RU2468124C1 - Способ нанесения комбинированных pvd/cvd/pvd покрытий на режущий твердосплавный инструмент - Google Patents

Способ нанесения комбинированных pvd/cvd/pvd покрытий на режущий твердосплавный инструмент Download PDF

Info

Publication number
RU2468124C1
RU2468124C1 RU2011134267/02A RU2011134267A RU2468124C1 RU 2468124 C1 RU2468124 C1 RU 2468124C1 RU 2011134267/02 A RU2011134267/02 A RU 2011134267/02A RU 2011134267 A RU2011134267 A RU 2011134267A RU 2468124 C1 RU2468124 C1 RU 2468124C1
Authority
RU
Russia
Prior art keywords
titanium
coating
pvd
deposition
cvd
Prior art date
Application number
RU2011134267/02A
Other languages
English (en)
Inventor
Игорь Викторович Блинков
Алексей Олегович Волхонский
Вячеслав Николаевич Аникин
Виктор Игоревич Блинков
Ромуальд Валерьевич Кратохвил
Александр Евгеньевич Фролов
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" filed Critical Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС"
Priority to RU2011134267/02A priority Critical patent/RU2468124C1/ru
Application granted granted Critical
Publication of RU2468124C1 publication Critical patent/RU2468124C1/ru

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Изобретение относится к области упрочнения режущего твердосплавного инструмента и может быть использовано в машиностроении, в частности в технологии металлообработки. Первоначально поверхность упомянутого инструмента подвергают модифицированию ионами хрома и методом ионно-плазменного вакуумно-дугового осаждения наносят барьерный слой из хрома, затем методом химического осаждения из парогазовой фазы наносят слои, состоящие из карбида титана, карбонитрида титана и нитрида титана, проводят модифицирующую обработку ионами титана и методом ионно-плазменного вакуумно-дугового осаждения наносят финишный слой из нитрида титана при подаче на осаждаемую поверхность отрицательного потенциала 150-160 В с формированием в нем наноструктуры за счет изменения кристаллографических направлений роста зерен нитрида титана. Повышается надежность и стойкость режущего инструмента при проведении операций непрерывного и прерывистого резания. 2 ил., 3 табл., 4 пр.

Description

Данное изобретение относится к области упрочнения режущего инструмента.
Широкое применение для нанесения износостойких покрытий на рабочие поверхности режущего инструмента получили процессы химического (CVD) и физического (PVD) осаждения, каждый из которых имеет свои преимущества и недостатки, предпочтительные области применения. Метод CVD позволяет получать покрытия с высокой прочностью адгезии к подложке, плотностью и однородностью состава. Характерной структурой таких покрытий являются равноосные зерна, в большей степени адаптированные к работе в условиях непрерывного резания. Вместе с тем, для осуществления газофазных CVD процессов требуются относительно высокие температуры и длительность, которые в свою очередь являются причиной декарбидизации твердого сплава и формирования охрупчивающих фаз на границах раздела «покрытие-подложка». Кроме этого разница коэффициентов термического расширения твердосплавной основы и покрытий на основе TiC, TiN, Ti(C,N) приводит к формированию в изделии остаточных термических напряжений растяжения, которые снижают усталостную стойкость инструмента. Все это приводит к уменьшению прочности инструмента с покрытием и снижению его эффективности, особенно, для тяжело нагруженных операций резания, процессов, в которых реализуются знакопеременные нагрузки, резания труднообрабатываемых материалов.
PVD покрытия с учетом характерной столбчатой структуры и реализации в них, как правило, сжимающих напряжений лучше адаптированы к работе в условиях знакопеременных нагрузок, когда наряду с высокой твердостью требуется достаточная вязкость.
Совмещение процессов CVD/PVD осаждения покрытий позволяет более эффективно и направленно управлять структурой и свойствами покрытий и, таким образом, существенно уменьшить недостатки совмещенных методов, интегрируя при этом значительную долю их преимуществ [Composite CVD + PVD coatings /R.V.Godse, A.T.Santhanam // Materials Science and Engineering. - 1996. - V.209. - P.384-388.; Microstructural features of wear-resistant titanium-nitride coatings deposited by different methods. Sergei V.Fortuna, Yurii P.Sharkeev, Anthony J.Perry, Jesse N.Matossian, Ivan A.Shulepov // Thin Solid Films, - 2000. - V.377-378. - P.512-517.].
Наиболее близким к заявляемому способу нанесения комбинированных покрытий является способ осаждения CVD/PVD покрытий на режущий инструмент (Патент Канады 2090854 C23C). Улучшение свойств режущего инструмента по данному способу достигается путем нанесения на подложку одного или нескольких слоев покрытия методом CVD и последующего нанесения одного или нескольких слоев покрытий методом PVD.
Авторы изобретения предполагают наличие в PVD покрытии остаточных напряжений сжатия, наличие которых препятствует возникновению и распространению усталостных трещин в инструменте с CVD покрытиями, что повышает надежность режущего инструмента на операциях точения и фрезерования.
Недостатком данного способа является то, что он не исключает возможности формирования на границе раздела «подложка-слой» CVD покрытия, осаждаемого при высоких температурах (~1000°C), η-фазы, характеризующейся высокой хрупкостью, что повышает склонность режущей кромки инструмента к образованию сколов.
Кроме этого, наличие поверхностного PVD слоя приводит к снижению твердости покрытия, что в свою очередь снижает износостойкость режущей кромки инструмента в результате ее механического истирания.
Технической задачей заявляемого технического решения является повышение надежности получаемого покрытия и режущего инструмента с ним.
Технический результат заключается в повышении стойкости режущего инструмента с предлагаемыми покрытиями на операциях непрерывного (точение) и прерывистого резания (фрезерование), а также расширение областей его применения, как на точение, так и на фрезерование.
Технический результат при осуществлении изобретения достигается способом нанесения комбинированного покрытия на режущий твердосплавный инструмент, включающим осаждение слоев методом химического осаждения из парогазовой фазы и финишного слоя методом ионно-плазменного вакуумно-дугового осаждения, при этом первоначально поверхность упомянутого инструмента подвергают модифицированию ионами хрома и методом ионно-плазменного вакуумно-дугового осаждения наносят барьерный слой из хрома, затем в качестве слоев, осажденных методом химического осаждения из парогазовой фазы, наносят слои, состоящие из карбида титана, карбонитрида титана и нитрида титана, проводят модифицирующую обработку ионами титана, а в качестве финишного слоя, осажденного методом ионно-плазменного вакуумно-дугового осаждения, наносят слой из нитрида титана при подаче на осаждаемую поверхность отрицательного потенциала 150-160 В с формированием в нем наноструктуры за счет изменения кристаллографических направлений роста зерен нитрида титана.
Осаждение финишного слоя PVD покрытия из нитрида титана осуществляется в условиях, способствующих формированию в нем наноструктуры с размером кристаллитов менее 100 нм, что определяет его высокую твердость (~30 ГПа) и вязкость вследствие развитости межкристаллитных границ и блокирования ими процесса зарождения и роста хрупких трещин.
Сущность метода заключается в следующем:
1. Поверхность твердосплавных режущих пластин подвергается предварительному воздействию потока ионов Cr с энергией до 1,2-1,3 кэВ, реализуемой за счет подачи на подложку отрицательного электрического потенциала ~ -1 кВ. Эта обработка существенно снижает дефектность переходной зоны между покрытием и подложкой благодаря «распыляющему» эффекту ионной бомбардировки [Аникин В.Н., Блинков И.В., Кратохвил Р.В., Левкович Н.Г., Пацюра В.Ф. Модифицирование поверхности твердосплавных пластин ионами хрома. // X111 Межд. научно-техн. семинар «Высокие технологии: тенденции развития», 12-17 сентября 2003 г. - Харьков-Алушта: НТУ «ХПИ», 2003., с.11-13].
2. На твердосплавную инструментальную основу методом arc-PVD (ионно-плазменное вакуумно-дуговое осаждение) наносят барьерный слой из хрома толщиной ~0,5 мкм. Его назначение определяется функцией блокирования интердиффузионных процессов между подложкой и покрытием при осуществлении CVD процесса, в результате которых вероятна декарбидизация твердосплавной подложки с формированием хрупкой η-фазы (Co3W3C) на границе раздела "покрытие-подложка", приводящая к охрупчиванию режущего инструмента.
3. Осаждение по стандартной CVD технологии при температуре 1020 -1050°C из парогазовой фазы TiCl4-CH4-H2 и TiCl4-N2-H2 слоев CVD покрытия, состоящих из карбида титана, карбонитрида титана и нитрида титана.
4. Нанесение финишного PVD слоя из нитрида титана, характеризующегося наноструктурой, на установке ионно-плазменного дугового осаждения в среде реакционного газа азота (PN2=10-3 Па) при распылении катодов из Ti (BT1) дугой (I=120 А, U=20 В) с подачей на подложку отрицательного потенциала смещения ~ -160 В. При повышении отрицательного потенциала смещения, подаваемого на подложку, до -160 В при осаждении покрытий начинают конкурировать два процесса: осаждение покрытия и его распыление. Это приводит с постоянному изменению кристаллографических направлений роста зерен материала покрытий и измельчению его структуры.
Предварительно поверхностный слой CVD покрытий подвергается воздействию потока металлической плазмы (ионы Ti) с энергией до 1,1-1,2 кэВ для удаления возможных концентраторов напряжений в виде поверхностных выступов, дефектных слоев покрытия и снижения остаточных напряжений растяжения [Изменение фазового состава и структуры поверхностных слоев твердого сплава под действием ионов титана. / Аникин В.Н., Блинков И.В., Данюков А.Н., Кратохвил Р.В., Пацюра В.Ф., Скрылева Е.А. // Физика и химия обработки материалов, - 2004, - №3, - с.34-37].
Предлагаемое изобретение иллюстрируется следующими примерами, которые не ограничивают его осуществление.
Пример 1. На твердосплавную режущую пластину ТТ10К8Б наносили CVD покрытие на установке «1-Н-1», включающей вертикальную колпаковую печь косвенного нагрева и реактор. Печь и реактор размещаются на монтажном столе, к которому крепятся: испаритель четыреххлористого титана, два смесителя газов, скруббер для нейтрализации отходящих газов, двухступенчатый масляный пластинчато-роторный насос для создания вакуума в реакторе перед процессом нанесения.
В состав комплекса также входят: рампа для подсоединения баллонов с технологическими газами, установка для очистки водорода «Палладий 50Т», средства управления процессом и дозировкой газов, водоциркуляционная установка для термостатированного нагрева трубопроводов и охлаждения фланца реактора. Процесс нанесения CVD покрытий на этой установке заключается в проведении ряда последовательных гетерогенных химических реакций из газовой фазы на поверхности раздела «газ-подложка» между исходными компонентами: хлоридом титана, метаном и (или) азотом в восстановительной атмосфере водорода.
Основные параметры этого процесса: температура 1020-1050°C, время 3,5-4 часа.
Пример 2. На твердосплавную режущую пластину ТТ10К8Б после предварительной ионной обработки ионами хрома методом PVD наносили барьерный слой хрома толщиной ~0,5 мкм с последующим осаждением, как и в примере 1 CVD покрытия.
Осаждение покрытий методом PVD и модифицирование поверхности потоком ускоренных ионов проводили на установке ионно-плазменного напыления ННВ-6.6-И1 в вакууме при остаточном давлении Р=1,2 мПа. Генератором металлического ионного потока был вакуумно-дуговой источник с катодом из хрома, который распылялся дугой с током 100-120 А. Поток ионов материала катода ускорялся в направлении подложки с соответствующим увеличением энергии за счет прикладываемого к ней отрицательного потенциала смещения (опорного напряжения Uоп), равного 50-1200 В. С учетом многозарядности ионов их максимальная энергия могла составлять ~1,5 кэВ. При этом могут быть реализованы три режима ионной обработки: конденсации (осаждения) покрытия (Uоп≤140 В), смешанный (Uоп=150-400 В) и распыления подложки и покрытия (Uоп≥400 В). Режим обработки (конденсация, распыление) определялся по изменению массы образца весовым методом на аналитических весах марки «ВЛР-200г» с точностью измерения ±0,0001 г. Величина тока дуги регулировалась из условия ее устойчивого горения и обеспечения максимальной скорости эрозии катода при минимальном содержании в продуктах эрозии микрокапель, попадание которых на подложку может значительно ухудшить свойства покрытия.
Пример 3. Образцы твердого сплава ТТ10К8Б с покрытием, полученные в условиях примера 2, дополнительно подвергались дуговой ионно-плазменной обработке на установке «ННВ-6.6-И1» ионами титана, образующимися при распылении титанового катода дугой с током ~120 А при подаче на осаждаемую поверхность отрицательного потенциала смещения ~1,2 кВ с последующим осаждением при значении потенциала смещения 160 В на покрываемое изделие финишного PVD слоя из нитрида титана, характеризующегося наноструктурой.
Пример 4. На твердосплавную режущую пластину ТТ10К8Б на установках «1-Н-1» и «ННВ-6,6-И1» по прототипу наносили CVD/PVD покрытие состава CVD (TiC, TiCN, TiN)/PVD(TiN). Слои CVD покрытия осаждались из газовой фазы TiCl4-CH4-H2 и TiCl4-N2-H2 при температуре 1020-1050°C в течение 3,5-4 часов. Покрытие PVD формировалось из ионно-плазменного потока, сформированного при распылении трех титановых катодов дугой с током 120 А при подаче на осаждаемую поверхность отрицательного потенциала смещения ~120 В.
Общая толщина покрытий, сформированных в указанных примерах, составляла ~7 мкм.
Рентгеновский фазовый анализ покрытий проводили по дифрактограммам, снятым в режиме шагового сканирования на дифрактометре «ДРОН-4». Использовали СоКα-излучение, монохроматизированное отражением от графита на дифрагированном пучке.
Микроструктуру и элементный состав изучали на растровом электронном микроскопе «JSM-6700F» с приставкой «JED-2300F» (JEOL) для элементного анализа. Разрешение при исследовании микроструктуры - 1,0 нм при ускоряющем напряжении 15 кВ и 2 нм при 1 кВ.
Определение параметров субструктуры формируемых покрытий (размера блоков (ОКР) D, нм и величины микродеформаций решетки е, %) проводили по двум парам линий каждой фазы покрытия (111-222) и (111-220) методом аппроксимации по величине физического уширения β. В качестве эталона для отделения инструментального уширения использовали мелкозернистый порошок Ge.
Предел прочности при изгибе определяли методом трехточечного изгиба на разрывной машине «Р-5».
Для измерения твердости использовался метод непрерывного индентирования при малых нагрузках, который осуществляли на нанотвердомере «Nano-Hardness Tester» (CSM Instmments).
Испытания на стойкость к царапанию были проведены на приборе «REVETEST» (CSM Instruments). Прибор представляет собой автоматизированный адгезиометр, позволяющий наносить царапину и соотносить значения измеряемых параметров: акустической эмиссии, коэффициента трения, глубины проникновения индентора и остаточной глубины царапины после снятия нагрузки с величиной нормальной приложенной нагрузки, длинной и глубиной царапины. Царапание изучаемой поверхности проводили алмазным индентором типа Роквелла с радиусом закругления 200 мкм при непрерывно нарастающей нагрузке. Длина царапины - 5 мм, нарастающая нагрузка - 0,9-90 Н, скорость нагружения - 90 Н/мин.
Критическую нагрузку, которая привела к разрушению покрытия, определяли после испытания путем анализа формы (амплитуды, наклона) кривых «параметр-нагрузка», а также визуально при наблюдении царапины с помощью оптического микроскопа по появлению трещин, отслаиванию или истиранию покрытия.
Для определения коэффициентов стойкости инструментальных пластин с исследуемыми покрытиями были проведены аттестационные испытания при непрерывном и прерывистом резании на стали марки Ст.50.
Точение и фрезерование проводили в условиях сухого резания. Продольное точение осуществляли на следующих режимах: скорость резания V=230 м/мин; подача материала f=0,2 мм/оборот, глубина резания t=1 мм. В качестве критерия износа фиксировался износ на задней поверхности инструментальной пластины, допустимая величина которого составляет 0,2 мм.
Аттестационные испытания при фрезеровании проводили при глубине резания t=1 мм, подаче на зуб Sz=0,1 мм/зуб, скорости резания V=50 м/мин, частоте вращения шпинделя n=500 об/мин. Критерием отказа инструмента служил предельный износ задней поверхности пластины, равный 0,5 мм.
Показателем режущих свойств пластины с покрытием является коэффициент стойкости Кст, который определяется отношением ее стойкости, выраженной во времени, в течение которого происходит затупление пластины до установленной величины износа, к стойкости пластины из материала основы, выраженной в свою очередь во времени, в течение которого происходит затупление пластины до величины предельного износа.
На фигуре 1 показаны микроструктура и характер распределения элементов по толщине PVD/CVD/PVD покрытия (пример 3), получаемого по предлагаемому способу. Концентрационные кривые свидетельствует о наличии в структуре покрытия сплошного слоя хрома, сформированного по границе с подложкой, карбидного, карбонитридного и наружного слоя из нитрида титана.
Рентгенофазовый анализ образцов первой серии и полученных по прототипу показал присутствие в покрытии трех фаз с решеткой типа NaCl (B1) и наличие η-фазы. В образцах второй и третьей серии η-фаза отсутствовала. На рентгенограммах этих образцов присутствуют линии четырех фаз: хрома и, как и у предыдущего образца, трех фаз типа NaCl. Наличие этих фаз следует из анализа профиля дифракционной линии 220, представленной как сумма линий 220 этих фаз (пакет программ «Outset»). Отражение 220 удобно для такого анализа, так как в его окрестностях нет линий хрома, а интенсивность и угол дифракции этой линии достаточно велики для расщепления со сравнительно малой погрешностью.
Периоды решетки этих фаз, по которым они аттрибутированы как TiC, TiCN и TiN, представлены в таблице 1 (погрешность 0,005 Å) вместе со значениями периодов решетки этих фаз из банка программ «PHAN».
Результаты исследований механических свойств полученных композиций представлены в таблице 2.
Таблица 1
Периоды решетки фаз покрытия
Номер серии образца Фаза Период, м*10-10
TiC 4,318
1 TiCN 4,274
TiN 4,242
TiC 4,319
2 TiCN 4,271
TiN 4,243
TiC 4,318
3 TiCN 4,276
TiN 4,241
TiC 4,325
Табличные значения TiCN 4,273
TiN 4,240
Из таблицы 2 видно, что прочность пластин с CVD-покрытием падает примерно на 30% по сравнению с непокрытыми пластинами. Для образцов второй серии наблюдается увеличение прочности по сравнению с образцами с CVD-покрытием. По-видимому, это связано с положительным влиянием на прочность субстрата модифицирующей обработки ионами Cr, в результате которой происходит «залечивание» микротрещин, устранение шероховатости его поверхности, а также с отсутствием охрупчивающего эффекта η-фазы. Вместе с тем, эта группа образцов характеризуется некоторым уменьшением твердости. Это объясняется влиянием барьерного слоя из относительно мягкого хрома на интегральную характеристику твердости поверхностного слоя сформированного изделия (твердосплавная пластина с покрытием). Прочность образцов третьей серии уже сравнима с прочностью исходных твердосплавных пластин. Они же характеризуются максимальным значением твердости. Образцы, полученные по способу прототипу, имеют прочность несколько выше, чем у образцов с CVD покрытиями (первая серия), но значительно уступают по прочности образцам второй серии и третьей серии, полученным по предлагаемому способу.
Таблица 2
Значения твердости и прочности образцов
Образцы Твердость, ГПа Предел прочности при изгибе, МПа
Твердосплавные пластины ТТ10К8Б 13 1640
Первая серия образцов (пример 1) 27 1110
Вторая серия образцов (пример 2) 24 1300
Третья серия образцов (пример 3) 30 1580
Четвертая серия образцов (пример 4) 26 1210
О возможных причинах повышения твердости и прочности образцов третьей серии, полученных дополнительным воздействием потока плазмы при PVD осаждении нитрида титана, на поверхность сформированного CVD покрытия, можно судить по результатам исследований субструктуры фаз покрытия, представленных в таблице 3.
Таблица 3
Характеристики субструктуры фаз покрытия, имеющих структуру типа NaCl
Образец Фаза β111. гр β220. гр β222. гр Расчет no (111-222)
D, нм e, %
TiC 0,23±0,08 0,51±0,09 0,69±0,16 >250 0,23±0,05
Первая TiCN 0,39±0,12 1,06±0,30 1,34±0,50 >250 0,44±0,17
серия TiN 0,16±0,05 0,37±0,09 0,54±0,13 >250 0,18±0,04
TiC 0,14±0,09 0,26±0,08 0,37±0,10 53±14 <0,02
Вторая TiCN 0,44±0,20 1,21±0,20 1,44±0,30 >250 0,48±0,10
серия TiN 0,16±0,05 0,35±0,10 0,54±0,12 >250 0,18±0,04
TiC 0,19±0,06 0,47±0,13 1,24±0,36 >250 0,41±0,12
Третья TiCN 0,65±0,08 1,66±0,30 2,34±0,60 >250 0,77±0,20
серия TiN 0,36±0,10 0,46±0,11 0,69±0,20 29±8 <0,02
TiC 0,21±0,08 0,48±0,09 0,71±0,15 >250 0,29±0,04
Четвертая TiCN 0,37±0,11 1,97±0,25 1,31±0,41 >250 0,47±0,13
серия TiN 0,21±0,10 0,35±0,08 0,59±0,15 >250 0,21±0,10
Как видно из полученных данных, в поверхностных слоях покрытия третьей серии образцов формируется наноструктурированная фаза нитрида титана с размером блоков порядка 30 нм, которая и является, по-видимому, ответственной за возрастание твердости и прочности покрытий этой серии.
Сравнение значения отношения интенсивностей линий 111, 200 и 220 нитрида титана (I111:I200:I220) для образцов второй (1:0,9:0,9) и третьей (1:0,3;0,1) серий указывает на сильную текстуру {111} в покрытии, верхний слой которого был сформирован на основе PVD процесса (третья серия). Наличие в покрытии текстуры {111} свидетельствует о преимущественной ориентировке зерен параллельно поверхности образца плоскостями с минимальной поверхностной энергией. Это, в свою очередь, должно сводить к минимуму вероятность схватывания покрытия и материала обрабатываемого изделия.
Проведенные исследования адгезионной прочности соединения покрытия с подложкой, полученные при царапаний его индентором при увеличивающейся нормальной нагрузке, иллюстрируются характером изменения пяти параметров системы «индентор-исследуемая поверхность»: акустической эмиссии (3), силы трения (1), коэффициента трения (2), глубины проникновения индентора (4), остаточной глубины царапины (5) (фигура 2 (а) - образец первой серии; фигура 2 (б) - образец второй серии; фигура 2 (в) - образец третьей серии).
При малых нагрузках наблюдается прерывистый контакт индентора с поверхностью покрытия, который проявляется при наблюдении под микроскопом в виде округлых светлых пятен от срезанных алмазным индентором вершин выступающих зерен материала покрытия. Прерывистый контакт сопровождается отдельными акустическими импульсами, а также скачками коэффициента трения. Для образцов третьей серии такая неоднородность сигнала менее выражена.
Смена прерывистого контакта при скольжении индентора на непрерывный приводит к выпрямлению краев царапины. Переход к непрерывному контакту «индентор-поверхность» происходит для всех образцов при нагрузках 35-36 Н. С этого момента царапина имеет вид светлой сплошной полосы с четкими линиями краев.
Критические нагрузки, приведшие к разрушению покрытия, составляют, соответственно, для образцов первой, второй, третьей, четвертой серий 61, 47, 45 и 60 Н. Разрушение в условиях непрерывного контакта для образцов всех серий соответствует когезионному механизму, связанному с пластической деформацией и образованием усталостных трещин в материале покрытия. Для образцов первой и четвертой серий происходит частичное адгезионное разрушение, что связано, возможно, с образованием на границе раздела «подложка-покрытие» хрупкой η-фазы.
Отличительной особенностью образцов второй и третьей серий в процессе царапания при нагрузках, больших, чем критическая, является скачкообразное изменение коэффициента трения, глубины погружения индентора и остаточной глубины царапины. Это, по-видимому, связано с достижением индентором пластичного, относительно мягкого барьерного слоя хрома. Данное предположение подтверждается визуальными наблюдениями, свидетельствующими об увеличении отражательной способности материала на дне царапины, что характерно для вскрытого слоя металла по сравнению с нитридно-карбидным покрытием.
Аттестационные испытания исследуемых твердосплавных пластин с покрытиями при точении показали, что коэффициент стойкости всех серий образцов был более трех. Износ для задней поверхности пластин при этом составил: для образцов первой серии - 0,16 мм; второй - 0,19 мм; третьей - 0,17 мм и четвертой - 0,18 мм. Время фактической работы испытуемого лезвийного инструмента равнялось 24 мин по сравнению с 8 мин работы твердосплавной пластины без покрытия.
Полученные результаты свидетельствуют о незначительном преимуществе образцов первой серии при непрерывном резании в указанных выше условиях.
При работе же лезвийного инструмента в условиях прерывистого резания (фрезерования), когда наряду с высокой износостойкостью требуются высокая вязкость, наилучшие результаты показали образцы третьей серии, полученные по предлагаемому способу. Коэффициент стойкости их составил 3,2 против 2,2 для образцов первой серии и 2,4 образцов четвертой серии, полученных по способу-прототипу.
Полученные результаты связаны, по-видимому, с максимальным значением у образцов этой серии предела прочности при изгибе и твердости (см. таблицу 2), определяемых отсутствием η-фазы на границе раздела «подложка-покрытие», а также наличием наноструктуры поверхностного слоя PVD покрытия, которая может явиться фактором, сдерживающим зарождение и рост усталостных трещин в объеме материала покрытия.

Claims (1)

  1. Способ нанесения комбинированного покрытия на режущий твердосплавный инструмент, включающий осаждение слоев методом химического осаждения из парогазовой фазы и финишного слоя методом ионно-плазменного вакуумно-дугового осаждения, отличающийся тем, что первоначально поверхность упомянутого инструмента подвергают модифицированию ионами хрома и методом ионно-плазменного вакуумно-дугового осаждения наносят барьерный слой из хрома, затем в качестве слоев, осажденных методом химического осаждения из парогазовой фазы наносят слои, состоящие из карбида титана, карбонитрида титана и нитрида титана, проводят модифицирующую обработку ионами титана, а в качестве финишного слоя, осажденного методом ионно-плазменного вакуумно-дугового осаждения, наносят слой из нитрида титана при подаче на осаждаемую поверхность отрицательного потенциала 150÷160 В с формированием в нем наноструктуры за счет изменения кристаллографических направлений роста зерен нитрида титана.
RU2011134267/02A 2011-08-16 2011-08-16 Способ нанесения комбинированных pvd/cvd/pvd покрытий на режущий твердосплавный инструмент RU2468124C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011134267/02A RU2468124C1 (ru) 2011-08-16 2011-08-16 Способ нанесения комбинированных pvd/cvd/pvd покрытий на режущий твердосплавный инструмент

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011134267/02A RU2468124C1 (ru) 2011-08-16 2011-08-16 Способ нанесения комбинированных pvd/cvd/pvd покрытий на режущий твердосплавный инструмент

Publications (1)

Publication Number Publication Date
RU2468124C1 true RU2468124C1 (ru) 2012-11-27

Family

ID=49254897

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011134267/02A RU2468124C1 (ru) 2011-08-16 2011-08-16 Способ нанесения комбинированных pvd/cvd/pvd покрытий на режущий твердосплавный инструмент

Country Status (1)

Country Link
RU (1) RU2468124C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2548346C1 (ru) * 2013-12-30 2015-04-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Алмазный гальванический инструмент с износостойким покрытием
RU2615941C1 (ru) * 2015-12-21 2017-04-11 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ нанесения покрытий на твердые сплавы
RU2653379C2 (ru) * 2012-12-21 2018-05-08 ЭкссонМобил Рисерч энд Энджиниринг Компани Антифрикционные покрытия с улучшенными свойствами абразивного износа и истирания, и способы их получения
RU2803180C1 (ru) * 2023-05-17 2023-09-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет " СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Способ получения композиционного износостойкого покрытия на твердосплавном инструменте

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2090854A1 (en) * 1990-09-17 1992-03-18 Anakkavur T. Santhanam CVD and PVD Coated Cutting Tools
RU2029796C1 (ru) * 1992-06-26 1995-02-27 Научно-производственное предприятие "Новатех" Способ комбинированной ионно-плазменной обработки изделий
EP1160350A1 (en) * 2000-05-25 2001-12-05 Ebara Corporation Cr-containing titanium nitride film
EP1175949B1 (en) * 2000-07-24 2006-09-13 Tungaloy Corporation Coated cemented carbide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2090854A1 (en) * 1990-09-17 1992-03-18 Anakkavur T. Santhanam CVD and PVD Coated Cutting Tools
RU2029796C1 (ru) * 1992-06-26 1995-02-27 Научно-производственное предприятие "Новатех" Способ комбинированной ионно-плазменной обработки изделий
EP1160350A1 (en) * 2000-05-25 2001-12-05 Ebara Corporation Cr-containing titanium nitride film
EP1175949B1 (en) * 2000-07-24 2006-09-13 Tungaloy Corporation Coated cemented carbide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2653379C2 (ru) * 2012-12-21 2018-05-08 ЭкссонМобил Рисерч энд Энджиниринг Компани Антифрикционные покрытия с улучшенными свойствами абразивного износа и истирания, и способы их получения
RU2548346C1 (ru) * 2013-12-30 2015-04-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Алмазный гальванический инструмент с износостойким покрытием
RU2615941C1 (ru) * 2015-12-21 2017-04-11 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ нанесения покрытий на твердые сплавы
RU2803180C1 (ru) * 2023-05-17 2023-09-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет " СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Способ получения композиционного износостойкого покрытия на твердосплавном инструменте
RU2824444C1 (ru) * 2024-03-14 2024-08-07 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ изготовления режущего инструмента с износостойким коррозионно-устойчивым покрытием

Similar Documents

Publication Publication Date Title
EP3676422B1 (en) Wear resistant pvd tool coating containing tialn nanolayer films
Chang et al. Effect of interlayer design on the mechanical properties of AlTiCrN and multilayered AlTiCrN/TiSiN hard coatings
Vereschaka et al. Effect of adhesion and the wear-resistant layer thickness ratio on mechanical and performance properties of ZrN-(Zr, Al, Si) N coatings
Zhang et al. Evaluation of the adhesion and failure mechanism of the hard CrN coatings on different substrates
Kwietniewski et al. Nitrided layer embrittlement due to edge effect on duplex treated AISI M2 high-speed steel
Kumar et al. Metallurgical and mechanical characterization of TiCN/TiAlN and TiAlN/TiCN bilayer nitride coatings
JP2016522323A (ja) Cvd被膜を有する工具
Singh et al. Influence of dry micro abrasive blasting on the physical and mechanical characteristics of hybrid PVD-AlTiN coated tools
RU2468124C1 (ru) Способ нанесения комбинированных pvd/cvd/pvd покрытий на режущий твердосплавный инструмент
Huang et al. Evaluation of the fracture toughness of Ti1-xZrxN hard coatings: Effect of compositions
Bobzin et al. Influence of aluminum content on the impact fatigue of HPPMS CrAlN coatings on tool steel
Bakalova et al. The effect of the process gas mixture ratio on the structure and composition of TiC and TiCN thin layers prepared by cathodic arc deposition on tool steel
Gonzalo et al. Influence of the coating residual stresses on the tool wear
Wendler et al. Hard and superhard nanolaminate and nanocomposite coatings for machine elements based on Ti6Al4V alloy
Kong et al. Enhanced bonding property of ion-plated TiN coating on stainless steel by mechanically pre-forming a gradient nanostructure
Singh et al. Physical and mechanical characterization of mechanically treated AlTiN coatings deposited using novel arc enhanced HIPIMS technique
Kamath et al. Properties of TiAlCN/VCN nanoscale multilayer coatings deposited by mixed high-power impulse magnetron sputtering (HiPIMS) and unbalanced magnetron sputtering processes—impact of HiPIMS during coating
Blinkov et al. Acquisition and properties of wear-resistant PVD/CVD coatings on a hard-alloy tool
Arrando et al. Comparative study of high corrosion resistant TiCxN1− x and TiN hard coatings
bin Abdullah et al. Mechanical properties of Cr/CrN/CrCN/ZrN multilayer coatings by physical vapour deposition (PVD)
Moretti et al. Duplex treatment on AISI D2 tool steel: plasma nitriding and reactive deposition of TiN and TiAlN films via magnetron sputtering
JP4174841B2 (ja) 耐摩耗性被膜
EP3757252B1 (en) A coated cutting tool
Kim et al. The effects of chlorine content on the properties of titanium carbonitride thin film deposited by plasma assisted chemical vapor deposition
Horikawa et al. Industrial Arc Ion Plating and Unbalanced Magnetron Sputtering Coating Deposition: Static and Fatigue Performances of TiAlN-Coated SKH51 Tool Steel

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180817