RU2465664C1 - Способ обработки радиоактивного раствора - Google Patents

Способ обработки радиоактивного раствора Download PDF

Info

Publication number
RU2465664C1
RU2465664C1 RU2011133483/07A RU2011133483A RU2465664C1 RU 2465664 C1 RU2465664 C1 RU 2465664C1 RU 2011133483/07 A RU2011133483/07 A RU 2011133483/07A RU 2011133483 A RU2011133483 A RU 2011133483A RU 2465664 C1 RU2465664 C1 RU 2465664C1
Authority
RU
Russia
Prior art keywords
iron
solution
iii
amount
cobalt
Prior art date
Application number
RU2011133483/07A
Other languages
English (en)
Inventor
Эфроим Пинхусович Локшин (RU)
Эфроим Пинхусович Локшин
Владимир Иванович Иваненко (RU)
Владимир Иванович Иваненко
Роман Иванович Корнейков (RU)
Роман Иванович Корнейков
Original Assignee
Федеральное государственное бюджетное учреждение науки Инстиут химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Инстиут химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Инстиут химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН)
Priority to RU2011133483/07A priority Critical patent/RU2465664C1/ru
Application granted granted Critical
Publication of RU2465664C1 publication Critical patent/RU2465664C1/ru

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Изобретение относится к технологии очистки растворов от радионуклидов и может быть использовано для дезактивации жидких радиоактивных отходов. Способ обработки радиоактивного раствора заключается в следующем. Вначале в него вводят соединения железа (III) в виде хлорида или сульфата железа в количестве 0,04-0,05 моль/л с образованием железосодержащего осадка. На первой стадии вводят минимально количество минеральной кислоты: соляной или серной, а на второй стадии в раствор дополнительно вводят 0,18-0,24 г-экв/л соответствующей кислоты. Раствор выдерживают в течение не менее 120 часов при комнатной температуре или не менее 18 часов при температуре 70-95°С и вводят в него сульфид натрия в мольном количестве, в 1,5 раза превышающем количество введенного соединения железа (III), с образованием основного коллективного осадка радионуклидов кобальта и цезия и маточного раствора, содержащего органический комплексообразователь и остаточное количество радионуклидов кобальта и цезия. Маточный раствор подвергают циклу доочистки путем добавления в него соединения железа (III) в количестве 0,02-0,04 моль/л в пересчете на железо (III) и минеральной кислоты в количестве, эквивалентном содержанию натрия во введенном сульфиде натрия, выдержки полученного маточного раствора и введения в него дополнительно сульфида натрия в мольном количестве, в 1,5 раза превышающем количество дополнительно введенного железа (III), с образованием дополнительного коллективного осадка, доочищенного маточного раствора. Изобретение позволяет повысить технологичность способа за счет замены окисления органического комплексообразователя на катионное замещение в нем радионуклида кобальта, снизить число используемых реагентов при обеспечении высокой степени очистки растворов. 5 з.п. ф-лы, 4 пр.

Description

Изобретение относится к технологии очистки растворов от радионуклидов и может быть использовано для дезактивации жидких радиоактивных отходов, содержащих радионуклиды кобальта, цезия и органические комплексообразователи в виде щавелевой кислоты, лимонной кислоты, этилендиаминтетрауксусной кислоты и др.
При эксплуатации атомных реакторов и в ряде других случаев образуются жидкие радиоактивные отходы (ЖРО) сложного солевого состава, содержащие радионуклиды кобальта, цезия, стронция, и органические комплексообразователи - обычно лимонную и/или щавелевую, и/или этилендиаминтетрауксусную (ЭДТА) кислоты. Кобальт, образуя очень прочные комплексы, находится в таких ЖРО не в ионной, а в молекулярной форме и не может быть удален из ЖРО до тех пор, пока не будет переведен в ионную форму и выделен из таких комплексов в раствор. На практике для этого используются различные варианты окисления органических комплексообразователей, однако известные способы сложны, малопроизводительны и энергозатратны, что определяет необходимость разработки более эффективных технических решений.
Известен способ обработки радиоактивного раствора (см. пат. 2321909 РФ, МПК G21F 9/16 (2006.01), 2008), согласно которому иммобилизируемые долгоживущие радионуклиды, преимущественно кобальт, стронций и марганец, конвертируют в нерастворимые соединения в гидротермальных условиях, пропуская поток перерабатываемого раствора и необходимые реагенты через слой нерастворимых частиц оксидов металлов: железа, и/или марганца, и/или кобальта, и/или циркония или соли в виде гидроксилапатита со скоростью, обеспечивающей кристаллизацию синтезируемых соединений, содержащих радионуклиды, на поверхности частиц слоя. Процесс ведут в автоклаве в присутствии реагентов-окислителей: пероксида водорода, перманганата калия, хлорида марганца(II) при температуре 180-250°С и давлении 20-150 атм. После очистки 1 л раствора от радиоактивных кобальта и цезия активность раствора составляет, Бк/л 60Со - 410, 137Cs - 2000.
Недостатком данного способа является необходимость проведения процесса в автоклаве при высоких температуре и давлении, что обусловливает низкую производительность, большие энергозатраты и повышенную опасность при переработке радиоактивных растворов. Все это снижает технологичность способа.
Наиболее близким к предлагаемому является способ обработки радиоактивного раствора (см. пат. 4340499 США, МПК3 G21F 9/10, 9/12, 9/16, 1982), содержащего органические комплексообразователи и радионуклиды кобальта и цезия, согласно которому в радиоактивном растворе создают величину рН около 5 добавлением серной кислоты или натриевой щелочи, вводят перманганат калия в количестве, превышающем необходимое для окисления органических комплексообразователей, восстанавливают избыток иона МnO4 - до МnO2 добавлением сульфата марганца MnSO4 и отделяют образовавшийся осадок от раствора. Затем рН раствора повышают до 9,0-10,5 введением, например, гидроксида натрия, растворяют в воде и добавляют сначала K4Fe(CN)6, а затем NiSO4 с образованием и осаждением Ni2Fe(CN)6, который одновременно осаждает радионуклиды цезия со степенью очистки от 700 до 1000. Этот осадок отделяют от раствора, содержащего радионуклиды кобальта в форме соединений Со3+, добавляют к раствору [Со(NН3)6]Сl3 или другую соль Со3+ в щелочной среде, поддерживая рН добавлением, например, NН3 и восстанавливают Со3+ до Со2+ введением восстановительного агента, например Na2S2O4, FeSO4 или SnCl2. Затем в раствор вводят декомплексующие агенты Са2+, Sr2+, с которыми соосаждают путем добавления NH4HS радионуклиды кобальта в виде CoS с отделением кобальтсодержащего осадка от раствора. Степень очистки от кобальта составляет ≥2000. Для предотвращения повторного окисления Со2+ в Со3+ отделение радионуклидов кобальта проводят в атмосфере инертного газа.
Известный способ обеспечивает хорошую очистку радиоактивного раствора от радионуклидов кобальта и цезия, однако нетехнологичен по причине использования значительного числа реагентов, в том числе дорогих и дефицитных солей кобальта, необходимости проведения предварительного окисления органических комплексообразователей, многостадийности, образования и отделения 3 осадков разного состава с раздельной очисткой от радионуклидов кобальта и цезия, использования защитной атмосферы инертного газа.
Настоящее изобретение направлено на достижение технического результата, заключающегося в повышении технологичности способа за счет замены окисления органического комплексообразователя на катионное замещение в нем радионуклидов кобальта, совместного осаждения радионуклидов кобальта и цезия и снижения числа используемых реагентов при обеспечении высокой степени очистки раствора от радионуклидов кобальта и цезия.
Технический результат достигается тем, что в способе обработки радиоактивного раствора, содержащего радионуклиды кобальта совместно с органическим комплексообразователем и радионуклиды цезия, включающем кислотную обработку радиоактивного раствора, введение в него реагентов, в том числе железосодержащих, при поддержании заданной кислотности раствора с образованием осадков, содержащих радионуклиды кобальта и цезия и их отделение от маточного раствора, согласно изобретению, в качестве железосодержащего реагента для обработки радиоактивного раствора используют соединение железа (III), которое вводят в количестве 0,04-0,05 моль/л в пересчете на железо (III) с образованием железосодержащего осадка, после чего проводят кислотную обработку раствора в две стадии, причем на первой стадии вводят минимально необходимое для растворения железосодержащего осадка количество минеральной кислоты, а на второй стадии в раствор дополнительно вводят 0,18-0,24 г-экв/л минеральной кислоты, осуществляют выдержку очищаемого радиоактивного раствора, вводят в него сульфид натрия в мольном количестве, в 1,5 раза превышающем количество введенного железа (III), с образованием основного коллективного осадка, содержащего радионуклиды кобальта и цезия, и маточного раствора, содержащего органический комплексообразователь и остаточное количество радионуклидов кобальта и цезия, который подвергают циклу доочистки путем добавления в него соединения железа (III) в количестве 0,02-0,04 моль/л в пересчете на железо (III) и минеральной кислоты в количестве, эквивалентном содержанию натрия во введенном сульфиде натрия, выдержки полученного маточного раствора и введения в него дополнительно сульфида натрия в мольном количестве, в 1,5 раза превышающем количество дополнительно введенного железа (III), с образованием дополнительного коллективного осадка, содержащего радионуклиды кобальта и цезия, и доочищенного маточного раствора.
Технический результат достигается также тем, что в качестве комплексообразователя радиоактивный раствор содержит щавелевую, лимонную и этилендиаминтетрауксусную кислоты.
Технический результат достигается также и тем, что в качестве соединения железа (III) используют хлорид или сульфат железа.
На достижение технического результата направлено то, что в качестве минеральной кислоты используют соляную или серную кислоту.
На достижение технического результата направлено также то, что выдержку исходного радиоактивного и маточного растворов ведут в течение не менее 120 часов при комнатной температуре или не менее 18 часов при температуре 75-90°С.
Достижению технического результата способствует то, что осуществляют несколько циклов доочистки маточного раствора.
Сущность заявленного изобретения заключается в следующем. Из присутствующих в жидких радиоактивных отходах органических комплексообразователей в виде лимонной, щавелевой и этилендиаминтетрауксусной кислот наиболее прочный комплекс с ЭДТА образует катион кобальта. Цезий комплексов с присутствующими в радиоактивном растворе органическими комплексами не образует. Логарифм константы устойчивости комплекса катиона Fе3+ с ЭДТА равен 25,1, а катиона Со2+ - 16,31 при ионной силе раствора µ=0,1 и температуре 20°С (см. Г. Шварценбах. Комплексометрическое титрование. // В сб.: Комплексометрия. Теоретические основы и практическое применение. Пер. с нем. М.: Госхимиздат, 1958. С.4-155). То есть комплекс ЭДТА3-Fe3+ значительно устойчивее комплекса ЭДТА2-Со2+. Сходные зависимости имеют место для комплексов Fе3+ и Со2+ с лимонной и щавелевой кислотами. Хотя реальные ЖРО имеют значительно более высокую ионную силу, нами экспериментально установлено, что и в таких ЖРО возможно катионное замещение согласно обменной реакции
Figure 00000001
Для успешного проведения замещения Со2+ на Fe3+ в органическом комплексе необходимо обеспечить преобладающее присутствие в радиоактивном растворе вводимого железа (III) в катионной форме, поскольку при повышении кислотности оно может переходить в анионную форму, например, в виде FeCl4-. Для этого требуется точное регулирование кислотности раствора. Однако радиоактивные растворы содержат высокие концентрации нерадиоактивных солей, в том числе боратов, что не позволяет инструментальными методами достоверно измерять величину их рН. Согласно изобретению это обеспечивается двухстадийной кислотной обработкой раствора, в соответствии с которой на первой стадии вводят минимально необходимое для растворения железосодержащего осадка количество минеральной кислоты, что позволяет нивелировать различия кислотности исходных радиоактивных растворов, а на второй стадии в раствор дополнительно вводят 0,18-0,24 г-экв/л минеральной кислоты, создавая оптимальную для проведения реакции (1) кислотность. Из-за высокой устойчивости органических комплексов, содержащих кобальт, реакция (1) протекает медленно, что определяет необходимость выдержки раствора после кислотной обработки. Повышение температуры ускоряет протекание реакции (1).
После установления равновесия согласно реакции (1) в радиоактивный раствор вводят сульфид натрия Na2S, при этом в условиях кислой среды протекает реакция
Figure 00000002
Образующийся осадок, состоящий из смеси сульфида железа FeS и серы S, захватывает радионуклиды кобальта и цезия. После отделения осадка получают очищенный от радионуклидов кобальта и цезия раствор. За одну ступень обработки степень очистки от радионуклидов кобальта составляет 75,5-77,3%, а от радионуклидов цезия - 96-98%. Доочистка маточного раствора позволяет повысить степень очистки от радионуклидов кобальта и цезия до требуемых норм (см. Нормы радиационной безопасности (НРБ-99). СП.2.6.1.758-99. М.: Минздрав России, 1999. 130 с.).
Существенные признаки заявленного изобретения, определяющие объем испрашиваемой правовой охраны и достаточные для получения вышеуказанного технического результата, соотносятся с техническим результатом следующим образом.
Введение в радиоактивный раствор соединения железа (III) в количестве 0,04-0,05 моль/л в пересчете на железо (III) обеспечивает необходимую концентрацию железа для протекания реакции (1). При меньших концентрациях снижается степень замещения в органических комплексах катиона радиоактивного кобальта на катион Fe3+, при более высокой концентрации возрастает расход солей железа и сульфида натрия, не оказывая заметного влияния на степень замещения в комплексах катиона радиоактивного кобальта на катион Fe3+.
Проведение кислотной обработки раствора в две стадии позволяет обеспечить точное регулирование начальной кислотности раствора и создать необходимую кислотность для проведения затем реакции замещения радиоактивного кобальта на катион Fe3+ в комплексообразователе ЭДТА.
Введение минеральной кислоты в раствор на первой стадии в количестве, минимально необходимом для растворения железосодержащего осадка, позволяет исключить необходимость точного определения кислотности исходных растворов.
Дополнительное введение в раствор на второй стадии 0,18-0,24 г-экв/л минеральной кислоты позволяет установить требуемый уровень кислотности для проведения реакции замещения радиоактивного кобальта в комплексообразователях. При введении в раствор менее 0,18 г-экв/л минеральной кислоты возрастает доля железа (III), присутствующего в растворе в виде основных комплексов, а при введении более 0,24 г-экв/л снижается доля железа (III), присутствующего в растворе в виде катиона Fe3+, и как следствие, снижается интенсивность протекания реакции замещения.
Выдержка очищаемого радиоактивного раствора после второй стадии кислотной обработки необходима для обеспечения полноты прохождения реакции замещения катиона радиоактивного кобальта на катион Fe3+, которая протекает медленно.
Введение в очищаемый раствор сульфида натрия в мольном количестве, в 1,5 раза превышающем количество введенного соединения железа (III), обеспечивает полноту протекания реакции (2). При меньшем количестве снижается полнота образования сульфида железа и серы и, как следствие, полнота осаждения радионуклидов кобальта и цезия. Введение сульфида натрия в количестве, более чем в 1,5 раза превышающем количество введенного соединения железа (III), приведет к нерациональному с технологической точки зрения расходу сульфида натрия. В результате потребуется повышенный расход соединений железа (III) при последующих циклах очистки и возрастает количество подлежащих захоронению коллективных осадков, содержащих сульфид железа и серу наряду с радионуклидами кобальта и цезия.
Доочистка маточного раствора необходима для удаления радионуклидов кобальта и цезия до установленных норм.
Добавление в маточный раствор соединения железа (III) в количестве 0,02-0,04 моль/л в пересчете на железо (III) и минеральной кислоты в количестве, эквивалентном содержанию натрия во введенном сульфиде натрия, обеспечивает создание в маточном растворе концентрации железа (III) и кислотности, необходимых для успешного протекания реакции замещения (1).
Выдержка полученного маточного раствора позволяет, как и при очистке исходного радиоактивного раствора, достичь равновесия по реакции (1).
Введение в доочищаемый маточный раствор сульфида натрия в мольном количестве, в 1,5 раза превышающем количество молей дополнительно введенного железа (III), как и в случае образования основного осадка, обеспечивает полноту протекания реакции (2) с образованием дополнительного коллективного осадка, содержащего радионуклиды кобальта и цезия, и доочищенного маточного раствора.
Основной и дополнительный коллективные осадки, содержащие радионуклиды кобальта и цезия, перед захоронением, как правило, объединяют.
Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в повышении технологичности способа за счет замены окисления органического комплексообразователя на катионное замещение в нем радионуклидов кобальта, совместного осаждения радионуклидов кобальта и цезия и снижения числа используемых реагентов при обеспечении высокой степени очистки раствора от радионуклидов кобальта и цезия.
В частных случаях осуществления изобретения предпочтительны следующие конкретные операции и режимные параметры.
Присутствие в радиоактивном растворе в качестве комплексообразователя щавелевой, лимонной и этилендиаминтетрауксусной кислот обусловлено тем, что эти кислоты являются основными используемыми комплекосообразователями при эксплуатации и профилактике атомных реакторов.
Использование в качестве соединения железа (III) его хлорида или сульфата, а в качестве минеральной кислоты - соляной или серной обеспечивает решение задачи снижения числа реагентов и использования наиболее дешевых реагентов, не оказывая заметного влияния на ионный состав очищаемого раствора.
Выдержка исходного радиоактивного и маточного растворов в течение не менее 120 часов при комнатной температуре или не менее 18 часов при температуре 75-90°С обусловлена следующим. Выдержка раствора после кислотной обработки в течение менее 120 часов при комнатной температуре или менее 18 часов при температуре 75-90°С снижает степень протекания реакции замещения (1), а увеличение выдержки не увеличивает полноту процесса замещения и, как следствие, не повышает эффективность очистки радиоактивного раствора.
Проведение доочистки маточного раствора в течение нескольких циклов обусловлено необходимостью достижения требуемого остаточного содержания радионуклидов в очищаемом радиоактивном растворе.
Вышеуказанные частные признаки изобретения позволяют осуществить способ в оптимальном режиме с точки зрения повышения технологичности способа при обеспечении высокой степени очистки раствора от радионуклидов кобальта и цезия.
Указанные выше особенности и преимущества заявляемого изобретения могут быть более наглядно пояснены нижеследующими примерами.
Пример 1. Берут 1 л радиоактивного раствора плотностью 1,29 кг/дм3, содержащего, Бк/л: 60Со - 5·103 и Σ134Cs и 137Cs - 6.4·104 и 480 г солей в виде нитратов и боратов натрия и калия, а также органические комплексообразователи в виде смеси щавелевой, лимонной и этилендиаминтетрауксусной кислот, на окисление которых требуется 1,96 г кислорода. В раствор вводят 6,5 г (0,04 моль/л) соединения железа (III) в виде FеСl3 с образованием железосодержащего осадка, после чего осуществляют кислотную обработку раствора в две стадии. Вначале постепенно при перемешивании приливают 25 мл 38 мас.% НСl до растворения выпавшего железосодержащего осадка, затем в раствор дополнительно вводят 14 мл 38 мас.% НСl (0,18 г-экв/л), раствор выдерживают 18 часов при температуре 90°С и добавляют 4,68 г сульфида натрия Na2S (0,06 моль/л), что в 1,5 раза превышает мольное количество введенного FеСl3. Выпавший осадок содержит радионуклиды кобальта и цезия в смеси с сульфидом железа FeS и серой S. Полученный основной коллективный осадок отделяют фильтрованием от маточного раствора. Маточный раствор содержит, Бк/л: 60Со - 1,2·103 и Σ134Cs и 137Cs - 1,6·103. Степень очистки по 60Со составила 76%, по Σ134Cs и 137Cs - 97,5%.
Проводят цикл доочистки маточного раствора. В раствор вводят 6,5 г соединения железа (III) в виде FеСl3(0,04 моль/л) и 9,6 мл соляной кислоты НС1. Раствор выдерживают 18 часов при температуре 90°С, добавляют 4,68 г сульфида натрия Na2S (0,06 моль/л), что в 1,5 раза превышает мольное количество дополнительно введенного FеСl3. Выпавший осадок содержит радионуклиды кобальта и цезия в смеси с сульфидом железа FeS и серой S. Полученный дополнительный коллективный осадок отделяют фильтрованием. В доочищенном маточном растворе содержится, Бк/л: 60Со - 288 и Σ134Cs и 137Cs - 40. Степень очистки по 60Со составила 76%, по Σ134Cs и 137Cs - 97,5%. Получен очищенный раствор, соответствующий установленным нормативам. Общий расход реагентов составил: FеСl3 -13 г, Na2S - 9,36 г, 38% НСl - 48,6 мл. Общая масса высушенных основного и дополнительного радиоактивных осадков равна 9,6 г. Итоговая степень очистки составила 94,2% для кобальта и 99,94% для цезия.
Пример 2. Берут 1 л радиоактивного раствора плотностью 1,29 кг/дм3, содержащего, Бк/л: 60Со - 1,43·104 и Σ134Cs и 137Cs - 3,12·104 и 480 г солей в виде нитратов и боратов натрия и калия, а также органические комплексообразователи в виде смеси щавелевой, лимонной и этилендиаминтетрауксусной кислот, на окисление которых требуется 1,96 г кислорода. В раствор вводят 8,12 г (0,05 моль/л) соединения железа (III) в виде FеСl3 с образованием железосодержащего осадка, после чего осуществляют кислотную обработку раствора в две стадии. Вначале постепенно при перемешивании приливают 31 мл 38 мас.% НСl до растворения выпавшего железосодержащего осадка, затем в раствор дополнительно вводят 18,7 мл 38 мас.% НСl (0,24 г-экв/л), раствор выдерживают 20 часов при температуре 75°С и добавляют 5,85 г сульфида натрия Na2S (0,075 моль/л), что в 1,5 раза превышает мольное количество введенного FеСl3. Выпавший осадок содержит радионуклиды кобальта и цезия в смеси с сульфидом железа FeS и серой S. Полученный основной коллективный осадок отделяют фильтрованием от маточного раствора. Маточный раствор содержит, Бк/л: 60Со - 1430 и Σ134Cs и 137Cs - 1000, что удовлетворяет нормам радиационной безопасности. Степень очистки по 60Со составила 75,5%, по Σ134Cs и 137Cs - 96,8%.
Проводят цикл доочистки маточного раствора. В раствор вводят 6,5 г соединения железа (III) в виде FеСl3 (0,04 моль/л) и 9,6 мл соляной кислоты НСl. Раствор выдерживают 20 часов при температуре 75°С, добавляют 4,68 г сульфида натрия Na2S (0,06 моль/л), что в 1,5 раза превышает мольное количество дополнительно введенного FeCl3. Выпавший осадок содержит радионуклиды кобальта и цезия в смеси с сульфидом железа FeS и серой S. Полученный дополнительный коллективный осадок отделяют фильтрованием. В доочищенном маточном растворе содержится, Бк/л: 60Со - 350 и Σ134Cs и 137Cs - 32. Степень очистки по 60Со составила 75,5%, по Σ134Cs и 137Cs - 96,8%. Получен очищенный раствор, соответствующий установленным нормативам. Общий расход реагентов составил FеСl3 - 14,62 г, Na2S - 10, 53 г, 38% НСl - 59,3 мл. Общая масса высушенных основного и дополнительного радиоактивных осадков равна 10,8 г. Итоговая степень очистки составила 94% для кобальта и 99,9% для цезия.
Пример 3. Берут 1 л радиоактивного раствора плотностью 1,27 кг/дм3, содержащего, Бк/л: 60Со - 2,06·104 и Σ134Cs и 137Cs - 8,75·106 и 460 г солей в виде нитратов и боратов натрия и калия, а также органические комплексообразователи в виде смеси щавелевой, лимонной и этилендиаминтетрауксусной кислот, на окисление которых требуется 2,54 г кислорода. В раствор вводят 8 г соединения железа (III) в виде сульфата железа Fе2(SO4)3 (0,04 моль/л в пересчете на железо (III)) с образованием железосодержащего осадка, после чего осуществляют кислотную обработку раствора в две стадии. Вначале постепенно при перемешивании приливают 8,85 мл 98 мас.% H2SO4 до растворения выпавшего железосодержащего осадка, затем в раствор дополнительно вводят 3,6 мл 98 мас.% H2SO4 (0,2 г-экв/л), раствор выдерживают 120 часов при комнатной температуре и добавляют 4,68 г сульфида натрия Na2S (0,06 моль/л), что в 1,5 раза превышает мольное количество введенного железа (III). Выпавший осадок содержит радионуклиды кобальта и цезия в смеси с сульфидом железа FeS и серой S. Полученный основной коллективный осадок отделяют фильтрованием от маточного раствора. Маточный раствор содержит, Бк/л: 60Со - 5,08·103 и Σ134Cs и 137Cs - 1,753·105. Степень очистки по 60Со составила 76,8%, по Σ134Cs и 137Cs - 98%.
Проводят цикл доочистки маточного раствора. В раствор вводят 8 г соединения железа (III) в виде Fе2(SO4)3 (0,04 моль/л в пересчете на железо (III)) и 3,3 мл 98 мас.% H2SO4. Раствор выдерживают 120 часов при комнатной температуре, добавляют 4,68 г сульфида натрия Na2S (0,06 моль/л), что в 1,5 раза превышает мольное количество дополнительно введенного железа (III). Выпавший осадок содержит радионуклиды кобальта и цезия в смеси с сульфидом железа FeS и серой S. Полученный дополнительный коллективный осадок отделяют фильтрованием. Дочищенный маточный раствор содержит, Бк/л: 60Со - 1,255·103 и Σ134Cs и 137Cs - 3,5·105. Степень очистки по 60Со составила 76,8%, по Σ134Cs и 137Cs - 98,0%.
Проводят второй цикл доочистки маточного раствора. В раствор вводят 8 г соединения железа (III) в виде Fе2(SO4)3 (0,04 моль/л железа (III)) и 3,3 мл 98 мас.% H2SO4. Раствор выдерживают 120 часов при комнатной температуре, добавляют 4,68 г сульфида натрия Na2S (0,06 моль/л), что в 1,5 раза превышает мольное количество дополнительно введенного железа (III). Выпавший осадок содержит радионуклиды кобальта и цезия в смеси с сульфидом железа FeS и серой S. Полученный второй дополнительный коллективный осадок отделяют фильтрованием. Доочищенный маточный раствор содержит, Бк/л: 60Со - 310 и Σ134Cs и 137Cs - 70, что соответствует установленным нормативам. Степень очистки по 60Со составила 75,3%, по Σ134Cs и 137Cs - 98%. Общий расход реагентов составил: Fе2(SO4)3 - 24 г, Na2S - 14 г, 98% Н2SO4 - 19,05 мл. Общая масса высушенных основного и 2 дополнительных радиоактивных осадков равна 14,4 г. С учетом 2 циклов доочистки маточного раствора итоговая степень очистки составила 98,5% для кобальта и 99,99% для цезия.
Пример 4. Берут 1 л радиоактивного раствора плотностью 1,25 кг/дм3, содержащего, Бк/л: 60Со - 1,45·105, Σ134Cs и 137Cs - 1,48·107 и 440 г солей в виде нитратов и боратов натрия и калия, а также органические комплексообразователи в виде смеси щавелевой, лимонной и этилендиаминтетрауксусной кислот, на окисление которых требуется 3,08 г кислорода. В раствор вводят 10 г соединения железа (III) в виде Fe2(SO4)3 (0,05 моль/л железа (III)) с образованием железосодержащего осадка, после чего осуществляют кислотную обработку раствора в две стадии. Вначале постепенно при перемешивании приливают 11 мл 98 мас.% Н2SO4 до растворения выпавшего железосодержащего осадка, затем в раствор дополнительно вводят 4,3 мл 98 мас.% H2SO4 (0,24 г-экв/л), выдерживают раствор 144 часа при комнатной температуре и добавляют 5,85 г сульфида натрия Na2S (0,075 моль/л), что в 1,5 раза превышает мольное количество введенного железа (III). Выпавший осадок содержит радионуклиды кобальта и цезия в смеси с сульфидом железа FeS и серой S. Полученный основной коллективный осадок отделяют фильтрованием от маточного раствора. Маточный раствор содержит, Бк/л: 60Cо - 3,29·104 и Σ134Cs и 137Cs - 5,94·105. Степень очистки по 60Со составила 77,3%, по Σ134Cs и 137Cs - 96%.
Проводят цикл доочистки маточного раствора. В раствор вводят 4 г соединения железа (III) в виде Fе2(SO4)3 (0,02 моль/л железа (III)) и 4,1 мл 98 мас.% H2S04. Раствор выдерживают 120 часов при комнатной температуре, добавляют 2,34 г сульфида натрия Na2S (0,03 моль/л), что в 1,5 раза превышает мольное количество дополнительно введенного железа (III). Выпавший осадок содержит радионуклиды кобальта и цезия в смеси с сульфидом железа FeS и серой S. Полученный дополнительный коллективный осадок отделяют фильтрованием. Доочищенный маточный раствор содержит, Бк/л: 60Со - 7,47·103 и Σ134Cs и 137Cs - 2,38·104. Степень очистки по 60Со составила 77,3%, по Σ134Cs и 137Cs - 96%.
Проводят второй цикл доочистки маточного раствора. В раствор вводят 4 г соединения железа (III) в виде Fе2(SO4)3 (0,02 моль/л железа (III)) и 4,1 мл 98 мас.% H2SO4. Раствор выдерживают 120 часов при комнатной температуре, добавляют 2,34 г сульфида натрия Na2S (0,03 моль/л), что в 1,5 раза превышает мольное количество дополнительно введенного железа (III). Выпавший осадок содержит радионуклиды кобальта и цезия в смеси с сульфидом железа FeS и серой S. Полученный второй дополнительный коллективный осадок отделяют фильтрованием. Доочищенный маточный раствор содержит, Бк/л: 60Со - 1,70·103 и Σ134Cs и 137Cs - 950. Степень очистки по 60Со составила 77,3%, по Σ134Cs и 137Cs - 96%.
Проводят третий цикл доочистки маточного раствора. В раствор вводят 4 г соединения железа (III) в виде Fе2(SO4)3 (0,02 моль/л железа (III)) и 4,1 мл 98 мас.% Н2SO4. Раствор выдерживают 120 часов при комнатной температуре, добавляют 2,34 г сульфида натрия Na2S (0,03 моль/л), что в 1,5 раза превышает мольное количество дополнительно введенного железа (III). Выпавший осадок содержит радионуклиды кобальта и цезия в смеси с сульфидом железа FeS и серой S. Полученный третий дополнительный коллективный осадок отделяют фильтрованием. Доочищенный маточный раствор содержит, Бк/л: 60Со - 385 и Σ134Cs и 137Cs - 38, что соответствует установленным нормативам. Степень очистки по 60Со составила 77,3%, по Σ134Cs и 137Cs - 96%. Общий расход реагентов составил: Fе2(SO4)3 - 22 г, Na2S - 12,87 г, 98% Н2SO4 - 20,3 мл. Общая масса высушенных основного и 3 дополнительных радиоактивных осадков равна 13,2 г. С учетом 3 циклов доочистки маточного раствора итоговая степень очистки составила 99,73% для кобальта и 99,999% для цезия.
Из данных, приведенных в примерах, видно, что предлагаемый способ обработки радиоактивного раствора при исключении предварительного окисления органических комплексообразователей и снижении количества используемых реагентов позволяет за одну ступень обработки и один цикл доочистки маточного раствора обеспечить степень очистки от радионуклидов кобальта 94,0-94,2%, а от радионуклидов цезия - 99,90-99,94%. За 3 цикла доочистки маточного раствора итоговая степень очистки возрастает до 99,73% для кобальта и до 99,999% для цезия. Все это свидетельствует о высокой технологичности заявленного способа обработки радиоактивного раствора. Кроме того, способ относительно прост и может быть реализован с привлечением стандартного технологического оборудования.

Claims (6)

1. Способ обработки радиоактивного раствора, содержащего радионуклиды кобальта совместно с органическим комплексообразователем и радионуклиды цезия, включающий кислотную обработку исходного радиоактивного раствора, введение в него реагентов, в том числе железосодержащих, при поддержании заданной кислотности раствора с образованием осадков, содержащих радионуклиды кобальта и цезия, и их отделение от маточного раствора, отличающийся тем, что в качестве железосодержащего реагента для обработки радиоактивного раствора используют соединение железа (III), которое вводят в количестве 0,04-0,05 моль/л в пересчете на железо (III) с образованием железосодержащего осадка, после чего проводят кислотную обработку раствора в две стадии, причем на первой стадии вводят минимально необходимое для растворения железосодержащего осадка количество минеральной кислоты, а на второй стадии в раствор дополнительно вводят 0,18-0,24 г-экв/л минеральной кислоты, осуществляют выдержку очищаемого радиоактивного раствора, вводят в него сульфид натрия в мольном количестве, в 1,5 раза превышающем количество введенного железа (III), с образованием основного коллективного осадка, содержащего радионуклиды кобальта и цезия, и маточного раствора, содержащего органический комплексообразователь и остаточное количество радионуклидов кобальта и цезия, который подвергают циклу доочистки путем добавления в него соединения железа (III) в количестве 0,02-0,04 моль/л в пересчете на железо (III) и минеральной кислоты в количестве, эквивалентном содержанию натрия во введенном сульфиде натрия, выдержки полученного маточного раствора и введения в него дополнительно сульфида натрия в мольном количестве, в 1,5 раза превышающем количество дополнительно введенного железа (III), с образованием дополнительного коллективного осадка, содержащего радионуклиды кобальта и цезия, и доочищенного маточного раствора.
2. Способ по п.1, отличающийся тем, что в качестве комплексообразователя радиоактивный раствор содержит щавелевую, лимонную и этилендиаминтетрауксусную кислоты.
3. Способ по п.1, отличающийся тем, что в качестве соединения железа (III) используют хлорид или сульфат железа.
4. Способ по п.1 или 3, отличающийся тем, что в качестве минеральной кислоты используют соляную или серную кислоту.
5. Способ по п.1, отличающийся тем, что выдержку исходного радиоактивного и маточного растворов ведут в течение не менее 120 ч при комнатной температуре или не менее 18 ч при температуре 75-90°С.
6. Способ по п.1, отличающийся тем, что осуществляют несколько циклов доочистки маточного раствора.
RU2011133483/07A 2011-08-09 2011-08-09 Способ обработки радиоактивного раствора RU2465664C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011133483/07A RU2465664C1 (ru) 2011-08-09 2011-08-09 Способ обработки радиоактивного раствора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011133483/07A RU2465664C1 (ru) 2011-08-09 2011-08-09 Способ обработки радиоактивного раствора

Publications (1)

Publication Number Publication Date
RU2465664C1 true RU2465664C1 (ru) 2012-10-27

Family

ID=47147612

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011133483/07A RU2465664C1 (ru) 2011-08-09 2011-08-09 Способ обработки радиоактивного раствора

Country Status (1)

Country Link
RU (1) RU2465664C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2632924C2 (ru) * 2015-11-23 2017-10-11 Акционерное общество "Радиевый институт имени В.Г. Хлопина" Способ ликвидации аварии при разливе радиоактивных растворов

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4340499A (en) * 1979-03-14 1982-07-20 Kraftwerk Union Aktiengesellschaft Method for treating radioactive solutions
RU2185671C1 (ru) * 2001-01-10 2002-07-20 Государственное учреждение - Институт химии Дальневосточного отделения РАН Способ извлечения радионуклида стронция из водных растворов (варианты)
RU2355057C1 (ru) * 2007-09-13 2009-05-10 Федеральное государственное унитарное предприятие "Горно-химический комбинат" Способ экстракционной переработки высокоактивных отходов (вао) с фракционированием радионуклидов
US7737320B1 (en) * 2005-09-28 2010-06-15 Uchicago Argonne, Llc Composition suitable for decontaminating a porous surface contaminated with cesium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4340499A (en) * 1979-03-14 1982-07-20 Kraftwerk Union Aktiengesellschaft Method for treating radioactive solutions
RU2185671C1 (ru) * 2001-01-10 2002-07-20 Государственное учреждение - Институт химии Дальневосточного отделения РАН Способ извлечения радионуклида стронция из водных растворов (варианты)
US7737320B1 (en) * 2005-09-28 2010-06-15 Uchicago Argonne, Llc Composition suitable for decontaminating a porous surface contaminated with cesium
RU2355057C1 (ru) * 2007-09-13 2009-05-10 Федеральное государственное унитарное предприятие "Горно-химический комбинат" Способ экстракционной переработки высокоактивных отходов (вао) с фракционированием радионуклидов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2632924C2 (ru) * 2015-11-23 2017-10-11 Акционерное общество "Радиевый институт имени В.Г. Хлопина" Способ ликвидации аварии при разливе радиоактивных растворов

Similar Documents

Publication Publication Date Title
RU2514823C1 (ru) Способ обработки радиактивного раствора
RU2465664C1 (ru) Способ обработки радиоактивного раствора
Veglio Factorial experiments in the development of a kaolin bleaching process using thiourea in sulphuric acid solutions
JPH035560B2 (ru)
JP4372418B2 (ja) 核施設で形成される固体を溶解する方法
CN108046400A (zh) 一种酸性含铀废水的中和方法
Han et al. Preparation of V 2 O 5 from converter slag containing vanadium
Beheir et al. Chemical precipitation of cesium from waste solutions with iron (II) hexacyanocobaltate (III) and triphenylcyanoborate
RU2713010C1 (ru) Способ очистки азотнокислых растворов от америция
KR100404343B1 (ko) 금속함유 용액의 정제방법
JP2009247940A (ja) 硫酸塩溶液の処理方法
JPH07241404A (ja) 鉄系無機凝集剤ならびにその製造方法
JPS6042438B2 (ja) 放射性溶液の処理方法
JPH11293357A (ja) コバルト化合物の選択的回収方法
RU2348716C1 (ru) Способ извлечения ванадия
RU2608968C1 (ru) Способ переработки жидких радиоактивных отходов
RU2720703C1 (ru) Способ выделения Ni-63 из облученной мишени и очистки его от примесей
JPS6324025A (ja) ホスホニツク基含有イオン交換相を使用したインジウム、ゲルマニウム及び/又はガリウムの回収方法
JPH01171690A (ja) 鉄シアン錯体の除去方法
US10553324B2 (en) Process for the removal of 99Tc from liquid intermediate level waste of spent fuel reprocessing
JPH1099874A (ja) 6価セレンの還元方法
AU714732B2 (en) Process for treating a mixture comprising a rare-earth metal compound and radioactive elements of the radium, thorium and uranium type
JPS5944700A (ja) 放射性廃イオン交換樹脂の分解処理方法
RU2373296C2 (ru) Способ извлечения цветных металлов из водных растворов их солей
JPH1194993A (ja) 放射性物質含有廃液の処理方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200810