RU2465450C2 - Циклонный сепаратор - Google Patents

Циклонный сепаратор Download PDF

Info

Publication number
RU2465450C2
RU2465450C2 RU2008130812/03A RU2008130812A RU2465450C2 RU 2465450 C2 RU2465450 C2 RU 2465450C2 RU 2008130812/03 A RU2008130812/03 A RU 2008130812/03A RU 2008130812 A RU2008130812 A RU 2008130812A RU 2465450 C2 RU2465450 C2 RU 2465450C2
Authority
RU
Russia
Prior art keywords
supercharger
separation chamber
guide channels
core
outlet
Prior art date
Application number
RU2008130812/03A
Other languages
English (en)
Other versions
RU2008130812A (ru
Inventor
Ив ЛЕКОФФР (FR)
Ив ЛЕКОФФР
Венсан ПЕЙРОНИ (FR)
Венсан ПЕЙРОНИ
Original Assignee
Тоталь Са
Шлюмбергер Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тоталь Са, Шлюмбергер Текнолоджи Б.В. filed Critical Тоталь Са
Publication of RU2008130812A publication Critical patent/RU2008130812A/ru
Application granted granted Critical
Publication of RU2465450C2 publication Critical patent/RU2465450C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0217Separation of non-miscible liquids by centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B11/00Feeding, charging, or discharging bowls
    • B04B11/02Continuous feeding or discharging; Control arrangements therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cyclones (AREA)
  • Centrifugal Separators (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Abstract

Сепаратор содержит выполненные с возможностью вращения цилиндрическую разделительную камеру (3) и коаксиальный нагнетатель (2). Нагнетатель содержит сердечник (27), вход (25) для, по существу, осевого потока текучей среды, выход (26) для нагнетания текучей среды в разделительную камеру и направляющие каналы (28), выполненные между входом и выходом нагнетателя на периферии сердечника. Сердечник (27) содержит участок диаметром (D27), по существу, равным или превышающим внутренний диаметр (D3) разделительной камеры. На этом участке направляющие каналы выполнены прямолинейными, затем они продолжаются до выхода нагнетателя, который имеет, по существу, цилиндрическую форму с диаметром, равным внутреннему диаметру разделительной камеры (3). 2 н. и 10 з.п. ф-лы, 7 ил.

Description

Настоящее изобретение в основном относится к сепараторам циклонного типа, предназначенным для разделения несмешиваемых компонентов текучей среды.
Такой сепаратор может применяться в различных отраслях промышленности, например в области нефтедобычи. При использовании сепаратора в области нефтедобычи его помещают, например, в нефтяную скважину. В него из разрабатываемого пласта поступает содержащая воду и нефть текучая среда, из которой выделяют нефть с низким содержанием воды. Отделенную от нефти воду опять нагнетают в пласт, который может отличаться от разрабатываемого пласта, не производя ее сепарации или обработки в установке на поверхности. В представленном варианте текучие среды разделяют в скважине и поднимают их на поверхность.
Сепаратор в соответствии с настоящим изобретением имеет широкую область применения, например, его можно использовать для очистки газов от пыли.
Циклонный режим прохождения потока в камере разделения компонентов текучей среды оказывается особенно эффективным для разделения компонентов по массе. На выходе из разделительной камеры циклонного типа наиболее тяжелые компоненты стекаются на периферию, а легкие компоненты остаются в центре. В идеальном циклонном потоке тангенциальная скорость частиц текучей среды возрастает по гиперболическому закону от периферии камеры к радиусу, где она достигает своего максимального значения, а затем снижается между этим радиусом и центром камеры по линейному закону. В частности, она является ничтожно малой в центре разделительной камеры. Это приводит к радиальному ускорению частиц текучей среды, обратно пропорциональному кубу радиуса в гиперболической зоне.
В документе FR 2592324 A описан сепаратор для неоднородной жидкости, содержащий приводимые во вращение цилиндрическую разделительную камеру и коаксиальный нагнетатель. Нагнетатель содержит сердечник, вокруг которого по направляющим каналам текучая среда поступает в камеру для создания в ней циклонного потока. Преимуществом таких вращающихся сепараторов является снижение трения, связанного с разностью скоростей между стенками камеры и нагнетаемой средой, нарушающих циклонный режим.
Обычно сложно обеспечить циклонный поток по всей длине камеры.
Задачей настоящего изобретения является создание циклонных сепараторов вращающегося типа с повышенной производительностью разделения за счет полного контроля циклонного режима.
Сепаратор циклонного типа согласно первому варианту осуществления изобретения содержит приводимые во вращение цилиндрическую разделительную камеру и коаксиальный нагнетатель. Нагнетатель содержит сердечник, вход для, по существу, осевого потока текучей среды, выход для нагнетания текучей среды в разделительную камеру и множество направляющих каналов, выполненных на периферии сердечника между входом и выходом нагнетателя. Сердечник содержит участок диаметром, по существу, равным или превышающим внутренний диаметр разделительной камеры. На этом участке направляющие каналы являются, по существу, прямолинейными и параллельными оси разделительной камеры, затем они продолжаются, оставаясь, по существу, прямолинейными, до выхода из нагнетателя. Выход нагнетателя имеет, по существу, цилиндрическую форму с диаметром, по существу, равным внутреннему диаметру разделительной камеры.
Благодаря этим отличительным признакам достигаются практически идеальные условия, при которых распределение тангенциальных скоростей текучей среды по радиусу соответствует теоретическому гиперболическому закону. В этом случае поток в разделительной камере находится в циклонном режиме или близком к нему. За счет этого улучшаются характеристики сепаратора.
В других вариантах выполнения сепаратора можно использовать тот или иной из следующих отличительных признаков:
Направляющие каналы имеют, по существу, спиральную форму со стороны входа нагнетателя для постепенного приведения во вращение текучей среды вместе с разделительной камерой и нагнетателем.
Указанный участок сердечника имеет диаметр, по существу, равный внутреннему диаметру разделительной камеры.
Направляющие каналы подразделяются, начиная от указанного участка сердечника, к выходу нагнетателя.
Направляющие каналы выполнены в количестве более десяти и обычно в количестве, равном по меньшей мере двадцати на уровне выхода нагнетателя.
Другим объектом настоящего изобретения является способ добычи пластовой нефти, содержащий следующие этапы, на которых:
- в нефтедобывающей скважине устанавливают по меньшей мере один сепаратор для разделения компонентов, содержащий цилиндрическую разделительную камеру и коаксиальный нагнетатель, при этом нагнетатель содержит сердечник, вход, противоположный разделительной камере, выход, направленный к разделительной камере, и множество направляющих каналов, выполненных между входом и выходом нагнетателя на периферии сердечника, при этом сердечник содержит участок с диаметром, по существу, равным или превышающим внутренний диаметр разделительной камеры, и на этом участке направляющие каналы являются, по существу, прямолинейными и параллельными оси разделительной камеры, при этом, по существу, прямолинейные направляющие каналы продолжены от указанного участка до выхода нагнетателя, а выход нагнетателя имеет, по существу, цилиндрическую форму с диаметром, по существу равным внутреннему диаметру разделительной камеры, причем разделительная камера содержит по меньшей мере первый и второй концентричные выходы, противоположные нагнетателю;
- приводят в осевое вращение разделительную камеру и нагнетатель;
- на вход нагнетателя подают, по существу, осевой поток текучей среды, содержащей нефть и воду;
- воду удаляют на уровне первого выхода разделительной камеры;
- выделяют нефть с низким содержанием остаточной воды на уровне второго выхода разделительной камеры, при этом второй выход находится ближе к оси разделительной камеры, чем первый выход.
Другие особенности и преимущества настоящего изобретения будут более понятны из нижеследующего описания одного из его вариантов выполнения, представленного в качестве неограничивающего примера со ссылками на чертежи.
На фиг.1 схематично показан сепаратор компонентов текучей среды, вид в продольном разрезе;
на фиг.2 показана в увеличенном масштабе выходная часть разделительной камеры сепаратора, изображенного на фиг.1;
на фиг.3 показан в увеличенном масштабе нагнетатель сепаратора в соответствии с настоящим изобретением;
на фиг.4 - поперечный разрез по линии IV-IV на фиг.3;
на фиг.5 - поперечный разрез по линии V-V на фиг.3;
на фиг.6 показан нагнетатель сепаратора, вид сбоку;
на фиг.7 показан в увеличенном масштабе другой вариант выполнения нагнетателя сепаратора в соответствии с настоящим изобретением.
Как показано на фиг.1, сепаратор 1 содержит неподвижный наружный кожух 5 в основном цилиндрической формы с осью 6. В кожухе имеются вход Е для разделяемой текучей среды, первый и второй выходы S1 и S2 текучей среды соответственно. Во внутренней полости кожуха 5 соосно установлены цилиндрическая разделительная камера 3 и коаксиальный нагнетатель 2, выполненные с возможностью вращения вокруг оси 6.
Камера 3 и нагнетатель 2 входят в состав узла 11, установленного с возможностью вращения в наружном кожухе 5 на подшипниках 12. Местоположение и количество показанных на фиг.1 подшипников могут меняться. Уплотнения 13 для подвижных соединений обеспечивают герметичность между подвижным узлом 11 и неподвижным наружным кожухом 5. В показанном на фиг.1 варианте выполнения подвижный узел 11 приводится во вращение ремнем 14, связанным с двигателем 4.
Через вход Е в осевой патрубок 10 под давлением входит поток предназначенной для разделения текучей среды, такой как эмульсия вода-нефть.
В данном случае первый выход S1 выполнен в виде бокового патрубка 8 на наружном кожухе 5 сепаратора 1. Этот первый выход S1 позволяет удалять первый текучий компонент относительно высокой плотности, улавливаемый на выходе разделительной камеры 3, т.е. противоположно нагнетателю 2, на некотором расстоянии от оси 6. Второй выход S2 в данном случае выполнен в виде трубки 7 с осью 6, сообщающейся с внутренней полостью разделительной камеры 3. Этот второй выход S2 позволяет удалять второй текучий компонент более низкой плотности.
При применении в области нефтедобычи первым текучим компонентом является вода (в которой остаточное содержание нефти намного ниже, чем в эмульсии, поступающей на вход Е), а вторым текучим компонентом является нефть (в которой остаточное содержание воды намного ниже, чем в эмульсии, поступающей на вход Е).
После входа Е текучая среда (вода-нефть) поступает на вход подвижного узла 11 и далее во входную камеру 15. Затем она проходит через нагнетатель 2, который преобразует поступательное движение текучей среды во вращательное движение вокруг оси 6 со скоростью вращения, равной скорости вращения узла 11, и отбрасывается на периферию разделительной камеры 3 с тангенциальной скоростью, по существу, равной скорости стенки камеры 3.
При таком выполнении входа в разделительную камеру 3 тангенциальная скорость текучей среды в камере 3 меняется, по существу, обратно пропорционально радиусу, существенно возрастая по мере приближения к центру, то есть к оси 6. Это приводит к ускорениям, способствующим разделению текучих сред, и, в частности, к концентрации второго текучего компонента с плотностью, меньшей, чем плотность первого компонента, в области центра разделительной камеры 3 во время прохождения потока.
Первый относительно плотный текучий компонент (воду) удаляют из разделительной камеры 3 через первый кольцевой выход 31, образованный на выходе камеры 3, который сообщается с выходом S1 сепаратора через кольцевой канал 9. Эти элементы более детально показаны на фиг.2, где представлена в увеличенном масштабе правая часть фиг.1. При применении сепаратора в нефтедобывающей области удаленную таким образом воду, в которой остаточное содержание нефти может быть очень низким, опять нагнетают на уровень пласта, который может отличаться от пласта, из которого эмульсионная смесь поступает на вход Е сепаратора.
Второй текучий компонент относительно небольшой плотности (нефть) извлекают через второй выход разделительной камеры 3, который в этом примере выполнен в виде входного отверстия 32 центральной трубки 7. В данном случае трубка 7 жестко соединена с наружным кожухом 5 сепаратора и не вращается вместе с разделительной камерой 3, что упрощает конструкцию устройства (фиг.1 и 2).
В одном из вариантов выполнения оба выхода разделительной камеры 3 имеют кольцевую форму и концентричны оси камеры, например, как описано в документе FR 2771029. Возможны разные компоновки выходов разделительной камеры 3 циклонного типа. Как правило, выходы являются концентричными, и наиболее плотный текучий компонент (вода) удаляется на уровне выхода, наиболее удаленного от оси, тогда как наиболее легкий компонент (нефть) извлекается на уровне самого близкого к оси выхода. В некоторых случаях, кроме выходов для воды и нефти, предусматривают выход для газа (наименее плотная фаза, расположенная в самом центре).
Как показано на фиг.3, нагнетатель 2 сепаратора расположен между входной камерой 15 и разделительной камерой 3. Он содержит вход 25, сообщающийся с входной камерой 15, направляющие каналы 28 для текучей среды, выход 26, выходящий в разделительную камеру 3, и сердечник 27, по существу, коаксиальный оси 6 сепаратора. Сердечник 27 имеет, например, осесимметричную овальную форму в направлении входа нагнетателя для постепенной подачи текучих сред к периферии нагнетателя 2 и конусную форму в направлении разделительной камеры 3.
Как показано на фиг.4, направляющие каналы 28 ограничены лопатками 30, например радиальными, проходящими от сердечника 27 до стенки узла 11, образуя закрытые полости в плоскости фиг.4.
Как показано на фиг.5, в зоне выхода 26 лопатки 30, ограничивающие направляющие каналы 28, отходят от сердечника 27 и остаются соединенными со стенкой узла 11, образуя полости, открытые в сторону внутренней полости разделительной камеры 3 напротив конусной части сердечника 27.
В зоне выхода 26 внутренние концы радиальных лопаток 30 расположены вдоль продольных бортов 29, по существу, прямолинейных и параллельных оси 6 сепаратора. Как показано на фиг.3, эти борта 29 распределены на цилиндрической поверхности, находящейся на продолжении внутренней стороны 16 с внутренним диаметром D3 разделительной камеры 3. Именно эта цилиндрическая поверхность разделяет выход 26 нагнетателя 2 и вход разделительной камеры 3.
Таким образом, выход 26 нагнетателя 2 имеет, по существу, цилиндрическую форму с диаметром, равным внутреннему диаметру D3 разделительной камеры 3. Он ограничен отверстиями направляющих каналов 28 между бортами 29.
Между входом 25 и выходом 26 нагнетателя сердечник 27 содержит участок с диаметром D27, превышающим или равным внутреннему диаметру D3 разделительной камеры 3. Эти два диаметра D3 и D27 показаны на фиг.3 равными. На входе в разделительную камеру 3, то есть на выходе 26 нагнетателя поток текучей среды в основном имеет тангенциальную составляющую скорости. Его радиальная составляющая скорости может быть очень незначительной, если переход между наружным диаметром направляющих каналов 28 и диаметром D3 разделительной камеры является постепенным, как показано в данном примере. Благодаря конструкции выхода 26 нагнетателя 2 тангенциальная скорость текучей среды, нагнетаемой в камеру 3, является почти такой же, как и скорость стенки этой камеры, поэтому текучая среда заходит в разделительную камеру 3, не создавая трения или нежелательных завихрений.
На фиг.6 показана форма сердечника 27 и радиальных лопаток 30, ограничивающих направляющие каналы 28.
Показанный на фиг.6 нагнетатель 2 содержит направленные в сторону входа 25 направляющие каналы 28, имеющие, по существу, спиралевидную форму для постепенного приведения во вращение текучей среды вместе с узлом 11. После этого направляющие каналы 28 до выхода 26 нагнетателя 2 выполнены прямолинейными, по существу, параллельными оси 6.
Как показано на фиг.6, направляющие каналы 28 подразделяются на большее число каналов после входа 25 на участке диаметром D27, где эти каналы становятся прямолинейными и продольными.
Направляюще каналы 28 могут также подразделяться на большее число до выхода 26, чтобы еще лучше приводить во вращение текучую среду перед ее входом в разделительную камеру 3.
В показанном на фиг.6 варианте выполнения имеется пять каналов 28 на входе нагнетателя, десять направляющих каналов 28 на промежуточном участке и двадцать направляющих каналов после этого участка и до выхода 26 нагнетателя.
Предпочтительно иметь относительно большое число направляющих каналов 28 на выходе 26 нагнетателя 2, чтобы обеспечивать вход текучей среды в разделительную камеру 3 с наименьшими возмущениями. Таким образом, число направляющих каналов 28 преимущественно должно быть больше десяти. Предпочтительно это число равно или превышает двадцать.
На фиг.7 показан другой вариант выполнения нагнетателя 2, в котором диаметр D27 промежуточного участка сердечника 27 превышает диаметр D3 разделительной камеры.
Циклонный сепаратор в соответствии с настоящим изобретением можно применять для разделения любой текучей среды, содержащей несмешиваемые компоненты разной плотности, а не только для разделения эмульсии, состоящей из воды и нефти.
Выше описана текучая среда, содержащая только два текучих компонента. Разумеется, эта среда может содержать более двух компонентов разной плотности. В этом случае разделительная камера будет содержать более двух выходов, позволяющих извлекать разные текучие компоненты. Разделяемые компоненты в текучей среде могут быть не только жидкостями, такими как вода и нефть, они могут также включать газы и/или твердые частицы, находящиеся в текучей среде в виде суспензии.
В случае применения в области нефтедобычи водно-нефтяная эмульсия (которая может также содержать газ, растворенный в нефти или нагнетаемый с поверхности) поступает из промыслового пласта на вход Е сепаратора 1. Подвижный узел 11, содержащий нагнетатель 2 и разделительную камеру 3, приводится во вращение, например, от вала глубинного насоса скважины или от двигателя, находящегося вблизи сепаратора. Если сепаратор установлен в скважине, извлекаемую на выходе S2 нефть поднимают в поверхностную установку в устье скважины, тогда как воду, удаляемую на выходе S1, можно опять нагнетать на уровень пласта, который может отличаться от уровня промыслового пласта.
В альтернативном варианте можно производить разделение компонентов на дне скважины и поднимать их потом на поверхность. В другом альтернативном варианте можно поднимать эмульсию и осуществлять разделение на поверхности, например на морской нефтедобывающей платформе. Еще в одном альтернативном варианте текучую смесь перемещают до устья подводной скважины, а разделение осуществляют на морском дне.

Claims (12)

1. Сепаратор для разделения компонентов текучей среды, содержащий выполненные с возможностью вращения цилиндрическую разделительную камеру (3) и коаксиальный нагнетатель (2), включающий в себя сердечник (27), вход (25) для, по существу, осевого потока текучей среды, выход (26) для нагнетания текучей среды в разделительную камеру и множество направляющих каналов (28), выполненных между входом и выходом нагнетателя на периферии сердечника, отличающийся тем, что сердечник (27) содержит участок, диаметр которого, по существу, равен или превышает внутренний диаметр разделительной камеры (3), причем направляющие каналы (28) на этом участке выполнены, по существу, прямолинейными и параллельными оси разделительной камеры и продолжаются от указанного участка до выхода (26) нагнетателя, при этом выход нагнетателя имеет, по существу, цилиндрическую форму с диаметром, по существу, равным внутреннему диаметру разделительной камеры.
2. Сепаратор по п.1, в котором направляющие каналы (28) выполнены, по существу, спиральной формы со стороны входа (25) нагнетателя (2) для постепенного приведения во вращение текучей среды вместе с разделительной камерой и нагнетателем.
3. Сепаратор по п.1, в котором диаметр указанного участка сердечника (27), по существу, равен внутреннему диаметру разделительной камеры (3).
4. Сепаратор по п.1, в котором количество направляющих каналов (28) увеличивается в сторону выхода (26) нагнетателя, начиная от указанного участка сердечника (27).
5. Сепаратор по п.1, в котором количество направляющих каналов (28) на уровне выхода (26) нагнетателя (2) больше десяти.
6. Сепаратор по п.5, в котором количество направляющих каналов (28) на уровне выхода (26) нагнетателя (2) равно по меньшей мере двадцати.
7. Способ получения пластовой нефти, включающий следующие этапы, на которых:
- в нефтедобывающей установке устанавливают по меньшей мере один сепаратор (1) для компонентов, содержащий цилиндрическую разделительную камеру (3) и коаксиальный нагнетатель (2), включающий в себя сердечник (27), вход (25), противоположный разделительной камере, выход (26), направленный к разделительной камере, и множество направляющих каналов (28), выполненных между входом и выходом нагнетателя на периферии сердечника, при этом разделительная камера содержит по меньшей мере первый и второй концентричные выходы (31, 32), расположенные противоположно нагнетателю;
- приводят во вращение разделительную камеру (3) и нагнетатель (2) вокруг их оси (6);
- на вход (25) нагнетателя подают, по существу, осевой поток текучей среды, содержащей нефть и воду;
- удаляют воду на уровне первого выхода (31) разделительной камеры (3); и
- выделяют нефть с низким содержанием остаточной воды на уровне второго выхода (32) разделительной камеры (3), при этом второй выход находится ближе к оси (6) разделительной камеры, чем первый выход,
отличающийся тем, что на сердечнике (27) нагнетателя (2) выполняют участок, диаметр которого, по существу, равен или превышает внутренний диаметр разделительной камеры (3), а на этом участке направляющие каналы (28) выполняют, по существу, прямолинейными и параллельными оси разделительной камеры, при этом, по существу, прямолинейные направляющие каналы продолжают от указанного участка до выхода нагнетателя, а выход нагнетателя выполняют, по существу, цилиндрической формы с диаметром, по существу, равным внутреннему диаметру разделительной камеры (3).
8. Способ по п.7, в котором направляющие каналы (28) выполняют, по существу, спиральной формы со стороны входа (25) нагнетателя (2) для постепенного приведения во вращение текучей среды вместе с разделительной камерой и нагнетателем.
9. Способ по п.7, в котором диаметр указанного участка сердечника (27) выполняют, по существу, равным внутреннему диаметру разделительной камеры (3).
10. Способ по п.7, в котором количество направляющих каналов (28) увеличивают в сторону выхода (26) нагнетателя, начиная от указанного участка сердечника (27).
11. Способ по п.7, в котором направляющие каналы (28) на уровне выхода (26) нагнетателя (2) выполняют в количестве более десяти.
12. Способ по п.11, в котором направляющие каналы (28) на уровне выхода (26) нагнетателя (2) выполняют в количестве по меньшей мере двадцати.
RU2008130812/03A 2007-07-27 2008-07-25 Циклонный сепаратор RU2465450C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0705531A FR2919206B1 (fr) 2007-07-27 2007-07-27 Separateur a ecoulement cyclonique
FR0705531 2007-07-27

Publications (2)

Publication Number Publication Date
RU2008130812A RU2008130812A (ru) 2010-01-27
RU2465450C2 true RU2465450C2 (ru) 2012-10-27

Family

ID=39106103

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008130812/03A RU2465450C2 (ru) 2007-07-27 2008-07-25 Циклонный сепаратор

Country Status (8)

Country Link
US (1) US7967991B2 (ru)
CN (1) CN101380612B (ru)
BR (1) BRPI0802453A2 (ru)
CA (1) CA2637643C (ru)
FR (1) FR2919206B1 (ru)
GB (1) GB2451564B (ru)
NO (1) NO336032B1 (ru)
RU (1) RU2465450C2 (ru)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2954187B1 (fr) 2009-12-18 2014-08-01 Total Sa Separateur a ecoulement cyclonique.
BR112012022767B1 (pt) * 2010-03-09 2020-11-24 Dresser-Rand Company equipamento separador e método para separar um fluido misto de processo
CN103977917A (zh) * 2014-05-28 2014-08-13 常州大学 旋流器-离心机组合式液液分离机
CA2902548C (en) * 2015-08-31 2019-02-26 Suncor Energy Inc. Systems and method for controlling production of hydrocarbons
CN106391335B (zh) * 2016-11-02 2019-08-09 中国科学院力学研究所 一种螺旋片导流式相分离装置
CN106733234A (zh) * 2017-01-12 2017-05-31 北京大漠石油工程技术有限公司 超重力轴向旋流分离机
CN110185420B (zh) * 2018-02-22 2022-12-06 中国石油化工股份有限公司 一种阶梯连续降压增效抽油装置及方法
CN108483565A (zh) * 2018-05-29 2018-09-04 珠海市万顺睿通科技有限公司 一种水处理用混合液分离器
CN109356562B (zh) * 2018-10-17 2020-08-07 青岛理工大学 井下滤砂式气液分离装置
CN110617051A (zh) * 2019-10-31 2019-12-27 刘曾珍 倒置倒流灌装系统中的气体排出装置
CN111974027B (zh) * 2020-08-03 2022-03-18 哈尔滨工程大学 一种利用角动量守恒的管道式多级油水分离器
CN112832734B (zh) * 2020-12-30 2022-08-30 东北石油大学 一种同井注采井筒内气-液-液三级旋流分离装置
US11661833B1 (en) 2022-05-27 2023-05-30 Reynolds Lift Technologies, Llc Downhole solids separator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0037347A1 (fr) * 1980-03-21 1981-10-07 Centre Technique Industriel dit "CENTRE TECHNIQUE DE L'INDUSTRIE DES PAPIERS, CARTONS ET CELLULOSES" Procédé et dispositif pour la séparation de particules dans un fluide, notamment pour l'épuration de suspensions papetières
FR2592324A1 (fr) * 1986-01-02 1987-07-03 Total Petroles Separateur tournant a vortex pour liquide heterogene.
US5028318A (en) * 1989-04-19 1991-07-02 Aeroquip Corporation Cyclonic system for separating debris particles from fluids
FR2771029A1 (fr) * 1997-11-18 1999-05-21 Total Sa Dispositif pour la separation des constituants d'un melange heterogene
WO2005089950A1 (en) * 2004-03-19 2005-09-29 Shell Internationale Research Maatschappij B.V. Method and separator for cyclonic separation of a fluid mixture

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3415383A (en) * 1966-02-23 1968-12-10 Gen Electric Centrifugal separator
US3972352A (en) * 1972-11-10 1976-08-03 Fmc Corporation Discharge element for a liquid-gas separator unit
US3887342A (en) * 1972-11-10 1975-06-03 Fmc Corp Liquid-gas separator unit
FR2617741B1 (fr) 1987-05-19 1991-06-14 Lecoffre Yves Procede destine a effectuer la separation d'un solide dans un fluide
CN2308442Y (zh) * 1997-01-03 1999-02-24 成都建工机械股份有限公司 用于气-固分离的旋风分离装置
CN2601246Y (zh) * 2003-01-23 2004-01-28 王全喜 管式油水旋流器
NL1028238C2 (nl) 2005-02-10 2006-08-11 Flash Technologies N V Cycloonscheider en werkwijze voor het scheiden van een mengsel van vaste stof, vloeistof en/of gas.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0037347A1 (fr) * 1980-03-21 1981-10-07 Centre Technique Industriel dit "CENTRE TECHNIQUE DE L'INDUSTRIE DES PAPIERS, CARTONS ET CELLULOSES" Procédé et dispositif pour la séparation de particules dans un fluide, notamment pour l'épuration de suspensions papetières
FR2592324A1 (fr) * 1986-01-02 1987-07-03 Total Petroles Separateur tournant a vortex pour liquide heterogene.
US5028318A (en) * 1989-04-19 1991-07-02 Aeroquip Corporation Cyclonic system for separating debris particles from fluids
FR2771029A1 (fr) * 1997-11-18 1999-05-21 Total Sa Dispositif pour la separation des constituants d'un melange heterogene
WO2005089950A1 (en) * 2004-03-19 2005-09-29 Shell Internationale Research Maatschappij B.V. Method and separator for cyclonic separation of a fluid mixture

Also Published As

Publication number Publication date
CA2637643C (fr) 2015-01-20
US20090026151A1 (en) 2009-01-29
CN101380612A (zh) 2009-03-11
US7967991B2 (en) 2011-06-28
FR2919206B1 (fr) 2009-10-16
GB0813610D0 (en) 2008-09-03
NO336032B1 (no) 2015-04-20
BRPI0802453A2 (pt) 2009-05-12
NO20082818L (no) 2009-01-28
CN101380612B (zh) 2012-06-20
CA2637643A1 (fr) 2009-01-27
GB2451564B (en) 2012-01-11
GB2451564A (en) 2009-02-04
FR2919206A1 (fr) 2009-01-30
RU2008130812A (ru) 2010-01-27

Similar Documents

Publication Publication Date Title
RU2465450C2 (ru) Циклонный сепаратор
CA2639428C (en) Gas separator within esp shroud
EP1032473B1 (fr) Dispositif et procede pour la separation d'un melange heterogene
US4702837A (en) Rotary vortex separator for a heterogeneous liquid
KR101287374B1 (ko) 액체/액체/가스/고체 혼합물을 분리하기 위한 세퍼레이터
RU2185872C2 (ru) Винтовой сепаратор
NL2009299C2 (en) Apparatus for cyclone separation of a fluid flow into a gas phase and a liquid phase and vessel provided with such an apparatus.
US20020178924A1 (en) Gas separator improvements
US5616244A (en) Cyclone separator having an incorporated coalescer
CN102784728A (zh) 井下二级旋流分离器
CA2841826A1 (en) Pipeline type oil-water separator and cyclone generator for the same
US4473478A (en) Cyclone separators
CN106523477A (zh) 高效油液在线除气泡装置
EP1445025B1 (en) Separating cyclone and method for separating a mixture
US8021290B2 (en) Oil centrifuge for extracting particulates from a fluid using centrifugal force
CN105435489A (zh) 带微通道的旋流加强型立式油水分离装置及方法
US5180493A (en) Rotating hydrocyclone separator with turbulence shield
GB2403676A (en) Separation of emulsified emulsion
RU186850U1 (ru) Газосепаратор
CN106457101A (zh) 过滤气体/颗粒流
US10778064B1 (en) Magnetic bearing apparatus for separting solids, liquids and gases having different specific gravities with enhanced solids separation means
SU1260010A1 (ru) Устройство дл разделени газоводонефт ной эмульсии

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170726