ампер-витков, одинаковым с направлением импульсных ампер-витков в обмотках смещения первой системы, и радиальным размером, меньшим радиуса равновесной орбиты.
Размеры фокусного пятна тормозного излучения задаются размерами области мишени, которая облучается электронами, ускоренными на равновесной орбите, относительно которой они совершали бетатронные колебания, смещенными с равновесной орбиты и переместившимися в пространстве между равновесной орбитой и мишенью по спиральной траектории.
Размер облучаемой области мишени в аксиальном направлении определяется амплитудами колебаний электронов в аксиальном направлении в процессе смещения, величины которых обратно пропорциональны величине аксиального градиента радиальной составляющей индукции.
При этом радиальный размер облучаемой области мишени определяется шагом спиральной траектории, величина которого задается распределением индукции в процессе смещения.
В процессе смещения импульсное магнитное поле, формируемое первой и второй системами обмоток, увеличивает в зависимости от величины импульсных ампер-витков степень спадания магнитного поля в области между равновесной орбитой и радиальным положением мишени в гораздо большей степени, чем при реализации процесса смещения в известных устройствах. Радиальная составляющая индукции во всех точках этой области вблизи плоскости ускорения увеличивается, причем степень увеличения является возрастающей функцией радиального отличия от положения равновесной орбиты. В результате в процессе смещения амплитуда аксиальных колебаний электронов уменьшается, электроны падают на мишень с уменьшенной амплитудой аксиальных колебаний, облучают область поверхности малого аксиального размера, что обеспечивает малый аксиальный размер фокусного пятна тормозного излучения.
Выполнение первой системы обмоток смещения с импульсными ампер-витками в конце цикла ускорения, меньшими импульсных ампер-витков второй системы обмоток смещения, и введение третьей системы обмоток смещения с направлением импульсных ампер-витков, одинаковым с направлением импульсных ампер-витков в обмотках смещения первой системы, и радиальным размером, меньшим радиуса равновесной орбиты, позволяет смещать электроны при заданном, в зависимости от соотношения и величины импульсных ампер-витков первой, второй и третьей систем обмоток смещения, спадании индукции магнитного поля в области между равновесной орбитой и радиальным положением мишени без изменения энергии электронов. Это обеспечивает регулирование соотношения амплитуды аксиальных колебаний и шага спиральной траектории в процессе перемещения электронов от равновесной орбиты к радиальному положению мишени и, значит, соотношения между аксиальным и радиальным размерами фокусного пятна.
На фиг.1 показана схема предлагаемого устройства в двух проекциях.
На фиг.2 - радиальные распределения индукции В в плоскости ускорения.
Зависимость 1 - перед началом процесса смещения электронов с равновесной орбиты.
Зависимость 2 - при достижении порогового значения индукции на радиусе равновесной орбиты при реализации устройства-прототипа.
Зависимости 3, 4, 5 - при достижении порогового значения индукции на радиусе равновесной орбиты при реализации предлагаемого устройства при различных ампер-витках систем обмоток смещения и их соотношениях.
На фиг.3 - зависимости магнитного потока F от радиуса R.
Зависимость 1 - перед началом процесса смещения электронов с равновесной орбиты.
Зависимость 2 - при достижении порогового значения индукции на радиусе равновесной орбиты при реализации устройства-прототипа.
Зависимости 3, 4, 5 - при достижении порогового значения индукции на радиусе равновесной орбиты при реализации предлагаемого устройства при различных ампер-витках систем обмоток смещения и их соотношениях.
На фиг.4 - аксиальные распределения радиальной составляющей индукции BR на равновесной орбите.
Зависимость 1 - перед началом процесса смещения электронов с равновесной орбиты.
Зависимость 2 - при достижении порогового значения индукции на радиусе равновесной орбиты при реализации устройства-прототипа.
Зависимости 3, 4, 5 - при достижении порогового значения индукции на радиусе равновесной орбиты при реализации предлагаемого устройства при различных ампер-витках систем обмоток смещения и их соотношениях.
На фиг.5 - аксиальные распределения радиальной составляющей индукции BR на радиусе положения мишени RM.
Зависимость 1 - перед началом процесса смещения электронов с равновесной орбиты.
Зависимость 2 - при достижении порогового значения индукции на радиусе равновесной орбиты при реализации устройства-прототипа.
Зависимости 3, 4, 5 - при достижении порогового значения индукции на радиусе равновесной орбиты при реализации предлагаемого устройства при различных ампер-витках систем обмоток смещения и их соотношениях.
Источник тормозного излучения содержит магнитопровод 1, полюсы 2, обмотки возбуждения 3 на полюсах 2, центральные вкладыши 4, ускорительную камеру 5 с внешним радиусом RK между полюсами 2, мишень 6, расположенную на инжекторе 7 в ускорительной камере 5 на радиусе RM, большем радиуса равновесной орбиты R0, две системы обмоток смещения с противоположно направленными импульсными ампер-витками в конце цикла ускорения. Первая система содержит обмотки смещения 8 и 9, вторая система содержит обмотки смещения 10 и 11. Обмотки смещения 8, 9, 10, 11 расположены между ускорительной камерой 5 и магнитопроводом 1. В обмотках смещения первой системы ближних к полюсам обмоток смещения 8, 9 направление импульсных ампер-витков совпадает с направлением токов в обмотках возбуждения 3 на полюсах 2. Обмотки смещения 10 и 11 второй системы расположены с зазором Н относительно обмоток смещения 8, 9 первой системы ближних к полюсам обмоток смещения. Направление импульсных ампер-витков в обмотках смещения 10 и 11 противоположно направлению токов в обмотках возбуждения 3 и, соответственно, импульсных ампер-витков в обмотках смещения 8 и 9.
Обмотки смещения 10 и 11 расположены с зазором L между ними, меньшим, например, размера h ускорительной камеры 5 в аксиальном направлении.
Часть зазора, например, за пределами радиуса RFe между обмотками смещения 8 и 10, а также между обмотками смещения 9 и 11 заполнена магнитным материалом 12.
В пространстве между полюсами, ограниченном радиусом R3, меньшим радиуса равновесной орбиты R0, установлена третья система обмоток, содержащая, например, обмотки 14 и 15 на полюсах 2 с направлением импульсных ампер-витков в конце цикла ускорения, одинаковым с направлением токов в обмотках возбуждения 3.
Системы обмоток выполнены с возможностью изменения амплитуд импульсных ампер-витков.
В цикле работы устройства нарастающий ток в обмотках возбуждения 3 создает нарастающий магнитный поток в магнитопроводе 1, центральных вкладышах 4, полюсах 2, межполюсном пространстве и, при наличии, в магнитном материале в зазорах Н между обмотками смещения 8 и 10, 9 и 11. В момент оптимального соответствия между напряжением инжекции инжектора 7 и индукцией магнитного поля в пространстве между полюсами 2 часть электронов из инжектора 7 в ускорительной камере 5 захватывается в ускорение на равновесной орбите, радиус которой R0 задается параметрами центральных вкладышей 4 и распределением магнитной индукции в пространстве между полюсами 2, задаваемым профилем полюсов 2 и при наличии магнитным материалом 12 в зазорах Н между обмотками смещения 8 и 10, 9 и 11.
Под действием электрического поля, индуцированного нарастающим магнитным потоком, электроны ускоряются на равновесной орбите, совершая относительно нее бетатронные колебания, амплитуда которых в радиальном и аксиальном направлениях определяется степенью спадания магнитной индукции в пространстве между полюсами.
В конце цикла ускорения перед началом процесса смещения магнитное поле, созданное токами обмоток возбуждения 3 в пространстве между полюсами 2, достигает величины индукции на равновесной орбите В0, с распределением индукции В (фиг.2, зависимость 1) в области между равновесной орбитой с радиусом, например, R0=50 мм, и мишенью на радиусе RM=70 мм в плоскости ускорения при потоке в пределах равновесной орбиты, равном Fo (фиг.3, зависимость 1, R=50 mm).
Действием импульсных магнитных полей первой, второй и третьей систем обмоток смещения запускается процесс смещения ускоренных электронов на мишень.
При этом импульсным магнитным полем обмоток смещения индукция в области равновесной орбиты уменьшается до порогового значения смещения, например, на 20%, при котором магнитное поле не может удерживать электроны на равновесной орбите. Причем в процессе достижения порогового значения магнитный поток в пределах равновесной орбиты дополнительно за счет действия обмоток смещения не изменяется (фиг.3, зависимость 4, R=50 mm) и не происходит соответствующее дополнительное изменение энергии электронов.
Достижение порогового значения смещения сопровождается изменением распределения магнитной индукции в пространстве между равновесной орбитой и радиальным положением мишени с увеличением его спада.
Пороговому значению смещения соответствует распределение магнитной индукции в пространстве между равновесной орбитой и радиальным положением мишени (фиг.2, зависимость 4) с гораздо большим спадом, чем до запуска процесса смещения (фиг.2, зависимость 1) и при реализации смещения в известном устройстве-прототипе (фиг.2, зависимость 2).
Подбором величин ампер-витков первой, второй и третьей систем обмоток смещения одному и тому же пороговому значению индукции на радиусе равновесной орбиты ставятся в соответствие различные радиальные спады индукции (фиг.2, например, зависимости 4 и 5).
Соотношение ампер-витков, соответствующих, например, зависимостям 5 и 4 (фиг.2, 3, 4, 5): для первой системы обмоток смещения - 2, для второй системы обмоток смещения - 1.8, для третьей системы - 0.9.
Подбором величин ампер-витков первой, второй и третьей систем обмоток смещения обеспечивается, например, множество радиальных распределений индукции В между зависимостями 4 и 5 с соответствующими спадами, которым соответствует отсутствие дополнительного изменения энергии электронов.
Отклонения от такого подбора вызывают дополнительные изменения энергии электронов. Зависимость 3 (фиг.2), в качестве примера, показывает распределение индукции при соотношениях ампер-витков систем обмоток смещения по отношению к таковым, соответствующим зависимости 4: для первой системы обмоток смещения - 1, для второй системы обмоток смещения - 1, для третьей системы - 0.5, при которых происходит дополнительное изменение магнитного потока в пределах равновесной орбиты в процессе смещения (фиг.3, зависимость 3, R=50 mm) и соответствующее дополнительное изменение энергии электронов действием обмоток смещения.
Увеличенным спадам соответствуют увеличенные аксиальные градиенты (фиг.4, 5). Возрастающие от положения равновесной орбиты (фиг.4) к радиальному положению мишени (фиг.5), регулируемые изменением ампер-витков систем обмоток смещения аксиальные градиенты радиальных составляющих индукции BR (зависимости 4, 5), превышают аксиальные градиенты при реализации устройства-прототипа (зависимости 2).
Увеличенным и регулируемым аксиальным градиентам соответствуют увеличенные и регулируемые аксиальные силы, действующие на электроны при их отклонении от плоскости смещения (ускорения), что приводит к регулируемому уменьшению амплитуды аксиальных колебаний электронов в процессе смещения и, значит, к регулируемому уменьшению аксиального размера облучаемой области поверхности мишени и, соответственно, к регулируемому уменьшению аксиального размера фокусного пятна тормозного излучения.
В то же время регулируемому увеличенному спаду индукции соответствует регулируемый увеличенный шаг спиральных траекторий перемещения электронов с равновесной орбиты на мишень, что приводит к одновременному регулируемому возрастанию радиального размера облучаемой области поверхности мишени и соответственно к регулируемому увеличению размера фокусного пятна тормозного излучения в радиальном направлении.
Тормозное излучение из мишени 6 с уменьшенным аксиальным размером фокусного пятна и возможностью регулирования его соотношения с радиальным размером выходит через стенку ускорительной камеры 5 и зазор между обмотками 10, 11 второй системы на облучаемый объект.
Коммутацией импульсных ампер-витков систем обмоток смещения от цикла ускорения к циклу устройство обеспечивает коммутацию соотношения размеров фокусного пятна от цикла ускорения к циклу в заданном диапазоне, от минимального размера в радиальном направлении при большом размере в аксиальном направлении до минимального размера в аксиальном направлении при большом размере в радиальном направлении.

Claims (1)

  1. Источник тормозного излучения, содержащий магнитопровод, полюсы, обмотки возбуждения на полюсах, центральные вкладыши, ускорительную камеру между полюсами, мишень, расположенную в ускорительной камере на радиусе, большем радиуса равновесной орбиты, две системы обмоток смещения с противоположными направлениями импульсных ампер-витков в конце цикла ускорения, отличающийся тем, что обмотки смещения расположены между ускорительной камерой и магнитопроводом, в обмотках смещения первой системы, образуемой ближними к полюсам обмотками смещения, направление импульсных ампер-витков совпадает с направлением токов в обмотках возбуждения на полюсах, а обмотки смещения второй системы расположены между обмотками смещения первой системы с зазорами относительно обмоток смещения первой системы и между собой, причем первая система обмоток выполнена с импульсными ампер-витками в конце цикла ускорения, меньшими импульсных ампер-витков второй системы обмоток, и введена третья система обмоток с направлением импульсных ампер-витков, одинаковым с направлением импульсных ампер-витков в обмотках смещения первой системы, и радиальным размером, меньшим радиуса равновесной орбиты.
RU2011141400/07A 2011-10-12 2011-10-12 Источник тормозного излучения RU2468545C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011141400/07A RU2468545C1 (ru) 2011-10-12 2011-10-12 Источник тормозного излучения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011141400/07A RU2468545C1 (ru) 2011-10-12 2011-10-12 Источник тормозного излучения

Publications (1)

Publication Number Publication Date
RU2468545C1 true RU2468545C1 (ru) 2012-11-27

Family

ID=49255040

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011141400/07A RU2468545C1 (ru) 2011-10-12 2011-10-12 Источник тормозного излучения

Country Status (1)

Country Link
RU (1) RU2468545C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2786206C1 (ru) * 2022-04-26 2022-12-19 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" (ФГАОУ ВО НИ ТПУ) Источник тормозного излучения

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2714749A1 (de) * 1976-04-02 1977-10-06 Elf Aquitaine Verfahren zum wiedergewinnen von zink aus rueckstandsloesungen
SU1135286A1 (ru) * 1983-06-06 1985-12-15 Научно-Исследовательский Институт Электронной Интроскопии При Томском Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Политехническом Институте Им.С.М.Кирова Электронный плотномер
RU2246719C1 (ru) * 2003-07-04 2005-02-20 Общество с ограниченной ответственностью "Интроскан" Способ облучения конверсионной мишени импульсами тока ускоренных электронов и устройство для его реализации
EP1603142A1 (en) * 2003-02-27 2005-12-07 Neomax Co., Ltd. Permanent magnet for particle beam accelerator and magnetic field generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2714749A1 (de) * 1976-04-02 1977-10-06 Elf Aquitaine Verfahren zum wiedergewinnen von zink aus rueckstandsloesungen
SU1135286A1 (ru) * 1983-06-06 1985-12-15 Научно-Исследовательский Институт Электронной Интроскопии При Томском Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Политехническом Институте Им.С.М.Кирова Электронный плотномер
EP1603142A1 (en) * 2003-02-27 2005-12-07 Neomax Co., Ltd. Permanent magnet for particle beam accelerator and magnetic field generator
RU2246719C1 (ru) * 2003-07-04 2005-02-20 Общество с ограниченной ответственностью "Интроскан" Способ облучения конверсионной мишени импульсами тока ускоренных электронов и устройство для его реализации

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2789164C1 (ru) * 2022-04-18 2023-01-30 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" (ФГАОУ ВО НИ ТПУ) Источник тормозного излучения
RU2789165C1 (ru) * 2022-04-19 2023-01-30 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" (ФГАОУ ВО НИ ТПУ) Источник тормозного излучения
RU2786206C1 (ru) * 2022-04-26 2022-12-19 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" (ФГАОУ ВО НИ ТПУ) Источник тормозного излучения

Similar Documents

Publication Publication Date Title
JP6714146B2 (ja) 円形加速器
RU2525442C2 (ru) Плазменный генератор и способ управления им
KR20110119727A (ko) 이온 주입에서 강화된 저 에너지 이온 빔 이송
JP4035621B2 (ja) 誘導加速装置及び荷電粒子ビームの加速方法
RU2468545C1 (ru) Источник тормозного излучения
RU2474984C1 (ru) Плазменный ускоритель с замкнутым дрейфом электронов
RU2482641C1 (ru) Источник тормозного излучения
JP6537067B2 (ja) 粒子線照射装置およびその制御方法
Mattei et al. Numerical simulation of the RF plasma discharge in the Linac4 H− ion source
RU2482642C1 (ru) Источник тормозного излучения
US8183800B2 (en) Induced voltage control device, its control method, charged particle beam orbit control device, and its control method
JP3924624B2 (ja) シンクロトロン振動周波数制御装置及びその制御方法
Kostrin Method for calculating the magnetic system of a vacuum arc installation
RU2516293C2 (ru) Бетатрон с катушкой сжатия и расширения
RU2681524C1 (ru) Способ формирования пучка ионов плазмооптического масс-сепаратора и устройство для его осуществления
WO2011065518A1 (ja) 誘導加速セクターサイクロトロン
US2773183A (en) Device for controlling the flow of electrons in a betatron
Yamazaki et al. Beam enhancement by axial magnetic field optimization of the J-PARC RF-driven H− ion source
Krasik et al. Energetic electron and ion beam generation in plasma opening switches
RU2470497C2 (ru) Бетатрон с изменяемым радиусом орбиты
JP5399763B2 (ja) 磁場発生装置及びシンクロトロン
KR100716136B1 (ko) 영구자석 필터를 이용한 이온분률 측정장치
Okamoto et al. Beam dynamics studies with non-neutral plasma traps
Kolomeytsev et al. Simulation of the Betatron Magnetic Field at the Electron Beam Displacement in Comsol Multiphysics
Coleman et al. Matching and transporting an intense ion beam through a solenoid focusing channel

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20131013