RU2464582C2 - Способ определения места повреждения разветвленной линии электропередачи с несколькими источниками питания - Google Patents

Способ определения места повреждения разветвленной линии электропередачи с несколькими источниками питания Download PDF

Info

Publication number
RU2464582C2
RU2464582C2 RU2010153730/28A RU2010153730A RU2464582C2 RU 2464582 C2 RU2464582 C2 RU 2464582C2 RU 2010153730/28 A RU2010153730/28 A RU 2010153730/28A RU 2010153730 A RU2010153730 A RU 2010153730A RU 2464582 C2 RU2464582 C2 RU 2464582C2
Authority
RU
Russia
Prior art keywords
damage
line
currents
emergency
voltages
Prior art date
Application number
RU2010153730/28A
Other languages
English (en)
Other versions
RU2010153730A (ru
Inventor
Владимир Николаевич Козлов (RU)
Владимир Николаевич Козлов
Александр Олегович Павлов (RU)
Александр Олегович Павлов
Юрий Владимирович Бычков (RU)
Юрий Владимирович Бычков
Original Assignee
Общество с ограниченной ответственностью "НПП Бреслер" (ООО "НПП Бреслер")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "НПП Бреслер" (ООО "НПП Бреслер") filed Critical Общество с ограниченной ответственностью "НПП Бреслер" (ООО "НПП Бреслер")
Priority to RU2010153730/28A priority Critical patent/RU2464582C2/ru
Publication of RU2010153730A publication Critical patent/RU2010153730A/ru
Application granted granted Critical
Publication of RU2464582C2 publication Critical patent/RU2464582C2/ru

Links

Landscapes

  • Locating Faults (AREA)

Abstract

Изобретение относится к электротехнике, а именно к системной автоматике и релейной защите, и предназначено для реализации в устройствах определения места повреждения разветвленных линий электропередач (ЛЭП) с несколькими источниками питания. Технический результат: повышение точности за счет использования результатов измерения напряжений и токов по всем концам линии. Сущность: способ заключается в фиксации момента повреждения, измерении напряжений и токов основной гармоники аварийного и доаварийного режимов, выделении аварийных составляющих измеренных напряжений и токов, преобразовании измеренных величин и их аварийных составляющих с использованием образованных напряженческих и токовых моделей линии в напряжения и токи мест предполагаемого повреждения. Используя модели ветвей линии, токи и напряжения, наблюдаемые в конце ветвей схемы линии с многосторонним питанием, пересчитываются к их предполагаемым значениям в узле схемы. По результатам расчетов выбирается поврежденная ветвь и относительно нее остальная часть схемы эквивалентируется. В результате последовательных преобразований линия с многосторонним питанием сводится к линии с двухсторонним питанием, в которой имеется место повреждения. Далее место повреждения определяется по модели получившейся линии. 1 ил.

Description

Изобретение относится к электроизмерительной технике и предназначено для определения мест повреждения (ОМП) в сетях электропередачи. Способ предназначен для определения места повреждения линий электропередачи с многосторонним питанием по результатам измерения ее напряжений и токов по концам линии.
Известен способ ОМП для воздушных линий с ответвлениями [1], где в дополнение к измерению, токов и напряжений нулевой (обратной) последовательности на опорных подстанциях производится измерение тока нулевой (обратной) последовательности со стороны каждого ответвления, а расстояние до места повреждения определяется по формуле.
Недостатком этого способа является низкая точность, присущая всем «формульным» методам ОМП, вследствие невозможности учета неоднородности линии, кроме того, данный способ предназначен для линии с двухсторонним питанием, подразумевая под ответвлением пассивный элемент.
Известен способ ОМП в сетях электропередачи и связи [2], сущность которого заключается в том, что ведущее устройство осуществляет предварительный сбор информации о целостности сегментов в контролируемом участке сети путем опроса ведомых устройств (сканирования сети). Результаты сканирования заносят в память микроЭВМ, по которым определяют наличие или отсутствие повреждений в сегментах сети и расстояния до соответствующих сегментов (локализация мест повреждений). В случае наличия повреждений ведущее устройство осуществляет последовательное локационное зондирование поврежденных сегментов. Принятые формы рефлектограмм заносят в память микроЭВМ и сравнивают с предыдущими значениями. В случае изменения формы рефлектограмм определяют местоположения повреждений в зондируемых сегментах сети.
Недостатком этого способа является то, что устройство для его реализации представляет собой информационную сеть, которая находится в подчинении у одного ведущего устройства, где каждое ведомое устройство располагается друг за другом, образуя разветвленные звенья, связанные электрокабелем или проводом, являющимся каналом связи устройств, что приводит к удорожанию ОМП, а также к невозможности его применения на длинных линиях электропередачи.
Известен способ ОМП [3], по которому в исследуемую линию генерируют зондирующие импульсы, принимают отраженные сигналы и место повреждения точно и однозначно определяют по отсутствию отраженного импульса с информационным признаком, индивидуализирующим, по меньшей мере, конкретное ответвление, в котором, согласно предложению, в качестве зондирующих импульсов используют дискретно-кодированные сигналы, а в качестве информационного признака, индивидуализирующего конкретное ответвление или фазу ответвления, используют согласованную фильтрацию дискретно-кодированного сигнала на концах линии.
Недостатком этого способа, как и для всех способов активного зондирования, является зависимость мощности зондирующего импульса от длины линии, что ограничивает возможность его применения на длинных линиях, кроме того, данный способ требует установки дополнительного оборудования (фильтров) по концам разветвленной линии, что приводит к удорожанию ОМП.
Известен способ ОМП [4] согласно которому выделяют напряжения и токи основных гармоник, подают напряжения основных гармоник на входы моделей, измеряют токи на указанных входах и сравнивают их с выделенными токами, отличающийся тем, что подключают к каждой модели комплексную нагрузку в месте предполагаемого повреждения, устанавливают активные и реактивные проводимости комплексных нагрузок такими, чтобы токи основных гармоник на входах моделей и выделенных токов линии совпали, определяют углы комплексных нагрузок, выбирают нагрузку с нулевым углом и принимают, что место и характер повреждения соответствуют месту подключения указанной нагрузки и величинам ее активных проводимостей.
Недостатком этого способа является то, что формирование реактивного параметра мест предполагаемого повреждения принципиально возможно только после фиксации момента повреждения и измерения токов и напряжений доаварийного и аварийного режима в начале линии, кроме того, сложность преобразования измеренных (и выделенных) величин в напряжения и токи мест предполагаемого повреждения, связанная с использованием полной модели линии электропередачи, учитывающей влияние тросов, параллельных линий, отпаек, обходных путей, лишь усугубляет указанный недостаток, но основным недостатком является неприменимость данного метода для линий с многосторонним питанием.
Известен способ ОМП [5] линии электропередачи с двухсторонним питанием, где фиксируют момент повреждения, измеряют напряжения и токи основной гармоники аварийного и доаварийного режимов в начале линии, выделяют аварийные составляющие измеренных напряжений и токов, определяют собственные и взаимные параметры модели линии электропередачи относительно групп ее входов в аварийном режиме и образуют элементарные модели с соответствующими собственными и взаимными параметрами, составляют аварийные напряженческую и токовую модели из разных пар элементарных моделей, причем аварийную напряженческую модель из первых и вторых элементарных моделей, аварийную токовую модель из третьих и четвертых элементарных моделей, при этом первую элементарную модель образуют из собственных и взаимных проводимостей входов линии, вторую - из собственных и взаимных проводимостей между началом линии и местом предполагаемого повреждения, третью - из собственных и взаимных проводимостей между местом предполагаемого повреждения и началом линии, четвертую - из собственных и взаимных проводимостей входов мест предполагаемого повреждения, пропускают через первую элементарную модель аварийные составляющие измеренных напряжений, ее выходные величины вычитают из аварийных составляющих входных токов, разностные величины пропускают в обратном направлении через вторую элементарную модель, получая выходные величины аварийной напряженческой модели - аварийные составляющие напряжения в месте предполагаемого повреждения, пропускают через третью элементарную модель аварийные составляющие измеренных напряжений, через четвертую элементарную модель пропускают выходные величины аварийной напряженческой модели, а выходные величины третьих и четвертых элементарных моделей суммируют с противоположными знаками, получая выходные величины аварийных токовых моделей - полные токи в месте предполагаемого повреждения, формируют реактивный параметр ОМП и определения места повреждения по нулевому значению указанного параметра.
Недостатком этого способа является сложность преобразования измеренных (и выделенных) величин в напряжения и токи мест предполагаемого повреждения, связанная с использованием модели линии, учитывающей влияние тросов, параллельных линий, режимы заземления отпаек и т.д., т.е. всех элементов, входящих в схему нулевой последовательности, параметры которых зачастую известны приближенно, но основным недостатком является неприменимость данного метода для линий с многосторонним питанием.
Техническая задача, решаемая изобретением, состоит в повышении точности ОМП на линиях электропередачи с многосторонним питанием за счет привлечения необходимой информации путем многостороннего по отношению к ЛЭП измерения входных величин.
Поставленная техническая задача решается тем, что в известном способе ОМП, согласно которому фиксируют момент повреждения, измеряют напряжения и токи основной гармоники аварийного и доаварийного режимов в начале линии, выделяют аварийные составляющие измеренных напряжений и токов, определяют собственные и взаимные параметры модели линии электропередачи относительно групп ее входов в аварийном режиме и образуют элементарные модели с соответствующими собственными и взаимными параметрами, составляют аварийные напряженческую и токовую модели, дополнительно фиксируют момент повреждения, измеряют напряжения и токи основных гармоник, аварийного и доаварийного режимов, выделяют аварийные составляющие измеренных напряжений и токов со всех концов линии, имеющих источники питания, с помощью моделей линии, оценивают напряжения в местах состыковки отдельных участков (узлов), по небалансу оценок напряжений в узле определяют узлы, к которым подходят только неповрежденные участки, эквивалентируют эти узлы, исключая их из схемы, в результате определяют поврежденный участок сети, строится модель относительно поврежденной ветви и определяется место повреждения по модели получившейся линии.
На фигуре 1.а представлена линия электропередачи, состоящая из k источников питания и n узлов, в которой повреждение возможно на участке, отходящем от источника (например, в точке К1), или на внутреннем участке (например, в точке К2). Согласно заявляемому способу, измеренные токи и напряжения основной гармоники Uc1 и Ic1 с помощью модели участка «С1-узел 1» пересчитываются в узел 1 Uc1-y1 и Ic1-y1, аналогично по измеренным Uc2 и Ic2, получают оценки Uc2-y1 и Iс2-у1, если участки «С1-узел 1» и «С2-узел 1» не повреждены, то должно выполняться условие Uc1-y1=Uc2-y1, если поврежден один из этих участков (например, «С2-узел 1» в точке К1), то это условие не выполняется, в этом случае узел 1 помечается как «поврежденный», и анализируют следующий узел, к которому подключены не менее двух участков, отходящих от источников, если узел не поврежденный (например, повреждение на линии «узел 1-узел 2» в точке К2), то узел 1 приводится к эквивалентной системе Сэкв.1 с напряжением Uэкв1=Uc1-y1=Uc2-y1 и током Iэкв1=Ic1-y1 + Iс2-у1 (фигура 1.б).
Если узел 1 помечен как «поврежденный» (авария в точке К1), то анализируется узел n, куда подключены два участка, отходящих от источников Ck и Ck-1, т.к. «поврежденный» узел уже определен (узел 1), то узел n - не поврежденный, соответственно, выполняется условие Uck-1-yn=Uck-yn, что позволяет привести системы Ck и Ck-1 к эквивалентной Сэкв.n (фигура 1.в).
Эквивалентируя подобным способом и заданным критериям остальные узлы схемы, так или иначе, получаем эквивалентную схему с двухсторонним питанием вида 1.г, если повреждение на внутреннем участке сети, или вида 1.д, если повреждение на одном из участков, отходящих от источника.
После определения поврежденного участка, с использованием его модели строится модель линии с двухсторонним питанием, в которой имеется место повреждения. Далее место повреждения определяется по модели получившейся линии.
Источники информации
1. Авторское свидетельство №434340, кл. G01R 31/08, 1974.
2. Авторское свидетельство №2386974, кл. G01R 31/08, 2008.
3. Авторское свидетельство №2368912, кл. G01R 31/08, 2009.
4. Авторское свидетельство №2033622, кл. G01R 31/08, 1995.
5. Авторское свидетельство №2107304, кл. G01R 31/08, 1998.

Claims (1)

  1. Способ определения места повреждения линии электропередачи путем фиксации момента повреждения, измерения напряжений и токов основной гармоники аварийного и доаварийного режимов, выделения аварийных составляющих измеренных напряжений и токов, преобразования измеренных величин и их аварийных составляющих с использованием образованных напряженческих и токовых моделей линии в напряжения и токи мест предполагаемого повреждения, отличающийся тем, что токи и напряжения, наблюдаемые в конце ветвей схемы линии с многосторонним питанием, используя модели ветвей линии, пересчитываются к их предполагаемым значениям в узле схемы; по результатам расчетов выбирается поврежденная ветвь, и относительно нее остальная часть схемы эквивалентируется, далее место повреждения определяется по модели получившейся линии.
RU2010153730/28A 2010-12-27 2010-12-27 Способ определения места повреждения разветвленной линии электропередачи с несколькими источниками питания RU2464582C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010153730/28A RU2464582C2 (ru) 2010-12-27 2010-12-27 Способ определения места повреждения разветвленной линии электропередачи с несколькими источниками питания

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010153730/28A RU2464582C2 (ru) 2010-12-27 2010-12-27 Способ определения места повреждения разветвленной линии электропередачи с несколькими источниками питания

Publications (2)

Publication Number Publication Date
RU2010153730A RU2010153730A (ru) 2012-07-10
RU2464582C2 true RU2464582C2 (ru) 2012-10-20

Family

ID=46848083

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010153730/28A RU2464582C2 (ru) 2010-12-27 2010-12-27 Способ определения места повреждения разветвленной линии электропередачи с несколькими источниками питания

Country Status (1)

Country Link
RU (1) RU2464582C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2732796C1 (ru) * 2020-03-13 2020-09-22 Государственное бюджетное образовательное учреждение высшего образования Нижегородский государственный инженерно-экономический университет Способ определения места повреждения разветвленной линии электропередачи с несколькими источниками питания

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0239268A2 (en) * 1986-03-07 1987-09-30 Mitsubishi Denki Kabushiki Kaisha Fault point locating method, fault point resistance measuring method, and impedance to fault point measuring method, and apparatus therefor
RU2033623C1 (ru) * 1989-05-12 1995-04-20 Чувашский государственный университет им.И.Н.Ульянова Способ определения места и характера повреждения в электрической системе с использованием моделей входящих в нее линий электропередачи
RU2107304C1 (ru) * 1995-11-13 1998-03-20 Чувашский государственный университет им.И.Н.Ульянова Способ определения места повреждения линии электропередачи с двусторонним питанием
US7472026B2 (en) * 2006-12-22 2008-12-30 General Electric Company Multi-ended fault location system
RU2397503C2 (ru) * 2005-09-14 2010-08-20 Абб Текнолоджи Аг Способ для определения места повреждения линий электропередачи

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0239268A2 (en) * 1986-03-07 1987-09-30 Mitsubishi Denki Kabushiki Kaisha Fault point locating method, fault point resistance measuring method, and impedance to fault point measuring method, and apparatus therefor
RU2033623C1 (ru) * 1989-05-12 1995-04-20 Чувашский государственный университет им.И.Н.Ульянова Способ определения места и характера повреждения в электрической системе с использованием моделей входящих в нее линий электропередачи
RU2107304C1 (ru) * 1995-11-13 1998-03-20 Чувашский государственный университет им.И.Н.Ульянова Способ определения места повреждения линии электропередачи с двусторонним питанием
RU2397503C2 (ru) * 2005-09-14 2010-08-20 Абб Текнолоджи Аг Способ для определения места повреждения линий электропередачи
US7472026B2 (en) * 2006-12-22 2008-12-30 General Electric Company Multi-ended fault location system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2732796C1 (ru) * 2020-03-13 2020-09-22 Государственное бюджетное образовательное учреждение высшего образования Нижегородский государственный инженерно-экономический университет Способ определения места повреждения разветвленной линии электропередачи с несколькими источниками питания

Also Published As

Publication number Publication date
RU2010153730A (ru) 2012-07-10

Similar Documents

Publication Publication Date Title
AU2020203549A1 (en) Smart Sensor Network for Power Grid Health Monitoring
CN102128988B (zh) 使用单个夹具测量电缆塔的接地电阻的方法
RU2009135814A (ru) Измерение полного сопротивления линии электропередачи
RU2372624C1 (ru) Способ определения места однофазного замыкания на землю в разветвленной воздушной линии электропередач, способ определения места междуфазного короткого замыкания в разветвленной воздушной линии электропередач и устройство контроля тока и напряжения для их осуществления
CN109643890A (zh) 用于对混合型输电线路中的故障进行定位的方法和系统
CN103630814B (zh) 高压电缆在交叉互联下绝缘介质损耗角趋势在线监测方法
Duan et al. A novel method of fault location for single-phase microgrids
ES2891624T3 (es) Método para detección de impedancias en una red de distribución de energía eléctrica
JP2013044752A (ja) 位相識別システム及び方法
EP4062181B1 (en) Method and system for cable insulation testing
RU2464582C2 (ru) Способ определения места повреждения разветвленной линии электропередачи с несколькими источниками питания
RU2468378C2 (ru) Способ измерения расстояния до места короткого замыкания
RU2532760C1 (ru) Способ определения места повреждения разветвленной линии электропередачи
CN105606897B (zh) 支路绝缘阻抗监测及光伏发电方法、逆变器及光伏系统
Yang et al. On-line monitoring and trending of dielectric loss in a cross-bonded HV cable system
RU2540443C1 (ru) Способ определения места обрыва на воздушной линии электропередачи
Do et al. Novel grid impedance measurement setups in electrical power systems
RU2492565C1 (ru) Способ определения места повреждения линии электропередачи при двухстороннем наблюдении
RU2455654C1 (ru) Способ определения поврежденного участка и типа повреждения в электроэнергетической сети с разветвленной топологией
RU2511640C2 (ru) Способ определения места повреждения линий электропередачи с древовидной структурой
Soeth et al. Traveling wave fault location on HVDC lines
CN103472428A (zh) 一种光纤电流互感器精度测试方法
Fusiek et al. All-optical differential current detection technique for unit protection applications
CN105954705A (zh) 一种数字化电能计量设备远程校准系统及方法
CN107607793B (zh) 一种不同输电方式交叉跨越输电线路的电磁监测布点方法