RU2464643C1 - Автоматический беспилотный комплекс диагностики состояния протяженных объектов, оснащенных собственной информационной системой - Google Patents

Автоматический беспилотный комплекс диагностики состояния протяженных объектов, оснащенных собственной информационной системой Download PDF

Info

Publication number
RU2464643C1
RU2464643C1 RU2011139849/08A RU2011139849A RU2464643C1 RU 2464643 C1 RU2464643 C1 RU 2464643C1 RU 2011139849/08 A RU2011139849/08 A RU 2011139849/08A RU 2011139849 A RU2011139849 A RU 2011139849A RU 2464643 C1 RU2464643 C1 RU 2464643C1
Authority
RU
Russia
Prior art keywords
state
sensors
values
bsdspo
extended
Prior art date
Application number
RU2011139849/08A
Other languages
English (en)
Inventor
Галина Николаевна Акиньшина (RU)
Галина Николаевна Акиньшина
Олег Анатольевич Гапонов (RU)
Олег Анатольевич Гапонов
Евгений Тимофеевич Дюндиков (RU)
Евгений Тимофеевич Дюндиков
Анатолий Алексеевич Качкин (RU)
Анатолий Алексеевич Качкин
Виктор Алексеевич Месячик (RU)
Виктор Алексеевич Месячик
Сергей Иванович Сидорец (RU)
Сергей Иванович Сидорец
Original Assignee
Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации filed Critical Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации
Priority to RU2011139849/08A priority Critical patent/RU2464643C1/ru
Application granted granted Critical
Publication of RU2464643C1 publication Critical patent/RU2464643C1/ru

Links

Images

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

Изобретение относится к области воздушного мониторинга с применением беспилотных летательных аппаратов, и может быть использовано в системах дистанционного контроля состояния особо важных объектов различной конфигурации. Техническим результатом является повышение оперативности и точности диагностики состояния протяженных объектов (ПО) за счет одновременного компактного представления диагностической информации о состоянии ПО и его изменениях. В комплекс дополнительно введены преобразователи значений выходных сигналов в количественные значения признаков соответствия фактических значений диагностируемых параметров состояния ПО допустимым и программные модули, обеспечивающие формирование цветографических образов состояния ПО. 6 ил., 3 табл.

Description

Изобретение относится к области воздушного мониторинга с применением беспилотных летательных аппаратов и может быть использовано в системах дистанционного контроля состояния особо важных объектов различного назначения, государственной границы в горной местности, магистральных, региональных и локальных топливо-, нефте- и газопроводов, хранилищ, высоковольтных ЛЭП и других протяженных объектов различной конфигурации.
В последнее время возрастает актуальность оперативного получения достоверной комплексной оценки состояния протяженных, сосредоточенных или пространственно распределенных многопараметрических объектов (далее по тексту - ПО) по данным разнородной диагностической (измерительной) информации, поступающей от средств диагностики (измерения) в различных физических полях [Положение по организации и проведению комплексного диагностирования линейной части магистральных газопроводов ЕСГ, М.: ВНИИГаз, 1998 г.; Микрюков В.Ю. Безопасность жизнедеятельности, Феникс, Ростов-на-Дону, 2007 г.; Коробкин В.И., Передельский Л.В. Экология, Феникс, Ростов-на-Дону, 2007 г.].
К настоящему моменту времени предложен ряд технических решений, предназначенных для получения оценок состояния ПО.
Известна система экологического мониторинга, содержащая средства для сбора и передачи информации о состоянии различных сред, характеризующих состояние региона [Патент на изобретение, Россия, №2079891, МПК G08C 19/00, 20.05.1997 г.]. В данной системе группы датчиков экологического контроля за состоянием различных параметров среды подключены к каналам радиосвязи и к телефонной сети для передачи информации по экологическому мониторингу на центральный пункт контроля. Данная система требует значительных затрат как при ее развертывании, так и при эксплуатации. Кроме того, в предложенном техническом решении не реализовано сопряжение этой системы с компьютерными системами органов управления различного уровня, что делает невозможным обмен компьютерной, телевизионной и телефонной информацией о состоянии объектов в масштабе времени, близком к реальному.
Известен автономный измерительно-вычислительный комплекс для контроля и предупреждения нештатных ситуаций объектов [Патент на изобретение, Россия, №2318235, МПК G05D 19/02, 27.02.2008 г.], набор датчиков которого через последовательно соединенные преобразователи, фильтры и усилители подключены ко входу аналого-цифрового преобразователя, выход которого подключен к оперативной ЭВМ, управляющей приемо-передающей аппаратурой, обеспечивающей связь с центральным контроллером-накопителем. При эксплуатации данного комплекса необходимо обеспечить передачу больших потоков измерений с последующей их обработкой и анализом по методикам, вследствие чего требуются значительные временные и материальные затраты для получения достоверных результатов о штатном или нештатном функционировании объекта.
Наиболее близким аналогом к предлагаемому комплексу является «Автоматический беспилотный комплекс диагностики протяженных объектов, оснащенных собственной информационной системой» [Патент на изобретение, Россия, №2343438, G01M 3/00, 10.01.2009 г.], который и выбран в качестве прототипа.
Комплекс содержит дистанционно-пилотируемый летательный аппарат (ДПЛА) вертолетного типа, на котором установлены подсоединенные к первой информационной шине (ИШ) система автоматического управления с блоком управления бортовыми системами, система автоматического дистанционного управления полетом ДПЛА и работой его систем, бортовая система диагностики состояния протяженных объектов (БСДСПО) с комплектом бортовых датчиков и бортовая приемо-передающая аппаратура радиотелеметрической системы (БАРТС) с приемной и передающей антеннами, а также мобильный наземный пункт управления (МНПУ) ДПЛА, состоящий из подсоединенных ко второй ИШ пульта управления ДПЛА, пульта управления БСДСПО и наземной приемо-передающей аппаратуры радиотелеметрической системы (НАРТС) с приемной и передающей антеннами, при этом МНПУ подключен модемом к многоканальной линии передачи данных (МКЛПД), объединяющей центральный пункт эксплуатации протяженного объекта (ЦПЭПО), N локальных пунктов (ЛП) протяженного объекта, а также не менее чем N установленных на ЛП наземных подсистем диагностики состояния протяженного объекта (НПДСПО), каждая из которых состоит из подключенных к третьей ИШ пульта наземной диагностики (ПНД), комплекта встроенных датчиков и комплекта автономных датчиков, размещенных вблизи участка протяженного объекта, при этом ПНД подключен модемами к МКЛПД и к комплекту НАРТС.
Прототип обеспечивает диагностику состояния протяженного объекта и передачу информации о результатах диагностики в собственную информационную систему протяженного объекта из любой его точки. Однако в информационную систему протяженного объекта от комплекса поступают значительные потоки подлежащей обработке операторами диагностической информации без исключения из них несущественных данных (т.е. не содержащих информации об аномальных значениях диагностируемых параметров). Операторы собственной информационной системы отслеживают поступающую информацию в реальном масштабе времени или в записи. Данное обстоятельство ограничивает функциональные возможности комплекса в части одновременного отображения результатов допусковой оценки всех диагностируемых разнородных параметров ПО и приводит к недостаточным оперативности и точности диагностики состояния протяженных объектов.
Задачей настоящего изобретения являются расширение функциональных возможностей устройства в части одновременного компактного представления разнородной диагностической информации о состоянии протяженного объекта и его изменениях и повышение за счет этого оперативности и точности диагностики состояния протяженных объектов.
Поставленная задача решается за счет того, что в автоматический беспилотный комплекс диагностики состояния протяженных объектов, оснащенных собственной информационной системой, содержащий дистанционно-пилотируемый летательный аппарат (ДПЛА) вертолетного типа, на котором установлены подсоединенные к первой ИШ система автоматического управления с блоком управления бортовыми системами, система автоматического дистанционного управления полетом ДПЛА и работой его систем, бортовая система диагностики состояния протяженных объектов (БСДСПО) с комплектом бортовых датчиков и бортовая приемо-передающая аппаратура радиотелеметрической системы (БАРТС) с приемной и передающей антеннами, а также мобильный наземный пункт управления (МНПУ) ДПЛА, состоящий из подсоединенных ко второй ИШ пульта управления ДПЛА, пульта управления БСДСПО и наземной приемо-передающей аппаратуры радиотелеметрической системы (НАРТС) с приемной и передающей антеннами, при этом МНПУ подключен модемом к многоканальной линии передачи данных (МКЛПД), объединяющей центральный пункт эксплуатации протяженного объекта (ЦПЭПО) и N локальных пунктов протяженного объекта (ЛП), а также не менее чем N установленных на ЛП наземных подсистем диагностики состояния протяженного объекта (НПДСПО), каждая из которых состоит из подключенных к третьей ИШ пульта наземной диагностики (ПНД), комплекта встроенных датчиков и комплекта автономных датчиков, размещенных вблизи участка протяженного объекта, при этом ПНД подключены модемами к МКЛПД и к комплектам НАРТС. Новым является то, что в БСДСПО и в каждую НПДСПО дополнительно введены преобразователь значений выходных сигналов комплекта бортовых датчиков БСДСПО и автономных датчиков НПДСПО и преобразователь значений выходных сигналов комплекта встроенных датчиков НПДСПО в количественные значения признаков соответствия фактических значений диагностируемых параметров состояния протяженного объекта допустимым, который выполнен в виде последовательно соединенных блока памяти допустимых значений диагностируемых параметров, четных входов блока элементов «И» и вычислителя, при этом комплект бортовых датчиков БСДСПО и комплект встроенных датчиков НПДСПО подключены к нечетным входам соответствующих блоков элементов «И», а выходы вычислителей БСДСПО и НПДСПО подсоединены соответственно к первой и второй ИШ, а также в состав пульта управления БСДСПО МНПУ, в состав каждого ПНД НПДСПО и в ЦПЭПО дополнительно введено по одному программному модулю, обеспечивающему формирование цветографических образов (ЦГО) состояния протяженного объекта, выход которого соединен со второй, третьей и четвертой ИШ соответственно.
На фиг.1 представлен автоматический беспилотный комплекс диагностики состояния протяженных объектов, оснащенных собственной информационной системой;
на фиг.2 показано применение комплекса для диагностики состояния отдельных участков ПО;
на фиг.3 представлен объединенный ЦГО состояния ПО, сформированный на ЦПЭПО на момент времени t3.
на фиг.4 представлена схема взаимодействия БСДПО с МНПУ ДПЛА;
на фиг.5 представлена схема взаимодействия БСДСПО с НПДСПО;
на фиг.6 представлена схема взаимодействия БСДСПО с автономным датчиком при возникновении на ПО нештатной ситуации.
В таблице 1 представлены формы матриц состояния δi1, δi2 и δi3 соответственно.
Автоматический беспилотный комплекс диагностики состояния протяженных объектов, оснащенных собственной информационной системой (фиг.1), (далее по тексту - комплекс) содержит дистанционно-пилотируемый летательный аппарат (ДПЛА) вертолетного типа 1, на котором установлены подключенные ИШ 2.1 система автоматического управления с блоком управления бортовыми системами 3, система автоматического дистанционного управления полетом ДПЛА и работой его систем 4, бортовая система диагностики состояния протяженных объектов (БСДСПО) 5 с комплектом бортовых датчиков 6, преобразователь 7.1 значений выходных сигналов комплекта бортовых датчиков БСДСПО и комплекта автономных датчиков НПДСПО в количественные значения признаков соответствия фактических значений диагностируемых параметров состояния протяженного объекта допустимым (далее по тексту - преобразователь), блок элементов «И» 8.1, нечетные входы которого соединены с выходами датчиков 6, а четные входы - с блоком памяти допустимых значений диагностируемых параметров 9.1, при этом выходы блока элементов «И» 8.1 соединены со входом вычислителя 10.1, а выход вычислителя 10.1 с ИШ 2.1, бортовая приемо-передающая аппаратура радиотелеметрической системы (БАРТС) 11 с приемо-передающей антенной 12.1, а также мобильный наземный пункт управления (МНПУ) ДПЛА 13, на котором установлены подключенные к ИШ 2.2 пульт управления ДПЛА 14, пульт управления БСДСПО 15 с программным модулем 16.1, обеспечивающим формирование ЦГО состояния протяженного объекта, НАРТС 17.1 с приемо-передающей антенной 12.2, кроме того МНПУ 13 подключен модемом 18 к многоканальной линии передачи данных (МКЛПД) 19, объединяющей N локальных пунктов (ЛП) 20 протяженного объекта (ПО) 21 и центральный пункт эксплуатации протяженного объекта (ЦПЭПО) 22.
В состав собственной информационной системы протяженного объекта (фиг.1) входит ЦПЭПО 22 с НАРТС 17.2 с приемо-передающей антенной 12.2 и подключенным к ИШ 2.4 программным модулем 16.2, обеспечивающим формирование ЦГО состояния протяженного объекта, не менее чем N наземных подсистем диагностики состояния протяженного объекта (НПДСПО) 23, каждая из которых включает подключенные к ИШ 2.3 пульт наземной диагностики (ПНД) 24, компьютер которого осуществляет сбор, хранение, обработку и отображение (с помощью программного модуля 16.3) данных о состоянии участка ПО 21 в виде ЦГО, комплект встроенных датчиков 25, информация с которых по проводным и/или беспроводным каналам связи выводится на ПНД 24, преобразователь 7.2 значений выходных сигналов комплекта встроенных датчиков 25 НПДСПО в количественные значения признаков соответствия фактических значений диагностируемых параметров состояния протяженного объекта допустимым, блок элементов «И» 8.2, нечетные входы которого соединены с выходами датчиков 25, а четные входы - с блоком памяти допустимых значений диагностируемых параметров 9.2, при этом выходы блока элементов «И» 8.2 соединены со входом вычислителя 10.2, а выход вычислителя 10.2 с ИШ 3.1, и комплект размещенных вблизи участка ПО 21 автономных датчиков 26, снабженных накопителем информации и маломощной радиоаппаратурой (модемом) передачи информации с них на ДПЛА 1. ПНД 24 расположены в локальных пунктах 20 и информационно соединены между собой МКЛПД 19, кроме того ПНД 24 подключен модемом к НАРТС 17.3 с приемо-передающей антенной 12.4. В качестве локальных пунктов 20 могут быть, например перекачивающие станции, распределительные подстанции, пульты охраны, контрольно-пропускные пункты, погранзаставы и другие узловые элементы эксплуатации ПО 21.
Работа автоматического беспилотного комплекса диагностики состояния протяженных объектов, оснащенных собственной информационной системой, осуществляется следующим образом (фиг.2…6).
При подготовке к работе на ДПЛА 1 в соответствии с его грузоподъемностью, дальностью полета и полетным заданием устанавливается комплект БСДСПО 5 для дистанционного сбора информации (выполненные известными способами фотографические, телевизионные, инфракрасные, радиолокационные, радиационные, магнитометрические, лазерные сканирующие, ультрафиолетовые и другие дистанционные датчики в различном сочетании). После ввода в систему автоматического управления 2 ДПЛА 1 электронной карты объекта, полетного задания и заправке ДПЛА 1 на предлагаемом комплексе дополнительно выполняются следующие семь операций.
Первая операция: Ввод в полетное задание набора идентификаторов ID={IU, IP, IA, IY}, где IU={IUi}, i=1, …, I - идентификаторы участков ПО, IP={IPkn}, n=1, …, N - идентификаторы ЛП, IA={IAid}, d=1, …, D - идентификаторы автономных датчиков и IY={IYij}, j=1, …, J - идентификаторы диагностируемых параметров состояния ПО.
Вторая операция: Ввод в блок памяти 9.1 преобразователя 7.1 БСДСПО 5 двух матриц, первая из которых
Figure 00000001
содержит нижние и верхние границы интервалов допустимых значений для параметров
Figure 00000002
состояния участков ПО 21, подлежащих диагностике с помощью комплекта бортовых датчиков 6 БСДСПО 5; а вторая матрица
Figure 00000003
- нижние и верхние границы интервалов допустимых значений для параметров
Figure 00000004
состояния участков ПО 21, подлежащих диагностике с помощью комплекта автономных датчиков 26 НПДСПО 23 соответственно.
Третья операция: Ввод в вычислитель 10.1 преобразователя 7.1 БСДСПО 5 унифицированных правил (выражение 1), обеспечивающих:
преобразование собранных комплектом бортовых датчиков 6 БСДСПО 5 данных о состоянии участка ПО 21 в количественные значения признаков соответствия или несоответствия фактических значений продиагностированных параметров данного участка допустимым (далее по тексту - признаки соответствия);
Figure 00000005
Figure 00000006
;
формирование матрицы состояния δi1, элементам которой присваивают количественные значения признаков соответствия
Figure 00000007
.
Четвертая операция: Ввод в вычислитель 10.1 преобразователя 7.1 БСДСПО 5 унифицированных правил (выражение 2), обеспечивающих:
преобразование собранных автономными датчиками 6 БСДСПО 5 данных о состоянии участка ПО 21 в количественные значения признаков соответствия;
Figure 00000008
Figure 00000009
формирование матрицы состояния δi2, элементам которой присваивают количественные значения признаков соответствия
Figure 00000010
.
Пятая операция: Ввод в блок памяти 9.2 преобразователя 7.2 НПДСПО 23 матрицы
Figure 00000011
, содержащей нижние и верхние границы интервалов допустимых значений для параметров
Figure 00000012
состояния участков ПО 21, подлежащих диагностике с помощью комплекта встроенных датчиков 25 НПДСПО 23.
Шестая операция: ввод в вычислители 10.2 преобразователей 7.2 НПДСПО 23 совокупности унифицированных правил (выражение 3), обеспечивающих:
преобразование собранных комплектом встроенных датчиков 25 НПДСПО 23 данных о состоянии участка ПО 21 в количественные значения признаков соответствия;
Figure 00000013
Figure 00000014
;
формирование матрицы состояния δi3, элементам которой присваивают количественные значения признаков соответствия
Figure 00000015
.
Седьмая операция: ввод в программные модули 16.1, 16.2 и 16.3 совокупности правил (выражение 4), обеспечивающих:
формирование на ЦПЭПО 23 ЦГО состояния ПО 21 (фиг.3);
формирование на МНПУ 13 ЦГО состояния участков ПО 21 и состояния ПО 21;
формирование на ПНД 24 НПДСПО 23 ЦГО состояния участков ПО 21;
Figure 00000016
где
Figure 00000017
,
J - количество диагностируемых параметров состояния ПО;
ω - градусная мера радиана.
После выполнения вышеуказанных дополнительных операций ДПЛА 1 совершает автоматический маловысотный полет над объектом на высоте 5…50 м со скоростью от 0 до 100…140 км/час. В каждом полете диагностируется участок ПО 21 в пределах дальности полета ДПЛА 1. Информация о состоянии этого участка протяженного объекта 21 поступает на борт ДПЛА 1 от комплекта бортовых датчиков 6 БСДСПО 5, а также по радиоканалам 31 БАРТС 11 по ее запросу от комплекта автономных датчиков 26 НПДСПО 23 во время пролета ДПЛА 1 над этими датчиками.
Далее непосредственно на ДПЛА 1 реализовано оперативное (в масштабе времени, близком к реальному) объединение и компактное представление разнородных данных о состоянии участка протяженного объекта в виде матрицы состояния δi1 (таблица 1) и/или матрицы состояния δi2 (таблица 2) и последующая передача данных матриц в соответствии со схемой взаимодействия, приведенной на фиг.4, через БАРТС 11 по радиоканалу 30 на НАРТС 18.1 МНПУ 13 и/или в соответствии со схемой взаимодействия, приведенной на фиг.5, на НАРТС 18.3 ближайшего к ДПЛА 1 локального пункта 20 и далее по МКЛПД 19 на ЦПЭПО 22. С этой целью вся полученная ДПЛА 1 информация о состоянии участка ПО 21 подвергается дополнительной обработке, заключающейся в том, что измеренные датчиками 6 и автономными датчиками 26 значения параметров
Figure 00000018
и/или
Figure 00000019
поступают в преобразователь 7.1, где вычисляются количественные значения признаков соответствия. При этом с помощью блока элементов «И» 8.1 и блока памяти 9.1 допустимых значений диагностируемых параметров проверяется выполнение условий
Figure 00000020
или
Figure 00000021
, a c помощью вычислителя 10.1 в соответствии с выражениями (1) или (2) определяют величины
Figure 00000022
и
Figure 00000023
или
Figure 00000024
и
Figure 00000025
являющиеся признаками соответствия. Затем вычислитель 10.1 формирует матрицу состояния δi1 или матрицу состояния δi2, элементам которых присваивают вычисленные значения признаков соответствия
Figure 00000026
или
Figure 00000027
. Таким образом, на МНПУ 13 и на ЦПЭПО 22 операторам для обработки поступают только матрицы состояния δi1 и δi2, а не весь массив поступающей на ДПЛА 1 диагностической информации, как это реализовано в прототипе. Данное обстоятельство существенно снижает уровень загрузки используемых в прототипе радиотелеметрических систем и многоканальной линии передачи данных.
Технический результат достигается также тем, что за счет введения в состав каждого ПНД 24 НПДСПО 23 преобразователя 7.2 обеспечивается оперативное (в масштабе времени, близком к реальному) объединение и компактное представление полученных комплектом встроенных датчиков 22 разнородных данных о состоянии участка ПО 21 в виде матрицы состояния δi3 (табл.3), которая по МКЛПД 19 поступает на ЦПЭПО 22. С этой целью вся полученная комплектом встроенных датчиков 25 информация
Figure 00000028
о состоянии участка ПО 21 поступает в преобразователь 7.2, где вычисляются количественные значения признаков соответствия. При этом с помощью блока элементов «И» 8.2 и блока памяти 9.2 допустимых значений диагностируемых параметров проверяется выполнение условия
Figure 00000029
, а с помощью вычислителя 10.1 в соответствии с выражением (3) определяют величины
Figure 00000030
и
Figure 00000031
, являющиеся признаками соответствия. Затем вычислитель 10.2 формирует матрицу состояния δi3, элементам которых присваивают вычисленные значения признаков соответствия
Figure 00000032
. Далее по МКЛПД 19 осуществляется передача сформированой матрицы состояния δi3 на ЦПЭПО 22. Таким образом, на ЦПЭПО 22 от НПДСПО 23 для обработки операторами поступают только матрицы состояния δi3, а не весь массив поступающей на НПДСПО 23 диагностической информации, как это реализовано в прототипе. Данное обстоятельство дополнительно снижает уровень загрузки используемой в прототипе многоканальной линии передачи данных.
В заявляемом комплексе операторы на МНПУ 13 и на ЦПЭПО 22 после получения матриц состояния δi1, δi2 и δi3 (только для ЦПЭПО), используя программные модули 16.1 и/или 16.2, входящие в состав пульта управления БСДСПО 16 МНПУ 13 и/или в ЦПЭПО 21, формируют и отображают ЦГО состояния ПО 21 в виде фиг.3 соответственно. Таким образом, достигается наглядность (понятность) представления вида состояния протяженного объекта, что позволяет операторам практически в реальном масштабе времени выявлять факты возникновения нештатных ситуаций на участке ПО 21. Для этого оператору достаточно обнаружить на сформированном ЦГО изломы линии в местах расположения меток, не находящихся на окружности единичного радиуса (например, метку 6 на фиг.3), и далее прервать автоматический полет ДПЛА 1 и ввести режим дистанционного управления ДПЛА 1, при котором ДПЛА 1 может зависнуть над интересующим участком ПО 21 или кружить над ним для детального уточнения ситуации. При этом информация о состоянии этого участка ПО 21 поступает на борт ДПЛА 1 или от датчика 6 БСДСПО 5 - источника
Figure 00000033
или по радиоканалу 31 БАРТС 11 от автономного датчика 26 - источника
Figure 00000034
в соответствии с приведенной на фиг.6 схемой взаимодействия автономных датчиков 26 с БСДСПО 5 в нештатной ситуации. После обработки в преобразователе 7.1 измеренных датчиками 6 или 26 значений
Figure 00000035
или
Figure 00000036
на МНПУ 13 и в ЦПЭПО по радиотелеметрическим каналам 30 поступают уточненные матрицы состояния δi1 или δi2, которые используются операторами МНПУ 13 и ЦПЭПО для изменения координат метки на ЦГО с помощью программных модулей 16.1 и/или 16.2. После неоднократного применения предлагаемого комплекса для диагностики состояния ПО 21 на ЦПЭПО 22 с использованием программного модуля 17.2 будет сформировано несколько объединенных ЦГО состояния протяженного объекта и осуществлено их совмещение (см. фиг.3), что позволит более точно определять числовые характеристики тенденций изменения и корреляционные свойства диагностируемых параметров протяженного объекта.
Таким образом, совокупность существенных признаков предлагаемого комплекса проявляет новые свойства устройства, заключающиеся в том, что:
дополнительная установка на ДПЛА и в каждую наземную подсистему диагностики преобразователя значений выходных сигналов комплекта бортовых датчиков БСДСПО и комплекта автономных датчиков НПДСПО и преобразователя значений выходных сигналов комплекта встроенных датчиков НПДСПО в количественные значения признаков соответствия фактических значений диагностируемых параметров состояния протяженного объекта допустимым позволит оперативно (в масштабе времени, близком к реальному) получить, объединить и компактно представить в виде матрицы разнородные данные о состоянии протяженного объекта и его изменениях, полученные в результате осуществления различных видов диагностики вне зависимости от количества диагностируемых параметров, их физической сущности и единиц измерения, что существенно снижает уровень загрузки используемых в прототипе радиотелеметрических систем и многоканальной линии передачи данных;
дополнительный ввод в состав пульта управления БСДСПО МНПУ, в состав каждого ПНД НПДСПО и в центральный пункт эксплуатации протяженного объекта программных модулей, обеспечивающих формирование ЦГО состояния как отдельных частей протяженного объекта, так и протяженного объекта в целом, совмещение сформированных в различные временные интервалы ЦГО повышает наглядность (понятность) представления вида состояния протяженного объекта и позволяет более точно определять числовые характеристики тенденций изменения и корреляционные свойства диагностируемых параметров протяженного объекта.
Проведенный анализ уровня техники позволил установить, что аналоги, характеризующиеся совокупностью признаков, идентичных всем признакам заявляемого технического решения, отсутствуют, что указывает на соответствие заявляемого изобретения критерию охраноспособности «новизна».
Результаты поиска известных решений в данной и смежных областях техники с целью выявления признаков, совпадающих с отличительными признаками заявляемого комплекса, показали, что в общедоступных источниках информации не выявлены решения, имеющие признаки, совпадающие с его отличительными признаками.
Из уровня техники также не подтверждена известность влияния отличительных признаков заявляемого изобретения на указанный заявителем технический результат, следовательно, заявляемое изобретение соответствует условию «изобретательский уровень».
Предлагаемое техническое решение промышленно применимо, так как для его реализации могут быть использованы стандартные комплектующие и языки программирования общего пользования.

Claims (1)

  1. Автоматический беспилотный комплекс диагностики состояния протяженных объектов, оснащенных собственной информационной системой, содержащий дистанционно пилотируемый летательный аппарат (ДПЛА) вертолетного типа, на котором установлены подсоединенные к первой информационной шине (ИШ) система автоматического управления с блоком управления бортовыми системами, система автоматического дистанционного управления полетом ДПЛА и работой его систем, бортовая система диагностики состояния протяженных объектов (БСДСПО) с комплектом бортовых датчиков и бортовая приемопередающая аппаратура радиотелеметрической системы (БАРТС) с приемной и передающей антеннами, а также содержит мобильный наземный пункт управления (МНПУ) ДПЛА, состоящий из подсоединенных ко второй ИШ пульта управления ДПЛА, пульта управления БСДСПО и наземной приемопередающей аппаратуры радиотелеметрической системы (НАРТС) с приемной и передающей антеннами, при этом МНПУ ДПЛА подключен модемом к многоканальной линии передачи данных (МКЛПД), объединяющей центральный узел эксплуатации протяженного объекта (ЦПЭПО) и N локальных пунктов протяженного объекта (ЛП), а также не менее чем N установленных на ЛП наземных подсистем диагностики состояния протяженных объектов (НПДСПО), каждая из которых состоит из пульта наземной диагностики (ПНД) и комплекта встроенных датчиков, подсоединенных к третьей ИШ, и размещенных вблизи участка протяженного объекта комплекта автономных датчиков, при этом ПНД подключен модемом к МКЛПД и к НАРТС с приемной и передающей антеннами, отличающийся тем, что в БСДСПО и в каждую НПДСПО дополнительно введены преобразователь значений выходных сигналов комплекта бортовых датчиков БСДСПО и комплекта автономных датчиков НПДСПО и преобразователь значений выходных сигналов комплекта встроенных датчиков НПДСПО в количественные значения признаков соответствия фактических значений диагностируемых параметров состояния протяженного объекта допустимым, который выполнен в виде последовательно соединенных блока памяти допустимых значений диагностируемых параметров, четных входов блока элементов «И» и вычислителя, при этом комплект бортовых датчиков БСДСПО и комплект встроенных датчиков НПДСПО подключены к нечетным входам соответствующих блоков элементов «И», выходы вычислителей БСДСПО и НПДСПО подсоединены соответственно к первой и четвертой ИШ, а также в состав пульта управления БСДСПО МНПУ, в состав каждого ПНД НПДСПО и в ЦПЭПО дополнительно введено по одному подсоединенному соответственно ко второй, третьей и четвертой ИШ программному модулю, обеспечивающему формирование цветографических образов (ЦГО) состояния протяженного объекта.
RU2011139849/08A 2011-09-30 2011-09-30 Автоматический беспилотный комплекс диагностики состояния протяженных объектов, оснащенных собственной информационной системой RU2464643C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011139849/08A RU2464643C1 (ru) 2011-09-30 2011-09-30 Автоматический беспилотный комплекс диагностики состояния протяженных объектов, оснащенных собственной информационной системой

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011139849/08A RU2464643C1 (ru) 2011-09-30 2011-09-30 Автоматический беспилотный комплекс диагностики состояния протяженных объектов, оснащенных собственной информационной системой

Publications (1)

Publication Number Publication Date
RU2464643C1 true RU2464643C1 (ru) 2012-10-20

Family

ID=47145532

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011139849/08A RU2464643C1 (ru) 2011-09-30 2011-09-30 Автоматический беспилотный комплекс диагностики состояния протяженных объектов, оснащенных собственной информационной системой

Country Status (1)

Country Link
RU (1) RU2464643C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2079891C1 (ru) * 1992-11-23 1997-05-20 Сергей Владимирович Баронкин Экологическая система сбора информации о состоянии региона
US6654709B2 (en) * 1999-04-20 2003-11-25 Fujitsu Limited Automatic remote monitoring system for setting a near-end value
RU2343438C1 (ru) * 2007-06-08 2009-01-10 Открытое акционерное общество "Камов" Автоматический беспилотный комплекс диагностики протяженных объектов, оснащенных собственной информационной системой
RU2428722C2 (ru) * 2009-07-13 2011-09-10 Общество с ограниченной ответственностью "ТРАНС-СЕРВИС" Способ дистанционной диагностики магистральных трубопроводов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2079891C1 (ru) * 1992-11-23 1997-05-20 Сергей Владимирович Баронкин Экологическая система сбора информации о состоянии региона
US6654709B2 (en) * 1999-04-20 2003-11-25 Fujitsu Limited Automatic remote monitoring system for setting a near-end value
RU2343438C1 (ru) * 2007-06-08 2009-01-10 Открытое акционерное общество "Камов" Автоматический беспилотный комплекс диагностики протяженных объектов, оснащенных собственной информационной системой
RU2428722C2 (ru) * 2009-07-13 2011-09-10 Общество с ограниченной ответственностью "ТРАНС-СЕРВИС" Способ дистанционной диагностики магистральных трубопроводов

Similar Documents

Publication Publication Date Title
CN1129006C (zh) 识别干扰辐射的装置
CN109961157B (zh) 太阳能光伏发电系统的巡检方法及系统
CN107111313B (zh) 用无人驾驶飞行器检查太阳能电池板
CN108981825B (zh) 一种基于NB-loT的输电杆塔监测装置、系统及方法
CN203219298U (zh) 一种适用于山区电网巡检的专用无人直升机系统
RU2314553C1 (ru) Система оценки точностных характеристик бортовой радиолокационной станции
CN103353297A (zh) 输电线路与目标尺寸及间距的机载光电测量装置及其方法
CN106525081B (zh) 用于卫星导航着陆系统的便携式检测标定装置及方法
CN104749659A (zh) 一种自动气象站现场核查仪及其核查方法
CN104597907A (zh) 一种架空输电线路无人机巡检系统飞行准确性评价方法
CN108845256A (zh) 无人机动力测试系统
KR101347839B1 (ko) 수질 모니터링 비행체 및 수질 모니터링 시스템
CN114509063A (zh) 多星分布式信息融合系统的多星联合测试方法及系统
RU2464643C1 (ru) Автоматический беспилотный комплекс диагностики состояния протяженных объектов, оснащенных собственной информационной системой
CN114153225A (zh) 一种基于rtk及rfid技术的无人机高精度降落控制系统及方法
US20230260097A1 (en) Power station inspection system and power station inspection method
RU105755U1 (ru) Корабельная интегрированная мостиковая система
CN111523760A (zh) 一种基于图像分析光伏故障的智能派单运维方法
US20060259216A1 (en) System and method for calibrating on-board aviation equipment
RU2755097C1 (ru) Информационно-управляющий комплекс с интеллектуальной поддержкой экипажа
CN213422203U (zh) 一种无线电罗盘多功能校准装置
CN113790915A (zh) 一种农用无人机飞行精度测试系统及方法
CN111896981A (zh) 一种低轨导航增强定位性能评估系统和方法
CN117939434B (zh) 一种航空器云匣子激励信号集中控制方法
CN111289103A (zh) 多通道无线光度测试系统及方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171001