RU2460057C1 - Способ неразрушающего определения несущей способности строительных конструкций - Google Patents

Способ неразрушающего определения несущей способности строительных конструкций Download PDF

Info

Publication number
RU2460057C1
RU2460057C1 RU2011114655/28A RU2011114655A RU2460057C1 RU 2460057 C1 RU2460057 C1 RU 2460057C1 RU 2011114655/28 A RU2011114655/28 A RU 2011114655/28A RU 2011114655 A RU2011114655 A RU 2011114655A RU 2460057 C1 RU2460057 C1 RU 2460057C1
Authority
RU
Russia
Prior art keywords
load
strain
bearing capacity
strains
values
Prior art date
Application number
RU2011114655/28A
Other languages
English (en)
Inventor
Владимир Сергеевич Уткин (RU)
Владимир Сергеевич Уткин
Александр Николаевич Редькин (RU)
Александр Николаевич Редькин
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Вологодский государственный технический университет" (ВоГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Вологодский государственный технический университет" (ВоГТУ) filed Critical Государственное образовательное учреждение высшего профессионального образования "Вологодский государственный технический университет" (ВоГТУ)
Priority to RU2011114655/28A priority Critical patent/RU2460057C1/ru
Application granted granted Critical
Publication of RU2460057C1 publication Critical patent/RU2460057C1/ru

Links

Images

Abstract

Изобретение относится к неразрушающему контролю несущей способности строительных и других конструкций из материалов с линейной зависимостью между нагрузкой и деформацией материала. Сущность: на поверхности испытуемой конструкции определяют места возможных максимальных деформаций. В этих местах испытуемую конструкцию нагружают 5-10 раз механической нагрузкой, не превышающей предельного значения, и определяют величину деформации в этих местах, а о прочности конструкции судят с учетом значений величины деформации. Нагружают конструкцию механической нагрузкой, направленной противоположно собственному весу и весу эксплуатационной нагрузки, тремя ступенями нагружения. Измеряют деформации в конструкции при каждом нагружении в опасном и рядом с опасным сечениях. Находят положение нейтральной оси в сечении элемента, с помощью измеренных деформаций в опасном сечении и с использованием нейтральной оси строят эпюру деформаций в этом сечении. По результатам трех средних значений относительных деформаций ε и соответствующим им нагрузкам F изображают точки в осях координат ε-F, по которым строят среднюю прямую зависимости нагрузки от относительной деформации. По оси абсцисс диаграммы откладывают измеренные относительные деформации ε. В качестве предельной деформации используют ее значение, равное 0.05%, которое соответствует пределу упругости материала, до которого диаграмму F(ε) принимают прямой линией. Несущую способность конструкции определяют в виде интервала значений
Figure 00000031
строят равномерный закон распределения предельной нагрузки FПР как случайной величины по известным значениям
Figure 00000029
и
Figure 00000030
, несущую способность конструкции определяют по заданной вероятности (обеспеченности), как абсциссу в законе распределения с соответствующей обеспеченностью (вероятностью). Технический результат: повышение безопасности испытаний и точности определения предельной нагрузки по критерию прочности для строительных конструкций из материалов с линейной зависимостью между нагрузкой и деформацией. 5 ил.

Description

Изобретение относится к неразрушающему контролю несущей способности строительных и других конструкций, например балок, рам, ферм, валов, резервуаров, зубчатых колес и т.д. из материалов с линейной зависимостью между нагрузкой и деформацией материала (стали, древесины и т.д.).
Известен способ неразрушающего контроля прочности строительных конструкций [1], заключающийся в том, что на поверхности испытуемой конструкции, например балке, раме, ферме, определяют места возможных максимальных деформаций (прогибов), в этих местах конструкцию нагружают механической нагрузкой, не превышающей предельного значения, и определяют величину деформаций в этих местах, а о прочности конструкции судят с учетом среднего значения величины деформации, прикладывают механическую нагрузку постоянной величины, испытуемую конструкцию нагружают 5-10 раз, при определении величины деформации учитывают величину перемещения, строят диаграмму «значение нагрузки - значение деформации (прогиб)» при линейной зависимости между нагрузкой и деформацией с доверительными границами и по предельной деформации (прогибу) определяют предельную нагрузку.
Недостатком этого изобретения является низкая точность диаграмм «значение нагрузки - значение деформации (прогиб)», т.к. прямая диаграммы строится по одной эксплуатационной точке, полученной по результатам экспериментов, а также необоснованных доверительных границах параллельных диаграмме Q-Δ.
Известен способ неразрушающего контроля несущей способности изделий [2], заключающийся в том, что на изделии определяют места возможных максимальных линейных или угловых перемещений, в этих местах конструкцию нагружают испытательной механической нагрузкой, не превышающей предельного ее значения по прочности и жесткости конструкции, и определяют значения максимальных перемещений, при этом нагружение конструкции выполняют в одном и том же месте 5-10 раз постоянной по значению механической нагрузкой, нагружение осуществляют не менее чем при трех различных ступенях нагрузки, по результатам трех средних значений перемещений и соответствующим нагрузкам строят прямую зависимости нагрузки от перемещения, определяют не менее трех доверительных интервалов измерений перемещений, по точкам которых строят доверительные границы измеряемых перемещений, а прочность конструкции определяют с учетом средних значений перемещений при линейной зависимости между нагрузкой и перемещением.
Недостатком этого метода является ограниченность области применения (балки, фермы, рамы), и оценка несущей способности осуществляется по критерию предельного перемещения (жесткости конструкции), а не по более важному критерию - по прочности (по безопасности) конструкции или другой продукции.
Наиболее близким изобретением служит способ неразрушающего контроля изделий [3], заключающийся в том, что на поверхности испытуемой конструкции определяют места возможных максимальных деформаций, в этих местах испытуемую конструкцию нагружают механической нагрузкой, не превышающей предельного значения вычисленного ориентировочно, теоретически, и определяют величину относительных деформации ε в этих местах, а о прочности конструкции судят с учетом среднего значения величины деформации, прикладывают механическую нагрузку постоянной величины, испытуемую конструкцию нагружают 5-10 раз, а при определении величины нагрузки учитывают величину напряжения, вычисляют соответствующие максимальные нормальные напряжения по закону Гука σMAX=ε·E, используя модуль упругости материала Е, строят диаграмму «нагрузка - напряжение» в виде прямой, проходящей через начало координат и вблизи трех точек (σMAX, Q). Экстраполируя диаграмму прямой до ординаты, равной предельному напряжению (пределу текучести, пределу прочности и т.д.). Аналогичным образом строят доверительные границы для диаграммы (Q, σ).
Недостатком этого способа является то, что дополнительное нагружение при испытании конструкции приводит к увеличению существующих повреждений в материале конструкции, так как испытательная нагрузка неизбежно накладывается на нагрузку от собственного веса конструкции и веса оборудования (или другой эксплуатационной нагрузки). Также недостатком является то, что в качестве предельного значения нагрузки по условию безопасности принимается только нижнее значение предельной нагрузки
Figure 00000001
. Построение диаграммы «нагрузка Q - напряжение σ» с экстраполяцией ее прямой линией до предельного напряжения (предела прочности, предела текучести и т.д.) осуществляется по трем экспериментальным точкам с координатами (σ, Q), в то время как известно, что вблизи этих пределов диаграмма криволинейная. Также в формуле σMAX=ε·Е используется модуль упругости материала Е для определения напряжения, значения которого берутся из справочно-нормативных документов, в которых его значения приводятся при вероятности реализации, равной 50% и, следовательно, может оказаться неточным, что приводит к неопределенным по значению ошибкам при определении качества (несущей способности) конструкции. Если определение модуля упругости осуществляется по результатам дополнительных испытаний образцов из материала конструкции, то это связано с частичным разрушением и затем усилением конструкции. Кроме того, учет изменчивости модуля упругости в формуле σ=ε·Е в прототипе приводит к увеличению среднего квадратического отклонения напряжения, который определяют по формуле
Figure 00000002
, из которой видно, что Sσ возрастает за счет SE, отчего возрастает ширина доверительного интервала для напряжения σ, которая определяется, например, для нормального закона распределения случайной величины
Figure 00000003
(t - коэффициент Стьюдента, n - число измерений, α - уровень значимости α∈[0;1]), соответственно увеличивается интервал
Figure 00000004
, внутри которого находится истинное значение предельной нагрузки QПР.
Цель изобретения - повышение безопасности испытаний и точности определения предельной нагрузки (несущей способности) по критерию прочности для строительных конструкций из материалов с линейной зависимостью между нагрузкой и деформацией (сталей, древесины и других материалов).
В способе неразрушающего контроля прочности конструкций, по которому на поверхности испытуемой конструкции определяют места возможных максимальных деформаций, в этих местах испытуемую конструкцию нагружают 5-10 раз механической нагрузкой, не превышающей предельного значения, и определяют величину деформации в этих местах, а о прочности конструкции судят с учетом значений величины деформации, нагружают конструкцию механической нагрузкой, направленной противоположно собственному весу и весу эксплуатационной нагрузки, тремя ступенями нагружения, измеряют деформации в конструкции при каждом нагружении (устанавливают измерители деформации на верхней и нижней гранях балок, ферм, рам) в опасном и рядом с опасным сечениях, находят положение нейтральной оси в сечении элемента, с помощью измеренных деформаций в опасном сечении (в месте приложения испытательной нагрузки) и с использованием нейтральной оси строят эпюру деформаций в этом сечении, по результатам трех средних значений относительных деформаций ε и соответствующим им нагрузкам F изображают точки в осях координат ε-F, по которым строят среднюю прямую зависимости нагрузки от относительной деформации, по оси абсцисс диаграммы откладывают измеренные относительные деформации ε, в качестве предельной деформации используют ее значение, равное 0.05%, которое соответствует пределу упругости материала, до которого диаграмму F(ε) принимают прямой линией, несущую способность конструкции определяют в виде интервала значений
Figure 00000005
, строят равномерный закон распределения предельной нагрузки FПР как случайной величины по известным значениям
Figure 00000006
и
Figure 00000007
, несущую способность конструкции определяют по заданной вероятности (обеспеченности), как абсциссу в законе распределения с соответствующей обеспеченностью (вероятностью).
На фиг.1 показана испытательная нагрузка F, а также расстановка измерителей деформации Тр1 и Тр2 относительно опасного сечения (сечения с приложенной испытательной нагрузкой F), где F - нагружающее устройство (домкрат с образцовым манометром), ε3, ε4 - деформации вблизи нагружающего устройства.
На фиг.2 показан график зависимости ступеней испытательной нагрузки F1, F2, F3 от деформации ε1, ε2, ε3 с доверительными границами 0-1-2-3 и 0-1'-2'-3'.
На фиг.3 показан равномерный закон распределения случайной величины
Figure 00000008
, находящейся в интервале
Figure 00000009
.
На фиг.4 показана расчетная схема экспериментальной балки с испытательной нагрузкой F и установленными измерителями деформации Тр1, Тр2.
На фиг.5 показан график зависимости испытательных нагрузок F и относительных деформаций опасного сечения, а также значения
Figure 00000010
,
Figure 00000011
, εПР.
Способ осуществляется следующим образом.
На поверхности испытуемой конструкции определяют места возможных максимальных деформаций, в этих местах испытываемую конструкцию нагружают механической нагрузкой, направленной противоположно направлению нагрузки от собственного веса и веса оборудования (или другой эксплуатационной нагрузки), и не превышающей своего предельного, определенного теоретически значения, испытываемую конструкцию нагружают по 5-10 раз в одном и том же месте и измеряют наибольшие деформации εMAX при каждом нагружении в месте, противоположном месту приложения нагрузки, а также в верхнем и нижнем поясах, стенках, полках балок, ферм, рам и других конструкций на свободных от нагружающих устройств, например домкратов, участках. Нагружение осуществляют не менее чем при трех различных ступенях нагрузки. По результатам измеренных деформаций в опасном (наиболее нагруженном) месте балки находят наибольшие деформации в месте приложения нагрузки по результатам измерения деформаций в конструкции рядом с нагружающим устройством, по которым находят нейтральную ось, как показано на фиг.1, где F - нагружающее устройство (домкрат с образцовым манометром), ε3, ε4 - деформации вблизи нагружающего устройства.
Если поперечное сечение элемента симметричное, то ограничиваются измерением деформации ε1MAX, по которой строят диаграмму «нагрузка F - деформация ε1MAX» при трех значениях нагрузки F1<F2<F3<FПР, где FПР - предельная нагрузка, соответствующая предельной деформации εПР=0.05%. Это замечание относится и фермам при узловой нагрузке.
По результатам полученных деформаций ε3 и ε4 находят нейтральную ось балки и по значению ε1MAX и с помощью нейтральной оси графически находят ε2MAX. По результатам измеренных значений ε2MAX и нагрузкам Fi строят диаграмму «Fi2MAX» в виде прямой по трем точкам, как показано на фиг.2, определяют доверительные интервалы деформаций для каждой ступени нагружения (по формуле для нормального закона распределения случайной величины), по точкам которых строят прямые - доверительные границы, проводят прямую параллельную оси F через абсциссу ε=εПР, где εПР=0.05% (до предела упругости), через точку пересечения прямых F-ε и ε=εПР проводят прямую перпендикулярную оси ординат F до пересечения с доверительными границами, из точки пересечения этой прямой с прямой верхней доверительной границы проводят прямую параллельную оси нагрузки F до прямой нижней доверительной границы, ордината этой точки и будет нижним значением предельной нагрузки
Figure 00000012
, верхнее значение предельной нагрузки
Figure 00000013
определяется с учетом масштаба по ординате отсекаемой горизонтальной прямой, проходящей через точку пересечения диаграммы F-ε и прямой ε=εПР, а несущую способность конструкции определяют в виде интервала значений
Figure 00000014
.
Значение координаты 0' соответствует абсциссе, равной предельному значению деформации предела упругости 0.05%. Используя доверительные интервалы трех точек ε1, ε2, ε3 находим доверительные границы 0-4 и 0-4' и, как следствие, нижнее и верхнее значение предельной нагрузки
Figure 00000015
,
Figure 00000016
.
Принимаем равномерное распределение случайной величины
Figure 00000017
, находящейся в интервале
Figure 00000018
, по которому строим график этого распределения и по заданной вероятности (обеспеченности) находим графически с учетом масштаба значение предельной нагрузки (см. фиг.3) или по формуле
Figure 00000019
, Рпр - предельная обеспеченность (вероятность) значения Fпр по критерию (условию) прочности.
Пример:
Определим несущую способность (предельную нагрузку) балки в виде сосредоточенной силы FПР, приложенной в середине пролета шарнирно опертой балки или в виде равномерно распределенной нагрузки qПР. Будем ее нагружать сосредоточенной силой, направленной противоположно собственному весу и весу оборудования (или другой эксплуатационной нагрузки).
Балка из трубы прямоугольного сечения 40×25×1.5 по ГОСТ 8645-68, длина балки L=2 м, момент инерции в плоскости изгиба I=1.87 см4, момент сопротивления W=1.49 см3, расчетное сопротивление стали Ry=240 МПа, предел упругости примем σy=210 МПа.
Определим теоретически (без учета снижения несущей способности за время эксплуатации для реальных конструкций) несущую способность балки:
Figure 00000020
Ступени нагружения примем для исключения больших погрешностей при малых нагрузках 54, 58, 60 кг или 529.7, 569.0, 588.6 Н соответственно. Со стороны растянутых и сжатых волокон рядом с опасным сечением, а также со стороны сжатых волокон в середине пролета (опасное сечение) установим средства измерения деформации.
На каждой ступени нагружение проводят 5-10 раз и экспериментально находят деформации в стенках балки, положение нейтральной оси и, как следствие, относительные деформации в опасном сечении (в середине пролета, в месте приложения экспериментальной нагрузки). Полученные относительные деформации в опасном сечении составили 30.1×10-5, 38.5×10-5, 43.1×10-5 и доверительные интервалы 1.5×10-5, 2×10-5, 2.6×10-5 соответственно. Значение предельной деформации равно 0.05%, т.е. 50×10-5. Построим диаграмму «нагрузка-деформация» и по ней определим
Figure 00000021
,
Figure 00000022
(см. фиг.5).
По результатам экспериментов определено, что
Figure 00000023
Figure 00000024
Или распределенная нагрузка
Figure 00000025
т.о.
Figure 00000026
Figure 00000027
Предлагаемый способ удобен, безопасен и производителен при определении несущей способности конструкции, находящейся в эксплуатации, например для стропильных ферм, балок кровли, пролетный строений мостов и т.п.
Список литературы
1. Патент RU 2006814 C1 Российская Федерация: МПК G01N 3/00. Способ неразрушающего контроля прочности строительных конструкций / Уткин B.C.; заявитель и патентообладатель Вологодский государственный технический университет. - №4943119/28; заявл. 06.06.1991; опубл. 30.01.1994. Бюл. №2.
2. Патент RU 2161788 C2 Российская Федерация: МПК G01N 3/10. Способ неразрушающего контроля несущей способности строительных конструкций / Уткин B.C., Голикова Л.В.; заявитель и патентообладатель Вологодский государственный технический университет. - №99102310/28; заявл. 04.02.1999; опубл. 10.01.2001. Бюл. №1.
3. Патент RU 2006813 С1 Российская Федерация: МПК G01N 3/00. Способ неразрушающего контроля прочности строительных конструкций / Уткин B.C.; заявитель и патентообладатель Вологодский государственный технический университет. - №4920713/28; заявл. 19.03.91; опубл. 30.01.94. Бюл. №2.

Claims (1)

  1. Способ неразрушающего определения несущей способности строительных конструкций, по которому на поверхности испытуемой конструкции определяют места возможных максимальных деформаций, в этих местах испытуемую конструкцию нагружают 5-10 раз механической нагрузкой, не превышающей предельного значения, и определяют величину деформации в этих местах, а о прочности конструкции судят с учетом значений величины деформации, отличающийся тем, что нагружают конструкцию механической нагрузкой, направленной противоположно собственному весу и весу эксплуатационной нагрузки, тремя ступенями нагружения, измеряют деформации в конструкции при каждом нагружении (устанавливают измерители деформации на верхней и нижней гранях балок, ферм, рам) в опасном и рядом с опасным сечениях, находят положение нейтральной оси в сечении элемента, с помощью измеренных деформаций в опасном сечении (в месте приложения испытательной нагрузки) и с использованием нейтральной оси строят эпюру деформаций в этом сечении, по результатам трех средних значений относительных деформаций ε и соответствующим им нагрузкам F изображают точки в осях координат ε-F, по которым строят среднюю прямую зависимости нагрузки от относительной деформации, по оси абсцисс диаграммы откладывают измеренные относительные деформации ε, в качестве предельной деформации используют ее значение, равное 0,05%, которое соответствует пределу упругости материала, до которого диаграмму F(ε) принимают прямой линией, несущую способность конструкции определяют в виде интервала значений
    Figure 00000028
    , строят равномерный закон распределения предельной нагрузки FПР как случайной величины по известным значениям
    Figure 00000029
    и
    Figure 00000030
    , несущую способность конструкции определяют по заданной вероятности (обеспеченности), как абсциссу в законе распределения с соответствующей обеспеченностью (вероятностью).
RU2011114655/28A 2011-04-13 2011-04-13 Способ неразрушающего определения несущей способности строительных конструкций RU2460057C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011114655/28A RU2460057C1 (ru) 2011-04-13 2011-04-13 Способ неразрушающего определения несущей способности строительных конструкций

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011114655/28A RU2460057C1 (ru) 2011-04-13 2011-04-13 Способ неразрушающего определения несущей способности строительных конструкций

Publications (1)

Publication Number Publication Date
RU2460057C1 true RU2460057C1 (ru) 2012-08-27

Family

ID=46937889

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011114655/28A RU2460057C1 (ru) 2011-04-13 2011-04-13 Способ неразрушающего определения несущей способности строительных конструкций

Country Status (1)

Country Link
RU (1) RU2460057C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2579545C1 (ru) * 2014-12-22 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Вологодский государственный университет" (ВоГУ) Способ неразрушающего контроля несущей способности однопролетных железобетонных балок
RU2730124C2 (ru) * 2018-09-12 2020-08-17 Общество С Ограниченной Ответственностью "Межотраслевой Инжиниринговый Центр Московского Государственного Технического Университета Им. Н.Э. Баумана" (Ооо "Миц Мгту Им. Н.Э. Баумана") Способ оценки эксплуатационной работоспособности профилированного листа из полимерных композитных материалов
RU2733106C2 (ru) * 2018-09-12 2020-09-29 Общество С Ограниченной Ответственностью "Межотраслевой Инжиниринговый Центр Московского Государственного Технического Университета Им. Н.Э. Баумана" (Ооо "Миц Мгту Им. Н.Э. Баумана") Способы оценки эксплуатационной работоспособности профилированного листа из полимерных композитных материалов
RU2797787C1 (ru) * 2022-12-08 2023-06-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Вологодский государственный университет" Способ неразрушающей оценки и контроля несущей способности и надежности стальных ферм

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2006813C1 (ru) * 1991-03-19 1994-01-30 Вологодский Политехнический Институт Способ неразрушающего контроля прочности строительных конструкций
RU2275613C2 (ru) * 2004-05-25 2006-04-27 Вологодский государственный технический университет Способ неразрушающего контроля несущей способности железобетонных конструкций

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2006813C1 (ru) * 1991-03-19 1994-01-30 Вологодский Политехнический Институт Способ неразрушающего контроля прочности строительных конструкций
RU2275613C2 (ru) * 2004-05-25 2006-04-27 Вологодский государственный технический университет Способ неразрушающего контроля несущей способности железобетонных конструкций

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2579545C1 (ru) * 2014-12-22 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Вологодский государственный университет" (ВоГУ) Способ неразрушающего контроля несущей способности однопролетных железобетонных балок
RU2730124C2 (ru) * 2018-09-12 2020-08-17 Общество С Ограниченной Ответственностью "Межотраслевой Инжиниринговый Центр Московского Государственного Технического Университета Им. Н.Э. Баумана" (Ооо "Миц Мгту Им. Н.Э. Баумана") Способ оценки эксплуатационной работоспособности профилированного листа из полимерных композитных материалов
RU2733106C2 (ru) * 2018-09-12 2020-09-29 Общество С Ограниченной Ответственностью "Межотраслевой Инжиниринговый Центр Московского Государственного Технического Университета Им. Н.Э. Баумана" (Ооо "Миц Мгту Им. Н.Э. Баумана") Способы оценки эксплуатационной работоспособности профилированного листа из полимерных композитных материалов
RU2797787C1 (ru) * 2022-12-08 2023-06-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Вологодский государственный университет" Способ неразрушающей оценки и контроля несущей способности и надежности стальных ферм

Similar Documents

Publication Publication Date Title
Thai et al. Behaviour of bolted endplate composite joints to square and circular CFST columns
Zhang et al. Experimental investigation of locally and distortionally buckled portal frames
Jasiński et al. Study of autoclaved aerated concrete masonry walls with horizontal reinforcement under compression and shear
RU2460057C1 (ru) Способ неразрушающего определения несущей способности строительных конструкций
Jasiński et al. Comparison research of bed joints construction and bed joints reinforcement on shear parameters of AAC masonry walls
Gomon et al. Complete deflections of glued beams in the conditions of oblique bend for the effects of low cycle loads
RU2275613C2 (ru) Способ неразрушающего контроля несущей способности железобетонных конструкций
CN209877937U (zh) 桥梁施工现场结构形变测量传感器的检定装置
RU148401U1 (ru) Стенд для испытания железобетонных элементов с фиксированной степенью горизонтального обжатия на статический изгиб
Midorikawa et al. Cyclic behavior of buckling-restrained braces using steel mortar planks; buckling mode number and strength ratio
Woods et al. Effect of longitudinal reinforcement ratio on the failure mechanism of R/C columns most vulnerable to collapse
Kalkan Lateral torsional buckling of rectangular reinforced concrete beams
Matsui et al. Structural performance of rectangular reinforced concrete walls retrofitted by carbon fiber sheets
Li et al. Large-scale testing of steel portal frames comprising tapered beams and columns
CN110907163A (zh) 摩擦型高强度螺栓连接性能检测试验装置、试件及方法
Milosevic et al. Shear tests on rubble stone masonry panels-diagonal compression tests
Oan et al. Shear of concrete masonry walls
Casapulla et al. Experimental validation of in-plane frictional resistances in dry block masonry walls
Kalochairetis et al. Experimental and numerical investigation of collapse load of laced built-up columns
Tajiri et al. Energy dissipation of RC interior beam-column connection confined by lateral reinforcements, axial force, and column longitudinal reinforcements
RU2245963C1 (ru) Установка для компрессионных испытаний грунта
Mohamed Flexural fatigue behavior of RC beams strengthened with externally prestressed CFRP
Drobiec Investigation of bed joint reinforcement influence on mechanical properties of masonry under compression
Son Experimental determination of yield in beam-to-column flange connections
Madejczyk et al. Implementation of non-standard tests at powered roof support testing stands in KOMAG

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130414