RU2462606C2 - Система ветряной турбины, приводимая в действие системой извлечения энергии повышенной эффективности - Google Patents

Система ветряной турбины, приводимая в действие системой извлечения энергии повышенной эффективности Download PDF

Info

Publication number
RU2462606C2
RU2462606C2 RU2007133593/06A RU2007133593A RU2462606C2 RU 2462606 C2 RU2462606 C2 RU 2462606C2 RU 2007133593/06 A RU2007133593/06 A RU 2007133593/06A RU 2007133593 A RU2007133593 A RU 2007133593A RU 2462606 C2 RU2462606 C2 RU 2462606C2
Authority
RU
Russia
Prior art keywords
air
wind turbine
profile
stream
exhaust gas
Prior art date
Application number
RU2007133593/06A
Other languages
English (en)
Other versions
RU2007133593A (ru
Inventor
Андрей Тристан ИВУЛЕТ (US)
Андрей Тристан ИВУЛЕТ
Original Assignee
Дженерал Электрик Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дженерал Электрик Компани filed Critical Дженерал Электрик Компани
Publication of RU2007133593A publication Critical patent/RU2007133593A/ru
Application granted granted Critical
Publication of RU2462606C2 publication Critical patent/RU2462606C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/28Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto using fluid jets to influence the jet flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • F03D9/32Wind motors specially adapted for installation in particular locations on moving objects, e.g. vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/17Purpose of the control system to control boundary layer
    • F05D2270/173Purpose of the control system to control boundary layer by the Coanda effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Abstract

Система ветряной турбины содержит ветряную турбину, включающую в себя ротор и множество лопастей, установленных на ступице, устройство, расположенное выше по потоку от ветряной турбины, впуск для воздуха, выполненный с возможностью введения воздуха в указанное устройство; по меньшей мере, одну поверхность с профилем Коанда и электрогенератор. Устройство, расположенное выше по потоку от ветряной турбины, содержит область, выполненную с возможностью введения отходящего газа в указанное устройство. Профиль Коанда выполнен с возможностью захвата воздуха с отходящим газом для создания высокоскоростного потока воздуха для приведения в действие ветряной турбины. Электрогенератор соединен с ротором ветряной турбины, для выработки электроэнергии, при этом отходящий газ образуется в газовой турбине. Изобретение направлено на повышение эффективности системы ветряной турбины. 6 з.п. ф-лы, 10 ил.

Description

Уровень техники
Изобретение в общем относится к системам извлечения энергии, а более конкретно к устройству для повышения эффективности системы извлечения энергии.
Известны и используются различные типы систем извлечения энергии. Например, газовые турбины извлекают энергию из потока рабочего газа, образованного продуктами сгорания, и используются в таких областях применения, как выработка электроэнергии, судовые двигатели, сжатие газа, комбинированное производство тепловой и электрической энергии, электроснабжение морских буровых платформ и т.п. (см. например, заявку на патент США 2002/0189261). Аналогично ветряные турбины преобразуют кинетическую энергию ветра в механическую работу, например, для выработки электроэнергии. Кроме того, двигатели внутреннего сгорания, используемые в транспортных средствах, вырабатывают электроэнергию для работы транспортного средства.
Некоторые системы извлечения энергии используют цикл Брайтона, в котором воздух сжимается компрессором, и сжатый воздух сгорает с топливом в камере сгорания. При этом горячие газы из камеры сгорания расширяются турбиной или в ряде турбин для выполнения механической работы. Обычно системы, работа которых основана на цикле Брайтона, расширяют горячие газы в турбинах, и остаточное тепло бесполезно теряется в окружающую среду без использования. В некоторых системах используются крупные и дорогостоящие рекуператоры для утилизации остаточного тепла. Но применение этих рекуператоров для утилизации тепла в менее крупных системах относительно дорогостоящее.
Соответственно существует необходимость в системе извлечения энергии с высокой эффективностью и с существенно низкими потерями отвода тепла. Кроме того, желательно создать устройство, которое можно включить в состав применяемых в настоящее время систем извлечения энергии для уменьшения потерь тепла и для повышения эффективности этих систем.
Сущность изобретения
Вкратце, согласно одному варианту осуществления настоящего изобретения обеспечивают устройство. Устройство выполнено с возможностью введения потока под давлением по профилю Коанда и с возможностью захвата дополнительного потока текучей среды для создания высокоскоростного потока текучей среды; при этом упомянутый высокоскоростной поток текучей среды направляют в систему конечного использования по каналу потока, который посредством потока сообщается с устройством.
Согласно другому варианту осуществлению изобретения предложена система ветряной турбины. Система включает в себя устройство, содержащее область, выполненную с возможностью введения отходящего газа внутри устройства, и воздухозаборник, выполненный с возможностью введения воздуха внутри устройства. Причем по меньшей мере одна поверхность устройства имеет профиль Коанда, который выполнен с возможностью содействия прилипанию отходящего газа к профилю для образования граничного слоя и захвата поступающего воздуха для создания искусственного ветра для приведения в действие ветряной турбины. Система также включает в себя электрогенератор, соединенный с ветряной турбиной и вырабатывающий электроэнергию.
Согласно еще одному варианту осуществлению предложена газотурбинная система. Система включает в себя компрессор, выполненный с возможностью сжатия воздуха окружающей среды, и камеру сгорания, сообщающуюся по текучей среде с компрессором, при этом камера сгорания выполнена с возможностью получения сжатого воздуха из компрессора и сжигания топливного потока для образования потока отходящего газа. Система также содержит турбину, расположенную ниже по потоку камеры сгорания и выполненную с возможностью расширения потока отходящего газа, и устройство, соединенное с турбиной и выполненное с возможностью захвата дополнительного воздуха посредством потока отходящего газа для вырабатывания механической работы за счет высокоскоростного потока воздуха. Устройство содержит, по меньшей мере, одну поверхность, имеющую профиль Коанда, при этом профиль Коанда выполнен с возможностью содействия прилипанию отходящего газа к профилю для образования граничного слоя и захвата поступающего воздуха для образования высокоскоростного потока воздуха.
Согласно еще одному варианту осуществления изобретения предложен способ повышения эффективности системы извлечения энергии, использующей поток под давлением. Способ включает: введение потока под давлением по профилю Коанда для образования граничного слоя и захвата дополнительного потока текучей среды при помощи этого граничного слоя для создания высокоскоростного потока текучей среды. Способ также включает вырабатывание механической работы за счет высокоскоростного потока текучей среды.
Краткое описание чертежей
Эти и другие признаки, варианты и преимущества настоящего изобретения станут более понятными при прочтении приведенного ниже подробного описания со ссылкой на сопроводительные чертежи, на которых одинаковые ссылочные позиции указывают одинаковые элементы.
Фиг.1 представляет собой схематическое представление системы извлечения энергии, имеющей устройство утилизации исходящего из системы тепла, согласно вариантам осуществления настоящего изобретения.
Фиг.2 представляет собой схематическое представление приводимой в качестве примера конфигурации устройства, показанного на фиг.1, согласно вариантам осуществления настоящего изобретения.
Фиг.3 представляет собой схематическое представление приводимой в качестве примера системы ветроэнергетической турбины, имеющей устройство, показанное на фиг.1, согласно вариантам осуществления настоящего изобретения.
Фиг.4 представляет собой схематическое представление газовой турбины, имеющей устройство утилизации тепла газов отходящих от турбины, согласно вариантам осуществления настоящего изобретения.
Фиг.5 представляет собой схематическое представление диска турбины, имеющего устройство, используемое в газовой турбине, показанной на фиг.4, согласно вариантам осуществления настоящего изобретения.
Фиг.6 представляет собой схематическое представление устройства, используемого в диске турбины, показанного на фиг.5, согласно вариантам осуществления настоящего изобретения.
Фиг.7 представляет собой схематическое представление профилей потока воздуха и отходящих газов в устройстве, показанном на фиг.6, согласно вариантам осуществления настоящего изобретения.
Фиг.8 представляет собой схематическое представление формирования граничного слоя примыкающего к профилю в устройстве, показанному на фиг.6, на основе эффекта Коанда, согласно вариантам осуществления настоящего изобретения.
Фиг.9 представляет собой схематическое представление гибридного транспортного средства, имеющего устройство для утилизации горячих газов двигателя внутреннего сгорания, согласно вариантам осуществления настоящего изобретения.
Фиг.10 представляет собой схематическое представление устройства, используемого в гибридном транспортном средстве, показанном на фиг.9, согласно вариантам осуществления настоящего изобретения.
Подробное описание изобретения
Как описано подробно ниже, варианты осуществления настоящего изобретения предназначены для повышения эффективности некоторых систем извлечения энергии, таких как газотурбинные системы и системы ветряной турбины, путем уменьшения потерь тепла в этих системах. В частности, настоящее изобретение использует комбинацию рабочей текучей среды и воздуха окружающей среды для вырабатывания механической работы и электроэнергии. Со ссылкой на чертежи, сначала на фиг.1, показана система 10 извлечения энергии, имеющая устройство 12 утилизации тепла из системы 10. В показанном варианте осуществления устройство 12 выполнено с возможностью получения потока 14 под давлением из системы 10 извлечения энергии и введения потока под давлением по профилю Коанда устройства 12. Термин «профиль Коанда», используемый здесь, означает профиль, выполненный с возможностью содействия прилипанию потока текучей среды к близлежащей поверхности и поддержания прилипания, даже когда поверхность искривляется в сторону от исходного направления движения текучей среды.
В работе профиль Коанда осуществляет прилипание к нему потока 14 под давлением, в результате чего образуется граничный слой, который захватывает дополнительный поток 16 текучей среды, создавая высокоскоростной поток 18 текучей среды. В приводимом в качестве примера варианте осуществления поток под давлением включает в себя отходящий газ, а дополнительный поток текучей среды включает в себя поток воздуха. При этом высокоскоростной поток 18 текучей среды можно направить в систему 20 конечного использования по каналу, который сообщается по текучей среде с устройством 12. В приводимом в качестве примера варианте осуществления устройство 12 соединено с газотурбинной системой и вырабатывает механическую работу за счет высокоскоростного потока 18 текучей среды. В другом варианте осуществления устройство 12 соединено с турбокомпрессором и выполнено с возможностью повышения эффективности двигателя внутреннего сгорания транспортного средства. В еще одном в приводимом в качестве примера варианте осуществления устройство 12 соединено с системой ветряной турбины и выполнено с возможностью вырабатывания электроэнергии за счет высокоскоростного потока 18 текучей среды. Как упомянуто выше, устройство 12 использует профиль Коанда и использует поток 14 текучей среды под давлением, такой как отходящий газ из системы 10 извлечения энергии, для захвата такого дополнительного потока 16 текучей среды, как поток воздуха, и создания высокоскоростного потока 18 текучей среды. Причем высокоскоростной поток 18 текучей среды можно использовать для вырабатывания дополнительной механической работы или для электроэнергии из системы 10 извлечения энергии; либо его можно направить в другую систему 20 конечного использования для дальнейшего использования, как описано ниже со ссылкой на фиг.2-10.
На фиг.2 схематично показана приводимая в качестве примера конфигурация устройства 12, показанного на фиг.1, согласно вариантам осуществления настоящего изобретения. Как показано устройство 50 имеет вытяжную трубу 52, в которую поступает такая первичная текучая среда, как отходящий газ из системы. В этом варианте осуществления, по меньшей мере, одна поверхность вытяжной трубы 52 имеет профиль Коанда 54, который выполнен с возможностью содействия прилипанию отходящего газа к профилю 54. В одном приводимом в качестве примера варианте осуществления профиль Коанда 54 представляет собой логарифмический спиральный профиль. В работе поток под давлением такой первичной текучей среды, как отходящий газ из области 56, проходит по профилю Коанда 54, как обозначено позицией 58. В показанном варианте осуществления первичная текучая среда может поступать в область 56 по каналу 60. Например, отходящий газ из газовой турбины может поступать в область 56 по каналу 60. Вытяжная труба 52 также имеет впуск 62 для захвата такого вторичного потока текучей среды, как поток воздуха в вытяжную трубу. В некоторых вариантах осуществления впуск 62 имеет фильтр 64 для фильтрации поступающего потока воздуха перед его введением в вытяжную трубу 52.
Во время работы отходящий газ 58 под давлением захватывает поток 66 воздуха и создает высокоскоростной поток 68 воздуха. В частности, профиль Коанда 54 содействует относительно быстрому смешиванию отходящего газа 58 под давлением с захватываемым потоком 66 воздуха и создает высокоскоростной поток 68 воздуха за счет передачи движения от отходящего газа 58 под давлением потоку 68 воздуха. Следует отметить, что геометрию вытяжной трубы 52 можно рассчитать для получения нужной скорости потока 68. Причем высокоскоростной поток 68 воздуха можно использовать для вырабатывания механической работы. В показанном варианте осуществления вытяжная труба 52 использует множество вентиляторов 70 для извлечения работы за счет высокоскоростного потока 68 воздуха. В некоторых других вариантах осуществления высокоскоростной поток 68 воздуха можно направить для повышения эффективности работы другой системы путем вырабатывания механической работы или электроэнергии.
На фиг.3 схематично показана приводимая в качестве примера конфигурация системы 80 ветряной турбины, имеющая показанное на фиг.2 устройство 50 согласно вариантам осуществления настоящего изобретения. В показанном варианте осуществления устройство 50 содержит профиль Коанда 54, который содействует прилипанию отходящего газа 58 к профилю 54 для образования граничного слоя для захвата захватываемого потока 66 воздуха для создания высокоскоростного потока 68 воздуха из устройства 50, который далее направляется в ветряную турбину 82. В этом приводимом в качестве примера варианте осуществления отходящий газ 58 представляет собой отходящий газ, получаемый из газовой турбины (не показана).
Система 80 ветряной турбины содержит ротор 84, имеющий множество лопастей 86 ветряной турбины, установленных на ступице 88. Система 80 ветряной турбины также имеет обтекатель 90, установленный на вышке 92. Ротор 84 соединен с возможностью приведения в действие с электрогенератором 94 при помощи приводного механизма (не показан), расположенного в обтекателе 90. На лопасти 86 вышки 92 воздействует высокоскоростной поток 68 воздуха, создаваемый в вытяжной трубе 52 и вращающий лопасти 86 вокруг оси 96. Лопасти 86 преобразуют кинетическую энергию ветра в крутящий момент, который затем преобразуется в электроэнергию электрогенератором 94. В одном приводимом в качестве примера варианте осуществления скорость высокоскоростного ветра 68, создаваемого в вытяжной трубе 52, составляет более 100 км/ч и отрегулирована таким образом, что она увеличивает до максимума эффективность извлекаемой энергии для данной зоны охвата ротора, расхода отходящих газов и величины захвата. В некоторых вариантах осуществления система 80 ветряной турбины может содержать множество устройств 50 для создания требуемого потока ветра для привода ветряной турбины 82.
На фиг.4 схематично показана газовая турбина 110 с устройством 112 для утилизации тепла отходящих газов из газовой турбины 110 согласно вариантам осуществления настоящего изобретения. Газовая турбина 110 содержит компрессор 114, выполненный с возможностью сжатия газа окружающей среды. Камера сгорания 116, сообщающаяся по текучей среды с компрессором 114, выполнена с возможностью получения сжатого воздуха из компрессора 114 и сжигания потока топлива для создания выходного потока газа камеры сгорания. Кроме того, газовая турбина 110 имеет турбину 118, расположенную ниже по потоку камеры сгорания 116. Турбина 118 выполнена с возможностью расширения выходного потока газа камеры сгорания для приведения в действие наружной нагрузки. В приводимом в качестве примера варианте осуществления компрессор 114 при помощи вала 120 приводится в действие энергией, генерируемой турбиной 118.
В работе поток топлива и воздуха после его сгорания при требуемой температуре и давлении в камере сгорания 116 образует отходящие газы. Образовавшиеся отходящие газы затем направляются в устройство 112, соединенное с турбиной 118. В показанном варианте осуществления устройство 112 выполнено с возможностью образования граничного слоя и захвата дополнительного потока воздуха отходящими газами для вырабатывания механической работы за счет высокоскоростного потока воздуха. В частности, захватываемый воздух формирует сдвиговый слой с граничным слоем для ускорения воздуха в сходящемся участке устройства 112 и для содействия смешиванию граничного слоя и поступающего воздуха, в результате чего в расходящемся участке устройства 112 формируется высокоскоростной поток воздуха. Кроме того, расходящийся участок устройства 112 создает тягу силами давления, возникающими в результате взаимодействия между отходящими газами и захваченным воздухом. Работа устройства 112, соединенного с турбиной 118, изложена более подробно ниже со ссылкой на фиг.5-8.
На фиг.5 схематично показана приводимая в качестве примера конфигурация 130 диска 132 турбины, используемого в показанной на фиг.4 газовой турбине 110, согласно вариантам осуществления настоящего изобретения. В показанном варианте осуществления множество устройств 134 расположено по окружности диска 132 турбины и выполнено с возможностью повышения эффективности газовой турбины 110 путем использования отходящих газов, образующихся в камере сгорания 116 (см. фиг.4). Более конкретно устройства 134 выполнены с возможностью ускорения диска 132 турбины захватом воздуха, обеспечиваемым отходящими газами из камеры сгорания 116. Отходящие газы из центра 136 диска 132 турбины принудительно поступают в каждое устройство из множества устройств 134 по радиальным каналам 138. В частности, множество радиальных каналов 138 выполнено с возможностью направления отходящих газов из центра 136 в отдельные области (не показаны) множества устройств 134. В некоторых вариантах осуществления множество прорезей (не показаны) используется для введения отходящих газов из отдельных областей по профилю Коанда в устройства 134. Предпочтительно введение горячих газов к внутренней стороне устройств 134 через прорези усиливает высокоскоростной поток воздуха, который вводится в направлении по касательной к профилю Коанда в устройство 134.
Более того, на диск 132 турбины поступает поток воздуха через воздухозаборник 140, который обращен к впуску 142 каждого из устройств 134. Как описано выше, множество устройств 134 содействует прилипанию отходящих газов к профилю Коанда устройств 134 для формирования граничного слоя и захвата поступающего воздуха из впуска 142 для создания высокоскоростного потока воздуха в расходящемся участке устройства 134, который выпускается через выпуск 144 устройства 134. В некоторых вариантах осуществления соотношение массы воздуха, захваченного устройством 134, и массы отходящих газов составляет от около 5 до около 22. Следует отметить, что расходящийся участок устройства 134 формирует тягу от сил давления, воздействующих на стенки устройства 134, в результате чего происходит смешивание горячих газов и воздуха. Поэтому крутящий момент, создаваемый устройствами 134, вращает диск 132 турбины, и механическую работу можно извлечь из вращения диска 132 турбины посредством вала. Затем отходящий газ с диска 132 турбины выходит в окружающий воздух через выпуск 146.
В некоторых вариантах осуществления электрогенератор (не показан) можно соединить с газовой турбиной 110 для выработки электроэнергии из механической работы. Также в некоторых вариантах осуществления для создания движущего потока отходящего газа для захвата и ускорения импульсов поступающего воздуха по профилю Коанда можно использовать устройство детонации импульсов (не показано). В одном приводимом в качестве примера варианте осуществления диск 132 турбины принимает горячие газы из турбины 118 (см. фиг.4), которая приводит в действие компрессор 114 (см. фиг.4), и топливо можно ввести в камеру предварительного нагрева области в центре диска 132 турбины. При сгорании получаются газы, которые расширяются через устройства 134 и в окружающий воздух, тем самым, осуществляя привод диска 132 турбины. Также механическую работу, вырабатываемую через диск 132 турбины, можно извлекать при помощи вала.
На фиг.6 схематично показано устройство 134, используемое в показанном на фиг.5 диске 130 турбины, согласно вариантам осуществления настоящего изобретения. В показанном варианте осуществления отходящие газы из камеры 116 сгорания (см. фиг.4) вводятся по профилю Коанда 150, как показано позицией 152. Профиль Коанда 150 содействует прилипанию отходящих газов 152 к профилю для формирования граничного слоя и захватывает поступающий воздух 154 для создания высокоскоростного потока 156 воздуха. В этом приводимом в качестве примера варианте осуществления профиль Коанда 150 включает в себя логарифмический спиральный профиль. Профиль Коанда 150 содействует захвату воздуха 154 для формирования высокоскоростного кольцеобразного потока непрерывных или отдельных быстро смешивающихся граничных слоев в виде струй. В некоторых вариантах осуществления горячие газы поворачиваются приблизительно на 90° и захватывают воздух в количестве, приблизительно в 5-22 раза превышающем массу горячих газов. Кроме того, захватываемый воздух 154 формирует турбулентный сдвиговый слой с граничным слоем для ускорения воздуха 154 в сходящемся участке устройства 134 и содействия смешиванию граничного слоя и поступающего воздуха 154 для формирования высокоскоростного потока 156 воздуха в расходящемся участке 158. В результате этого высокоскоростной поток 156 воздуха создает тягу 160 и толкает устройство 134 в противоположном направлении. Формирование граничного и сдвигового слоев для формирования высокоскоростного потока 156 воздуха описано подробно ниже со ссылкой на фиг.7-8.
На фиг.7 схематично показаны профили 170 потока воздуха и отходящих газов в показанном на фиг.6 устройстве 134 согласно вариантам осуществления настоящего изобретения. Как показано, отходящие газы 172 направляются внутрь устройства 134 (см. фиг.6) и по профилю Коанда 174. В показанном варианте осуществления отходящие газы 172 вводятся в устройство 134 по существу при высокой скорости. В работе профиль Коанда 174 содействует прилипанию отходящих газов 172 к профилю 174 для формирования граничного слоя 176. В этом варианте осуществления геометрия и размеры профиля 174 оптимизированы для обеспечения требуемой эффективности. Затем поток поступающего воздуха 178 захватывается граничным слоем 176 для формирования сдвигового слоя 180 с граничным слоем 176 для улучшения смешивания поступающего воздуха 178 и отходящих газов 172. Следует отметить, что смешивание воздуха 178 и отходящих газов 172 улучшается ввиду роста граничного слоя 176 ниже по потоку положения его введения вследствие соответствующего градиента давления. Таким образом, сдвиговый слой 180, сформированный возрастанием и смешиванием граничного слоя 176 с захваченным воздухом 178, содействует формированию быстрой и единообразной смеси в устройстве 134. Прилипание газа 172 к профилю Коанда 174 ввиду возникающего в устройстве 134 эффекта Коанда будет описано подробно ниже со ссылкой на фиг.8.
На фиг.8 схематично показано формирование граничного слоя 17 6, создаваемого введением отходящего газа в одном отдельном положении и рядом с профилем 174 в показанном на фиг.6 устройстве 134 на основе эффекта Коанда. В показанном варианте осуществления отходящий газ 172, вводимый в отдельные положения, прилипает к профилю 174 и остается на нем, даже когда поверхность профиля 174 искривляется от первоначального направления потока газа. Более конкретно, когда отходящие газы 172 ускоряются и тем самым уравновешивают передачу количества движения, в потоке появляется перепад давлений, который отклоняет отходящие газы ближе к поверхности профиля 174. Специалистам в данной области техники будет очевидно, что возникает некоторое приповерхностное трение между отходящими газами 172 и профилем 174 при перемещении отходящих газов 172 по профилю 174. Это сопротивление потоку 172 отклоняет отходящие газы 172 к профилю 174, в результате чего они прилипают к профилю 174. При этом граничный слой, сформированный этим механизмом, захватывает поступающий поток 178 воздуха для образования сдвигового слоя 180 с граничным слоем 17 6, тем самым, улучшая смешивание потока 178 воздуха и отходящих газов 172. Таким образом, введение отходящих газов 172 через круговую прорезь или совокупность прорезей и по профилю 174, выполненному для содействия эффекта Коанда, создает движущую силу, которая ускоряет такую текучую среду, как воздух. Более того, сдвиговый слой 180, сформированный возрастанием и смешиванием граничного слоя 176 с захваченным воздухом 178, создает высокоскоростной поток 182 воздуха, который используют для повышения эффективности системы путем вырабатывания механической работы или электроэнергии. В одном приводимом в качестве примера варианте осуществления высокоскоростной поток 182 воздуха из этого устройства 132 можно применить для движения гибридного транспортного средства, как описано ниже со ссылкой на фиг.9 и 10.
На фиг.9 схематично показано гибридное транспортное средство 190, имеющее устройство 192 для утилизации горячих газов из двигателя внутреннего сгорания 194 согласно вариантам осуществления настоящего изобретения. Как показано, гибридное транспортное средство содержит двигатель внутреннего сгорания 194 для привода транспортного средства 190 за счет сгорания топлива. Кроме того, транспортное средство содержит турбокомпрессор 196, соединенный с двигателем внутреннего сгорания 194. Турбокомпрессор 196 содержит турбину 198, выполненную с возможностью расширения отходящих газов из двигателя внутреннего сгорания 194, для вырабатывания механической работы. Кроме того, турбокомпрессор 196 содержит устройство 192, соединенное с турбиной 198 для вырабатывания механической работы при помощи профиля Коанда, как описано выше. Устройство 192 содержит впускной патрубок 200, выполненный с возможностью направления потока 202 отходящих газов из двигателя внутреннего сгорания 194 в устройство 192. Более того, устройство 192 содержит воздухозаборник 204, выполненный с возможностью введения потока 206 воздуха в устройство.
По меньшей мере, одна поверхность устройства 192 имеет профиль Коанда, выполненный с возможностью захвата поступающего воздуха 206 посредством отходящего газа 202 для образования высокоскоростного потока 208 воздуха, как описано выше. Высокоскоростной поток 208 воздуха затем используется для вырабатывания механической работы. В показанном варианте осуществления транспортное средство 190 содержит электрогенератор 212, выполненный с возможностью вырабатывания электроэнергии из механической работы. Кроме того, транспортное средство 190 содержит перезаряжающуюся систему 214 хранения энергии для накопления электроэнергии, используемой для работы электродвигателя (не показан) транспортного средства 190. В этом приводимом в качестве примера варианте осуществления перезаряжаемая система 214 хранения энергии представляет собой электрическую батарею. В некоторых вариантах осуществления механическую работу, вырабатываемую посредством высокоскоростного потока 208 воздуха, можно использовать для приведения в действие компрессора (не показан) турбокомпрессора 196. В некоторых других вариантах осуществления транспортное средство 190 может содержать бортовой электролизер (не показан), выполненный с возможностью использования вырабатываемой электроэнергии для получения водорода. Таким образом, устройство с профилем Коанда содействует вырабатыванию механической работы или электроэнергии путем захвата потока 206 воздуха отходящими газами 202 из двигателя внутреннего сгорания 194, тем самым, повышая эффективность транспортного средства 190.
На фиг.10 схематично показано устройство 192, используемое в показанном на фиг.9 гибридном транспортном средстве 190, согласно вариантам настоящего изобретения. Как показано, устройство 192 содержит впускной патрубок 200, выполненный с возможностью направления потока 202 отходящих газов в устройство 192. Устройство 192 содержит воздухозаборник 204, выполненный с возможностью введения потока 206 воздуха в устройство 192. Устройство 192 содействует захвату потока 206 воздуха при помощи потока 202 отходящих газов в качестве движущего потока за счет эффекта Коанда и образует высокоскоростной поток 208 воздуха, который выходит через выпуск 210. В частности, устройство 192 использует комбинацию потока 202 отходящих газов в качестве рабочей текучей среды и окружающего воздуха 206 путем передачи некоторого количества энергии потоку 206 воздуха за счет ускорения неподвижного воздуха, тем самым, создавая высокоскоростной поток 208 воздуха. Поэтому высокоскоростной поток 208 воздуха можно использовать для вырабатывания механической работы.
Различные варианты описанного выше способа можно применить для повышения эффективности таких разных систем, как газовые турбины, ветряные турбины, микротурбины, турбокомпрессоры и т.д. Описанное выше изобретение использует устройство, которое можно включить в состав существующих систем, и использует такую движущую текучую среду, как малополезные отходящие газы из системы, для захвата вторичной текучей среды, чтобы образовать высокоскоростной поток воздуха. В частности, это устройство использует эффект Коанда для образования высокоскоростного потока воздуха, который затем можно использовать для извлечения механической работы или для выработки электроэнергии, тем самым, повышая эффективность таких систем. Это устройство можно применить для повышения эффективности существующих газовых турбин путем подключения этого устройства к турбине для вырабатывания механической работы и электроэнергии, по существу, с минимальным расходом топлива. Кроме того, устройство можно подключить к существующим газотурбинным станциям для создания искусственного ветра, который можно направить в систему ветряной турбины. Более того, устройство можно подключить для повышения эффективности турбокомпрессора транспортного средства путем извлечения работы при помощи отходящих газов из двигателя внутреннего сгорания транспортного средства.
Хотя только некоторые варианты изобретения были описаны и показаны, специалистам в данной области техники, будет очевидно, что возможны различные модификации и изменения. Таким образом, подразумевается, что прилагаемая формула изобретения охватывает такие модификации и изменения в рамках сущности изобретения.

Claims (7)

1. Система (80) ветряной турбины, содержащая: ветряную турбину (82), включающую в себя ротор (84) и множество лопастей (86), установленных на ступице (88); устройство (50), расположенное выше по потоку от ветряной турбины и содержащее: область (56), выполненную с возможностью введения отходящего газа (58) в указанное устройство; впуск (62) для воздуха, выполненный с возможностью введения воздуха в указанное устройство; по меньшей мере, одну поверхность с профилем (54) Коанда, выполненным с возможностью захвата воздуха с отходящим газом для создания высокоскоростного потока (68) воздуха для приведения в действие ветряной турбины; и электрогенератор (94), соединенный с ротором (82) ветряной турбины, для выработки электроэнергии, при этом отходящий газ образуется в газовой турбине.
2. Система по п.1, в которой профиль Коанда содержит логарифмический спиральный профиль.
3. Система по п.1, в которой скорость высокоскоростного потока воздуха составляет от 50 км/ч до 100 км/ч.
4. Система по п.1, которая содержит множество устройств (50), выполненных с возможностью создания требуемого высокоскоростного потока воздуха для приведения в действие ветряной турбины.
5. Система по п.1, которая содержит по меньшей мере одну прорезь, выполненную с возможностью введения отходящего газа (58) из области (56) по профилю Коанда.
6. Система по п.1, в которой прилипание отходящего газа к профилю Коанда образует граничный слой (176), а воздух, поступающий через впуск для воздуха, образует сдвиговый слой (180) с граничным слоем для ускорения воздуха в сходящемся участке устройства и содействия смешиванию граничного слоя и воздуха.
7. Система по п.1, в которой соотношение массы воздуха, захваченного устройством, и массы отходящего газа составляет от около 5 до около 22.
RU2007133593/06A 2006-09-08 2007-09-07 Система ветряной турбины, приводимая в действие системой извлечения энергии повышенной эффективности RU2462606C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/530,227 2006-09-08
US11/530,227 US7685804B2 (en) 2006-09-08 2006-09-08 Device for enhancing efficiency of an energy extraction system

Publications (2)

Publication Number Publication Date
RU2007133593A RU2007133593A (ru) 2009-03-20
RU2462606C2 true RU2462606C2 (ru) 2012-09-27

Family

ID=39105353

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007133593/06A RU2462606C2 (ru) 2006-09-08 2007-09-07 Система ветряной турбины, приводимая в действие системой извлечения энергии повышенной эффективности

Country Status (7)

Country Link
US (1) US7685804B2 (ru)
JP (1) JP2008064100A (ru)
KR (1) KR20080023190A (ru)
CN (1) CN101178086A (ru)
AU (1) AU2007211892A1 (ru)
DE (1) DE102007042301A1 (ru)
RU (1) RU2462606C2 (ru)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220943B (zh) * 2010-04-15 2015-07-08 穆吉德·乌尔·拉赫曼·阿尔维 从废弃动能产生势能的管道动力涡轮系统
GB2481244A (en) * 2010-06-17 2011-12-21 Ronald Davenport Wilson Power generator utilising fluid collected via a corridor
CN102052255B (zh) * 2010-12-31 2012-03-07 北京恒聚化工集团有限责任公司 冲击式风力发电装置
JP5792324B2 (ja) * 2011-12-14 2015-10-07 北京祥天華創空気動力科技研究院有限公司 ターボファン風力発電システム
US9200570B2 (en) 2012-02-24 2015-12-01 Pratt & Whitney Canada Corp. Air-cooled oil cooler for turbofan engine
US10279871B2 (en) * 2013-01-25 2019-05-07 Tmt Pte. Ltd. Offshore facility with metal processing apparatus and power generation system
JP6046541B2 (ja) * 2013-04-10 2016-12-14 本田技研工業株式会社 モノポール構成の風力発電装置
CN106294913B (zh) * 2015-06-04 2019-09-17 中国航发商用航空发动机有限责任公司 提高零部件热分析计算结果可靠性的方法
GB2561837A (en) * 2017-04-24 2018-10-31 Hieta Tech Limited Turbine rotor, turbine, apparatus and method
PL426033A1 (pl) 2018-06-22 2020-01-02 General Electric Company Płynowe pompy strumieniowe parowe, a także układy i sposoby porywania płynu przy użyciu płynowych pomp strumieniowych parowych
EP3935278A1 (en) 2019-03-08 2022-01-12 Big Moon Power, Inc. Systems and methods for hydro-based electric power generation
JP7293014B2 (ja) 2019-07-12 2023-06-19 三菱重工業株式会社 ガスタービンシステムおよびそれを備えた移動体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4002032A (en) * 1975-11-28 1977-01-11 Bash D Arle G Solar heated device
US4452046A (en) * 1980-07-24 1984-06-05 Zapata Martinez Valentin System for the obtaining of energy by fluid flows resembling a natural cyclone or anti-cyclone
SU1495528A1 (ru) * 1987-09-01 1989-07-23 Тольяттинский политехнический институт Газовый эжектор
RU2080480C1 (ru) * 1994-09-05 1997-05-27 Комсомольский-на-Амуре политехнический институт Ветроэнергетическая установка
RU2144986C1 (ru) * 1997-11-13 2000-01-27 Открытое акционерное общество "Авиадвигатель" Устройство для выпуска газов из турбомашины

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE560119A (ru) * 1956-09-13
US3568701A (en) * 1969-03-03 1971-03-09 Us Army Fluid amplifier with improved interaction region
US3631675A (en) * 1969-09-11 1972-01-04 Gen Electric Combustor primary air control
US3744242A (en) * 1972-01-25 1973-07-10 Gen Motors Corp Recirculating combustor
US3819134A (en) * 1972-11-30 1974-06-25 Rockwell International Corp Aircraft system lift ejector
US3795367A (en) * 1973-04-05 1974-03-05 Src Lab Fluid device using coanda effect
JPS5222131B2 (ru) * 1973-04-23 1977-06-15
US3826083A (en) * 1973-07-16 1974-07-30 Gen Motors Corp Recirculating combustion apparatus jet pump
US4030289A (en) * 1973-10-29 1977-06-21 Chandler Evans Inc. Thrust augmentation technique and apparatus
JPS5228252B2 (ru) * 1974-04-08 1977-07-26
DK140426B (da) * 1976-11-01 1979-08-27 Arborg O J M Fremdriftsdyse til transportmidler i luft eller vand.
JPS5746035Y2 (ru) * 1981-03-09 1982-10-09
US4448354A (en) * 1982-07-23 1984-05-15 The United States Of America As Represented By The Secretary Of The Air Force Axisymmetric thrust augmenting ejector with discrete primary air slot nozzles
GB2193999B (en) * 1986-08-12 1990-08-29 Rolls Royce Plc Gas turbine engine with variable bypass means
JP2582075B2 (ja) * 1987-06-26 1997-02-19 三井造船株式会社 船舶推進装置用コアンダエンジン
US5085039A (en) * 1989-12-07 1992-02-04 Sundstrand Corporation Coanda phenomena combustor for a turbine engine
JPH0450455A (ja) * 1990-06-18 1992-02-19 Arisan Denko:Kk 動力発生装置
US5533487A (en) * 1994-06-23 1996-07-09 Navistar International Transportation Corp. Dynamic enhancement of EGR flow in an internal combustion engine
JPH1113421A (ja) * 1997-06-23 1999-01-19 Hitachi Ltd ガスタービン排ガス流発電設備
CN2387274Y (zh) * 1999-09-22 2000-07-12 蔡盛龙 旋转喷气轴发动机
EP1262637A1 (de) * 2001-05-31 2002-12-04 ALSTOM (Switzerland) Ltd Verfahren zum Betrieben eines Gasturbinenkraftwerks sowie Gasturbinenkraftwerk
US7197881B2 (en) * 2004-03-25 2007-04-03 Honeywell International, Inc. Low loss flow limited feed duct
CN2720121Y (zh) * 2004-06-07 2005-08-24 张普华 一种由风力发电机驱动的发电装置
JP2007016608A (ja) * 2005-07-05 2007-01-25 Ishikawajima Harima Heavy Ind Co Ltd パルスデトネーション回転駆動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4002032A (en) * 1975-11-28 1977-01-11 Bash D Arle G Solar heated device
US4452046A (en) * 1980-07-24 1984-06-05 Zapata Martinez Valentin System for the obtaining of energy by fluid flows resembling a natural cyclone or anti-cyclone
SU1495528A1 (ru) * 1987-09-01 1989-07-23 Тольяттинский политехнический институт Газовый эжектор
RU2080480C1 (ru) * 1994-09-05 1997-05-27 Комсомольский-на-Амуре политехнический институт Ветроэнергетическая установка
RU2144986C1 (ru) * 1997-11-13 2000-01-27 Открытое акционерное общество "Авиадвигатель" Устройство для выпуска газов из турбомашины

Also Published As

Publication number Publication date
JP2008064100A (ja) 2008-03-21
DE102007042301A1 (de) 2008-03-27
CN101178086A (zh) 2008-05-14
US20100034642A1 (en) 2010-02-11
AU2007211892A1 (en) 2008-04-03
KR20080023190A (ko) 2008-03-12
US7685804B2 (en) 2010-03-30
RU2007133593A (ru) 2009-03-20

Similar Documents

Publication Publication Date Title
RU2462606C2 (ru) Система ветряной турбины, приводимая в действие системой извлечения энергии повышенной эффективности
RU2455506C2 (ru) Турбокомпрессор для транспортного средства
US5709076A (en) Method and apparatus for power generation using rotating ramjet which compresses inlet air and expands exhaust gas against stationary peripheral wall
EP2426314A2 (en) System and method of cooling turbine airfoils with carbon dioxide
WO1999066187A1 (en) Ramjet engine for power generation
JP2001506340A (ja) 発電用ラムジェット・エンジン
WO2011121355A2 (en) Gas turbines
US20110048008A1 (en) Hydro-Electric reactor
EP0568748A1 (en) Heat recovering thrust turbine having rotational flow path
US20030014960A1 (en) Impulse turbine for rotary ramjet engine
US20200271047A1 (en) Rotating internal combustion engine
JP2007016608A (ja) パルスデトネーション回転駆動装置
US20040016226A1 (en) Radial impulse turbine for rotary ramjet engine
KR101850481B1 (ko) 2단 엔진 배기 장치를 갖는 왕복 내연 엔진
TWI807486B (zh) 油壓飛輪發電系統
WO2003010433A1 (en) Radial impulse turbine for rotary ramjet engine
RU2107176C1 (ru) Способ работы теплового двигателя и тепловой двигатель
Muller et al. Wave disc engine apparatus
WO1997045630A9 (en) Turbocharged ram tornado engine with transmission and heat recovery system
RU2497004C2 (ru) Гибридный двойной газотурбинный двигатель
JP3735832B2 (ja) 爆発圧力利用の主機関制動装置、並びに、その主機関である有効圧力極限利用式のタルビン機構本体
NZ338049A (en) Apparatus for the generation of power using a ramjet engine thrust modules
EP0099696A2 (en) Apparatus for starting a gas turbine engine
TH39816A3 (th) เครื่องยนต์แบบแรมเจ็ตสำหรับการผลิตกำลัง

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130908