RU2460580C1 - Способ получения сорбционного материала - Google Patents

Способ получения сорбционного материала Download PDF

Info

Publication number
RU2460580C1
RU2460580C1 RU2011111233/05A RU2011111233A RU2460580C1 RU 2460580 C1 RU2460580 C1 RU 2460580C1 RU 2011111233/05 A RU2011111233/05 A RU 2011111233/05A RU 2011111233 A RU2011111233 A RU 2011111233A RU 2460580 C1 RU2460580 C1 RU 2460580C1
Authority
RU
Russia
Prior art keywords
sawdust
bentonite clay
temperature
water
hours
Prior art date
Application number
RU2011111233/05A
Other languages
English (en)
Inventor
Владимир Александрович Сомин (RU)
Владимир Александрович Сомин
Алена Александровна Фогель (RU)
Алена Александровна Фогель
Лариса Федоровна Комарова (RU)
Лариса Федоровна Комарова
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) filed Critical Государственное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ)
Priority to RU2011111233/05A priority Critical patent/RU2460580C1/ru
Application granted granted Critical
Publication of RU2460580C1 publication Critical patent/RU2460580C1/ru

Links

Abstract

Изобретение относится к области прикладной экологии и может быть использовано для очистки сточных вод предприятий от фенолов, взвешенных и поверхностно-активных веществ, ионов тяжелых металлов и нефтепродуктов. Способ получения сорбционного материала включает обработку древесных опилок 4,5-5,5% раствором ортофосфорной кислоты, отмывку дистиллированной водой, смешивание бентонитовой глины, воды и обработанных опилок в соотношении, равном 1:2:2, сушку полученной смеси при температуре 80-85°С, измельчение с получением фракции 3-15 мм и термическую обработку при температуре 90-95°С. Изобретение обеспечивает получение эффективного сорбента с высокой механической прочностью. 1 табл., 1 пр.

Description

Изобретение относится к области прикладной экологии и может быть использовано в химической, металлургической промышленности и в различных отраслях машиностроения для очистки сточных вод предприятий от фенолов, взвешенных и поверхностно-активных веществ, ионов тяжелых металлов и нефтепродуктов.
Известен способ получения сорбентов, включающий обработку сырья, в качестве которого используют опилки различных пород деревьев, промывку, сушку и измельчение. При этом обработку ведут смесью, содержащей ортофосфорную кислоту, диметилформамид и мочевину, при температуре кипения в течение 2-5 ч (Патент на изобретение №2079359, МПК B01J 20/22, опубл. 1997).
Недостатком описанного способа является область применения, ограниченная извлечением из загрязненных вод ионов тяжелых металлов вследствие использования в качестве сорбента модифицированных древесных опилок.
Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ получения сорбционно-ионообменного материала, включающий обработку древесных опилок модификатором, смешивание бентонитовой глины, воды и древесных опилок, сушку полученной смеси в течение 3,5-4 ч, измельчение до образования фракции размером 3-15 мм и термическую обработку. При этом в качестве модификатора используют бентонитовую глину, смешивают бентонитовую глину, воду и древесные опилки в соотношении 1:2:1, сушку полученной смеси осуществляют при температуре 115-125°С, а термическую обработку ведут при температуре 145-155°С в течение 2 - 2,5 ч (Патент на изобретение №2394628, МПК B01D 39/14, B01J 39/16, B01J 20/12, B01J 20/22, опубл. 2010).
Недостатком описанного способа является ограниченная область применения, обусловленная низкой сорбционной емкостью материала вследствие формирования неравномерного слоя большой толщины бентонитовой глины, обладающей сорбционными свойствами в верхней части слоя, на не развитой удельной поверхности древесных опилок с небольшим количеством пор малого размера.
Предлагаемым изобретением решается задача расширения области применения материала.
Для достижения указанного технического результата в способе получения сорбционного материала, включающем обработку древесных опилок модификатором, смешивание бентонитовой глины, воды и древесных опилок при соотношении бентонитовой глины и воды, равном 1:2, сушку полученной смеси в течение 3,5-4 ч, измельчение до образования фракции размером 3-15 мм и термическую обработку, обработку древесных опилок осуществляют пропиткой модификатором, в качестве которого используют 4,5-5,5% раствор ортофосфорной кислоты, в течение 23-25 ч при комнатной температуре с последующей отмывкой дистиллированной водой, после чего смешивают бентонитовую глину, воду и древесные опилки при соотношении бентонитовой глины и древесных опилок, равном 1:2, сушат полученную смесь при температуре 80-85°С и проводят термическую обработку при температуре 90-95°С в течение 075-1 ч.
Расширение области применения за счет повышения сорбционной емкости материала по отношению к фенолам, взвешенным и поверхностно-активным веществам при сохранении высокой сорбции в отношении ионов тяжелых металлов и нефтепродуктов, обусловленное формированием тонкого слоя бентонитовой глины, проявляющего сорбционные свойства по толщине слоя, на развитой удельной поверхности древесных опилок с повышенным количеством и размерами пор, обеспечивается тем, что обработку древесных опилок осуществляют пропиткой модификатором, в качестве которого используют 4,5-5,5% раствор ортофосфорной кислоты, в течение 23-25 ч при комнатной температуре с последующей отмывкой дистиллированной водой, после чего смешивают бентонитовую глину, воду и древесные опилки при соотношении бентонитовой глины и древесных опилок, равном 1:2, сушат полученную смесь при температуре 80-85°С и проводят термическую обработку при температуре 90-95°С в течение 0,75-1 ч.
Осуществление обработки древесных опилок пропиткой модификатором, в качестве которого используют 4,5-5,5% раствор ортофосфорной кислоты, в течение 23-25 ч при комнатной температуре является оптимальным. Осуществление пропитки древесных опилок раствором ортофосфорной кислоты концентрацией, меньшей чем 4,5%, в течение менее 23 ч приводит к уменьшению удельной поверхности древесных опилок за счет образования меньшего количества пор с меньшим размером. Применение для пропитки раствора ортофосфорной кислоты концентрацией, большей чем 5,5%, в течение более 25 ч приводит к разрушению материала.
Соотношение бентонитовой глины, воды и древесных опилок, равное 1:2:2, является оптимальным и способствует формированию равномерно распределенного тонкого слоя бентонитовой глины на развитой удельной поверхности древесных опилок. Как уменьшение доли бентонитовой глины и увеличение доли древесных опилок, так и увеличение доли бентонитовой глины и уменьшение доли древесных опилок приводит к снижению сорбционной емкости материала вследствие формирования неравномерно распределенного слоя большой толщины бентонитовой глины на развитой удельной поверхности древесных опилок.
Добавление воды в качестве связующего агента в количестве, меньшем, чем в указанном соотношении, нецелесообразно за счет невозможности достижения однородного перемешивания бентонитовой глины и древесных опилок и, следовательно, формирования равномерно распределенного тонкого слоя бентонитовой глины на развитой удельной поверхности древесных опилок. Применение воды в количестве, большем, чем в указанном соотношении, нецелесообразно, так как увеличивает время сушки сорбционного материала.
Проведение сушки полученной смеси при температуре 80-85°С является оптимальным. Проведение сушки при температуре менее 80°С нецелесообразно вследствие значительного увеличения времени сушки. Сушка при температуре более 85°С приводит к спеканию смеси из бентонитовой глины и древесных опилок, что делает невозможным дальнейшее измельчение материала.
Проведение термической обработки при температуре 90-95°С в течение 0,75-1 ч является оптимальным. Проведение термической обработки при температуре менее 90-95°С в течение менее 0,75-1,0 ч нецелесообразно, поскольку не обеспечивает прочного механического сцепления слоя бентонитовой глины с пористой поверхностью древесных опилок, что приводит к вымыванию частиц слоя бентонитовой глины при фильтровании. Проведение термической обработки при температуре более 95°С в течение более 1 ч также нецелесообразно, так как приводит к обугливанию и разрушению материала.
Предлагаемое изобретение поясняется таблицей, в которой показаны эффективность очистки и механическая прочность материала, полученного по данному способу.
Из таблицы видно, что очистка сточных вод предлагаемым материалом характеризуется высокой эффективностью очистки от фенолов, взвешенных и поверхностно-активных веществ при сохранении высокой эффективности очистки в отношении ионов тяжелых металлов и нефтепродуктов и повышенной механической прочностью материала.
Способ получения сорбционного материала осуществляется следующим образом.
Обработку древесных опилок осуществляют пропиткой модификатором, в качестве которого используют 4,5-5,5% раствор ортофосфорной кислоты, в течение 23-25 ч при комнатной температуре с последующей отмывкой дистиллированной водой. Это обеспечивает создание развитой удельной поверхности древесных опилок с увеличенным количеством и размерами пор.
После чего смешивают бентонитовую глину, древесные опилки и воду в соотношении, равном 1:2:2, до получения смеси однородного состава. При этом происходит формирование равномерно распределенного тонкого слоя бентонитовой глины на предварительно развитой удельной поверхности древесных опилок. Величина слоя бентонитовой глины сопоставима с размером частиц бентонитовой глины, что создает условия для проявления сорбционных свойств по толщине слоя.
Кроме того, смешивание бентонитовой глины, древесных опилок и воды в указанном соотношении приводит к снижению расхода бентонитовой глины по сравнению с прототипом.
Сушат полученную смесь при температуре 80-85°С в течение 3,5-4 ч и измельчают до образования фракции размером 3-15 мм.
Проводят термическую обработку при температуре 90-95°С в течение 0,75-1 ч. Происходит активация бентонитовой глины и, следовательно, увеличение сорбционной емкости материала, который также характеризуется повышенной механической прочностью за счет повышения степени фиксации слоя бентонитовой глины с древесными опилками.
Пример конкретного выполнения способа.
Обработку древесных опилок, например, сосны осуществляют пропиткой модификатором, в качестве которого используют 5% раствор ортофосфорной кислоты. Для чего исходную навеску древесных опилок сосны массой 100 г помещают в емкость на 1000 мл, добавляют 200 мл 5% раствора ортофосфорной кислоты и выдерживают в течение 24 ч при комнатной температуре с последующей отмывкой от избытка модификатора дистиллированной водой.
После чего смешивают 50 г бентонитовой глины, 100 мл воды и 100 г модифицированных древесных опилок в фарфоровой чашке емкостью 500 мл, например, вручную до образования смеси однородного состава.
Фарфоровую чашку с полученной смесью помещают в сушильный шкаф при температуре 80°С и сушат в течение 3,5 ч.
После этого измельчают высушенный материал до образования фракции размером, равным 3-15 мм, например, на щековой дробилке типа ЩДС-1×2.
Проводят термическую обработку измельченного материала. Для чего помещают его в фарфоровую чашку объемом 200 мл и выдерживают в печи при температуре 90°С в течение 0,8 ч.
Определение сорбционной емкости полученного предлагаемым способом материала в статических условиях по отношению, например, к фенолам осуществляют следующим образом.
В каждую из 9 колб помещают навеску массой 1 г сорбционного материала. После этого в каждую колбу добавляют раствор фенола объемом 100 мл с концентрацией, равной 10, 50, 100, 150, 200, 300, 500, 800, 1000 мг/л соответственно. Затем содержимое каждой колбы перемешивают в течение 2 ч и проводят анализ каждого раствора на содержание фенола, в частности, фотоколориметрическим методом. Значение сорбционной емкости материала рассчитывают как разницу между начальной и конечной (равновесной) концентрацией раствора в каждой колбе, отнесенную к единице массы сорбента.
Аналогично определяют сорбционную емкость по ионам меди, хрома, цинка, никеля, свинца, железа, нефтепродуктов, поверхностно-активных веществ.
Определение эффективности очистки сточных вод сорбционным материалом, в частности, от фенолов осуществляют в динамических условиях следующим образом. Материал загружают в колонку диаметром 40 мм и высотой фильтровального слоя 100 мм. После этого через колонку пропускают со скоростью от 5 до 10 м/ч раствор фенолов с концентрацией 10 мг/л. На выходе из колонки раствор анализируют на содержание фенолов, в частности, фотоколориметрическим методом.
Аналогично определяют эффективность очистки сточных вод по ионам хрома, цинка, никеля свинца, железа, нефтепродуктов, поверхностно-активных веществ.
Анализ сточных вод на наличие взвешенных веществ осуществляют выделением из пробы воды взвешенных веществ фильтрованием через бумажный фильтр «синяя лента», высушиванием фильтра в течение 2 ч при температуре 105°С, охлаждением в эксикаторе и взвешиванием осадка на фильтре до постоянной массы.
Механическую прочность сорбционного материала определяют путем измельчения образца материала с массой 10 г в горизонтальной шаровой мельнице в течение 20 минут с керамическими шарами диаметром 10 мм в количестве 10 штук. После истирания образец рассеивается на мелком сите для отделения пылевидной фракции, после чего определяют долю материала, не подвергнувшегося измельчению.
Результаты эксперимента представлены в таблице.
Таким образом, использование предлагаемого способа приводит к расширению области применения сорбционного материала, снижению расхода бентонитовой глины, интенсификации процесса получения материала вследствие сокращения времени и снижения температуры термической обработки, а также позволяет получить сорбционный материал, обладающий высокой механической прочностью.
Таблица
Эффективность очистки и механическая прочность материала, полученного по предлагаемому способу, и прототипа
Компонент, извлекаемый из очищаемых сточных вод Эффективность очистки, % Механическая прочность, %
по прототипу по предлагаемому материалу по прототипу по предлагаемому материалу
Cr+3 82-88 83-90 62 78
Zn+2 91-95 90-95
Сu+2 83-91 95-98
Ni+2 90-95 90-95
Pb+2 95-99 92-97
Fe+3 97-99 98-99
нефтепродукты 98-99 98-99
фенолы - 85-93
взвешенные вещества - 96-98
поверхностно-активные вещества 75-82

Claims (1)

  1. Способ получения сорбционного материала, включающий обработку древесных опилок модификатором, смешивание бентонитовой глины, воды и древесных опилок при соотношении бентонитовой глины и воды, равном 1:2, сушку полученной смеси в течение 3,5-4 ч, измельчение до образования фракции размером 3-15 мм и термическую обработку, отличающийся тем, что обработку древесных опилок осуществляют пропиткой модификатором, в качестве которого используют 4,5-5,5%-ный раствор ортофосфорной кислоты, в течение 23-25 ч при комнатной температуре с последующей отмывкой дистиллированной водой, после чего смешивают бентонитовую глину, воду и древесные опилки при соотношении бентонитовой глины и древесных опилок, равном 1:2, сушат полученную смесь при температуре 80-85°С и проводят термическую обработку при температуре 90-95°С в течение 0,75-1 ч.
RU2011111233/05A 2011-03-24 2011-03-24 Способ получения сорбционного материала RU2460580C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011111233/05A RU2460580C1 (ru) 2011-03-24 2011-03-24 Способ получения сорбционного материала

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011111233/05A RU2460580C1 (ru) 2011-03-24 2011-03-24 Способ получения сорбционного материала

Publications (1)

Publication Number Publication Date
RU2460580C1 true RU2460580C1 (ru) 2012-09-10

Family

ID=46938851

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011111233/05A RU2460580C1 (ru) 2011-03-24 2011-03-24 Способ получения сорбционного материала

Country Status (1)

Country Link
RU (1) RU2460580C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4048028A (en) * 1976-06-22 1977-09-13 Clearwater Systems Inc. Sorbent particulate material and manufacture thereof
RU2079359C1 (ru) * 1995-07-28 1997-05-20 Величко Борис Афанасьевич Способ получения сорбентов
US5719098A (en) * 1992-12-21 1998-02-17 Sud-Chemie A.G. Sorbent based on smectitic clay minerals reacted with alkaline ion exchanger
RU2393011C1 (ru) * 2009-06-09 2010-06-27 Федеральное государственное унитарное предприятие "Научно-исследовательский технологический институт имени А.П. Александрова" Способ получения сорбента для очистки воды от радиоактивного стронция
RU2394628C1 (ru) * 2009-03-17 2010-07-20 Государственное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) Способ получения сорбционно-ионообменного материала

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4048028A (en) * 1976-06-22 1977-09-13 Clearwater Systems Inc. Sorbent particulate material and manufacture thereof
US5719098A (en) * 1992-12-21 1998-02-17 Sud-Chemie A.G. Sorbent based on smectitic clay minerals reacted with alkaline ion exchanger
RU2079359C1 (ru) * 1995-07-28 1997-05-20 Величко Борис Афанасьевич Способ получения сорбентов
RU2394628C1 (ru) * 2009-03-17 2010-07-20 Государственное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) Способ получения сорбционно-ионообменного материала
RU2393011C1 (ru) * 2009-06-09 2010-06-27 Федеральное государственное унитарное предприятие "Научно-исследовательский технологический институт имени А.П. Александрова" Способ получения сорбента для очистки воды от радиоактивного стронция

Similar Documents

Publication Publication Date Title
Liu et al. Adsorption removal of phosphate from aqueous solution by active red mud
Eloussaief et al. Efficiency of natural and acid-activated clays in the removal of Pb (II) from aqueous solutions
Deng et al. Adsorption of methylene blue on adsorbent materials produced from cotton stalk
Olgun et al. Equilibrium and kinetic adsorption study of Basic Yellow 28 and Basic Red 46 by a boron industry waste
Barkat et al. Kinetics and thermodynamics studies of chromium (VI) ions adsorption onto activated carbon from aqueous solutions
Huang et al. Adsorption removal of phosphate in industrial wastewater by using metal-loaded skin split waste
Eren et al. Equilibrium and thermodynamic studies of Cu (II) removal by iron oxide modified sepiolite
Ademiluyi et al. Multiple adsorption of heavy metal ions in aqueous solution using activated carbon from Nigerian bamboo
Shooto et al. Iron based metal organic framework as an effective lead ions remover from aqueous solution: thermodynamic and kinetics studies
Malina et al. Kinetic aspects of methylene blue adsorption on blast furnace sludge
CN105107457B (zh) 一种无机粉体材料的制备方法与应用
RU2460580C1 (ru) Способ получения сорбционного материала
RU2445156C1 (ru) Способ получения ферромагнитного углеродного адсорбента
Amarasinghe Lead and cadmium removal from aqueous medium using coir pith as adsorbent: batch and fixed bed column studies
Abd Aziz Optimization of pH and contact time of media in removing calcium and magnesium from groundwater
Satayev et al. Characteristics of activated carbons prepared from apricot kernel shells by mechanical, chemical and thermal activations
RU2394628C1 (ru) Способ получения сорбционно-ионообменного материала
CN100534574C (zh) 一种疏油多孔陶瓷滤料的制备工艺
RU2414430C1 (ru) Способ комплексной очистки сточных вод углеродминеральным сорбентом из сапропеля
Al-Shahrani Removal of lead from aqueous solutions using Saudi activated bentonite
Lupandina et al. Modified Bleaching Clay as a Sorption Material
RU2358799C1 (ru) Способ получения сорбента для очистки сточных вод от формальдегида
RU2665516C2 (ru) Способ получения сорбента для очистки воды
RU2345834C1 (ru) Способ получения фильтровально-сорбционного материала
Ghasemi et al. Adsorption isotherms and kinetics studies for the removal of Pb (II) from aqueous solutions using low-cost adsorbent

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180325