RU2457480C2 - Способ выявления нарушений соединения полимерного покрытия с металлическими трубами - Google Patents

Способ выявления нарушений соединения полимерного покрытия с металлическими трубами Download PDF

Info

Publication number
RU2457480C2
RU2457480C2 RU2008113969/28A RU2008113969A RU2457480C2 RU 2457480 C2 RU2457480 C2 RU 2457480C2 RU 2008113969/28 A RU2008113969/28 A RU 2008113969/28A RU 2008113969 A RU2008113969 A RU 2008113969A RU 2457480 C2 RU2457480 C2 RU 2457480C2
Authority
RU
Russia
Prior art keywords
coating
amplitude
metal
echo signal
thickness
Prior art date
Application number
RU2008113969/28A
Other languages
English (en)
Other versions
RU2008113969A (ru
Inventor
Николай Денисович Цхадая (RU)
Николай Денисович Цхадая
Руслан Викторович Агиней (RU)
Руслан Викторович Агиней
Александр Сергеевич Кузьбожев (RU)
Александр Сергеевич Кузьбожев
Ирина Анатольевна Меркурьева (RU)
Ирина Анатольевна Меркурьева
Иван Николаевич Андронов (RU)
Иван Николаевич Андронов
Александр Викторович Сальников (RU)
Александр Викторович Сальников
Надежда Семеновна Вишневская (RU)
Надежда Семеновна Вишневская
Гульнара Гуссейновна Кримчеева (RU)
Гульнара Гуссейновна Кримчеева
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Ухтинский государственный технический университет" (УГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Ухтинский государственный технический университет" (УГТУ) filed Critical Государственное образовательное учреждение высшего профессионального образования "Ухтинский государственный технический университет" (УГТУ)
Priority to RU2008113969/28A priority Critical patent/RU2457480C2/ru
Publication of RU2008113969A publication Critical patent/RU2008113969A/ru
Application granted granted Critical
Publication of RU2457480C2 publication Critical patent/RU2457480C2/ru

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Использование: для выявления нарушений соединения полимерного покрытия с металлическими трубами. Сущность: заключается в том, что осуществляют введение посредством УЗ дефектоскопа и ПЭП импульсов УЗ колебаний в покрытие, прием и преобразование многократно отраженных импульсов УЗ колебаний в эхо-сигналы, нахождение такого положения ПЭП, при котором амплитуда первого эхо-сигнала максимальна, установление амплитуды первого эхо-сигнала на заданный уровень, настройку глубиномерного устройства дефектоскопа и определение зависимости амплитуды первого эхо-сигнала от толщины покрытия при нормативных параметрах приклеивания покрытия к металлу на образцах с различной толщиной покрытия, при этом определяют амплитуды первого полупериода первого эхо-сигнала на образцах различной толщины с различной величиной прочности соединения покрытия с металлом, нормативной, сниженной на известную величину, с разрушенным соединением, строят зависимости амплитуды первого полупериода первого эхо-сигнала от толщины покрытия для каждой величины прочности соединения, определяют амплитуду первого полупериода первого эхо-сигнала и толщину покрытия на трубе и определяют прочность соединения с помощью полученных зависимостей. Технический результат: обеспечение возможности более надежного выявления нарушений соединения неметаллического покрытия с металлическими трубами. 2 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области ультразвукового неразрушающего контроля и может найти применение при определении качества приклеивания (прочности адгезии) полимерного покрытия с металлическими трубами.
Известен способ определения адгезионной прочности покрытий (см. а.с. СССР №1809371, МКИ G01N 19/04. Опубл. 15.04.1993. Бюл. №14), основанный на возбуждении стоячих акустических волн в системе пьезоэлемент - изделие с покрытием, измерении резонансных характеристик нагруженного изделием пьезопреобразователя, определении скорости распространения продольной волны и величины ее затухания в изделии без покрытия и с покрытием и установлении по изменению этих величин адгезионной прочности покрытия.
Недостатком известного способа является невозможность его использования на изделиях с полимерным покрытием вследствие сложности определения закона изменения скорости продольной волны и ее затухания в изделиях без покрытия и с покрытием, а также необходимость возбуждения акустических волн в изделии до нанесения покрытия.
Известен способ ультразвукового контроля многослойных изделий (см. а.с. СССР №930107, МКИ G01N 29/04. Опубл. 23.05.1982. Бюл. №19), основанный на возбуждении в изделии со стороны покрытия под углом к поверхности упругих колебаний, приеме колебаний, прошедших через него, при этом угол возбуждения и частоту колебаний выбирают достаточными для возбуждения в основании принятого сигнала одной из волн Лэмба, а по отсутствию принятого сигнала судят о наличии дефекта - расслоения.
Недостатком известного способа является сложность точного выбора угла ввода упругих колебаний по амплитуде принятого сигнала, так как амплитуда сигнала, кроме этого, существенно зависит от толщины неметаллического покрытия.
Известен ультразвуковой способ контроля металлических изделий с неметаллическим покрытием (см. а.с. СССР №608092, МКИ G01N 29/04. Опубл. 25.05.1978. Бюл. №19), основанный на вводе со стороны покрытия поверхностных ультразвуковых колебаний приеме колебаний, прошедших контролируемый участок изделия и колебаний, отраженных от границы с изделием, и определении по длительности принятых поверхностных и отраженных колебаний качества соединения изделия с покрытием.
Недостатком известного способа является отсутствие возможности судить о качестве соединения изделия с покрытием при отсутствии нарушений сплошности (дефектов соединения).
Наиболее близким по сущности к заявляемому способу является способ выявления нарушений соединения полиэтиленового антикоррозионного покрытия заводского нанесения с металлическими трубами ультразвуковыми (УЗ) колебаниями, выбранный нами в качестве прототипа (см. патент №2188414, МПК G01N 29/10. Опубл. 27.08.2002. Бюл. №24).
Для реализации известного способа применяют УЗ дефектоскоп общего назначения с прямым пьезоэлектрическим преобразователем (ПЭП). Импульсы УЗ колебаний вводят в покрытие перпендикулярно его поверхности. Получают многократно отраженные импульсы УЗ колебаний от границ покрытия, клея и металла, преобразуемые УЗ дефектоскопом в эхо-сигналы. Последовательно устанавливают ПЭП на образцы с различной толщиной покрытия, определяют закономерность изменения амплитуды эхо-сигналов от толщины покрытия.
При выявлении нарушений соединения покрытия с металлическими трубами выставляют амплитуду первого эхо-сигнала на заданный уровень, соответствующий зависимости, полученной на образцах при данной толщине покрытия. Осуществляют анализ амплитудного распределения эхо-сигналов на экране УЗ дефектоскопа, оценивая сплошность соединения «металл - клей - покрытие» с учетом толщины покрытия и полученной закономерности.
Недостатками известного способа, взятого нами в качестве прототипа, являются:
1. Невозможность определения прочности соединения полимерного покрытия с металлическими трубами.
2. Невозможность выявления отслаивания покрытия от трубы в случае прохождения УЗ волны из отслоенного покрытия в металл трубы, например, при наличии влаги между покрытием и трубой.
Задачей изобретения является выявление нарушений соединения неметаллического покрытия с металлическими трубами, характеризуемых снижением прочности соединения покрытия с трубами.
Поставленная задача решается тем, что в способе выявления нарушений соединения полимерного покрытия с металлическими трубами, включающем введение посредством УЗ дефектоскопа и ПЭП импульсов УЗ колебаний в покрытие, прием и преобразование многократно отраженных импульсов УЗ колебаний в эхо-сигналы, нахождение такого положения ПЭП, при котором амплитуда первого эхо-сигнала максимальна, установление амплитуды первого эхо-сигнала на заданный уровень, настройку глубиномерного устройства дефектоскопа и определение зависимости амплитуды первого эхо-сигнала от толщины покрытия при нормативных параметрах приклеивания покрытия к металлу на образцах с различной толщиной покрытия, с целью определения прочности соединения определяют амплитуды первого полупериода первого эхо-сигнала на образцах различной толщины с различной величиной прочности соединения покрытия с металлом, нормативной, сниженной на известную величину, с разрушенным соединением, строят зависимости амплитуды первого полупериода первого эхо-сигнала от толщины покрытия для каждой величины прочности соединения определяют амплитуду первого полупериода первого эхо-сигнала и толщину покрытия на трубе и определяют прочность соединения с помощью полученных зависимостей, причем для снижения прочности соединения на известную величину ступенчато нагревают образцы, для разрушения соединения покрытия с металлом образцов отслаивают покрытие от металла, между которыми наносят слой жидкости для прохождения УЗ колебаний из покрытия в металл.
Принцип получения зависимости амплитуды первого полупериода первого эхо-сигнала от толщины покрытия с помощью УЗ дефектоскопа общего назначения, ПЭП и образцов показан на фиг.1.
На фиг.2 показан пример зависимостей амплитуды первого полупериода первого эхо-сигнала и амплитуды эхо-сигнала от толщины покрытия, получаемых на образцах с нормативной прочностью соединения, сниженной при различной температуре нагрева образцов и на образцах с разрушенным соединением.
В качестве пояснения к сущности заявляемого способа приводим следующее. Способ основан на известной корреляции прочности соединения (адгезии) полимерного слоя к металлу с акустическим импедансом клеевого слоя. Уменьшение акустического импеданса клеевого слоя, вследствие увеличения его объема и снижения плотности, свидетельствует о снижении прочности соединения полимера с металлом.
Ультразвуковой дефектоскоп подводит к ПЭП электрические импульсы возбуждения, преобразуемые ПЭП в импульсы УЗ колебаний. Частота подведения таких импульсов (частота посылок), обычно находится в диапазоне 50-500 Гц, а частота полученного электрического сигнала внутри импульса, соответствует рабочей частоте ПЭП и составляет обычно 1,2-10 МГц. Таким образом, эхо-сигнал, наблюдаемый на экране дефектоскопа, представляет собой детектированный импульс, состоящий из множества полупериодов УЗ частоты.
Т.к. коэффициент отражения УЗ импульса от границы двух сред зависит от соотношения их акустических импедансов, то акустический импеданс клеевого слоя можно оценить по амплитуде первого полупериода первого (полученного от границы «клей - металл» при наличии соединения покрытия с металлом и «клей - вода» при разрушенном соединении) УЗ импульса (на экране дефектоскопа - эхо-сигнала).
Способ осуществляют следующим образом.
Изготавливают образцы, включающие фрагменты металлической трубы 1, клеевого слоя 2, полиэтиленового слоя 3. Полиэтиленовый слой 3 на образцах делают разной толщины в диапазоне толщины покрытия (от минимальной толщины до максимальной), который задается техническими условиями на покрытие. Поверхность фрагмента металлической трубы 1 обрабатывают абразивным инструментом, нагревают фрагмент металлической трубы 1, наносят фрагменты клеевого слоя 2 и полиэтиленового слоя 3. Добиваются требуемого качества приклеивания фрагмента металлической трубы 1 и фрагмента полиэтиленового покрытия 3, которое контролируют, например, на опытных образцах определением величины прочности соединения (испытание на адгезию) способом отслаивания полосы покрытия. При изготовлении образцов опытным путем устанавливают оптимальные параметры процесса (толщину клея, температуру нагрева, степень сжатия слоев и т.п.), при которых обеспечивается прочность соединения между фрагментами не менее нормативной величины.
Устанавливают прямой ПЭП 4 (фиг.1) на поверхность фрагментов полиэтиленового слоя 3 образцов с последовательно максимальной толщины (значением h3), средней толщины (значением h2) (на фиг.1 не показано) и минимальной толщины (значением h1). Вводят импульсы УЗ колебаний во фрагменты полиэтиленового слоя 3. Получают многократно отраженные импульсы УЗ колебаний от границы раздела 5 «фрагмент клеевого слоя 2 - фрагмент металлической трубы 1», преобразуемые УЗ дефектоскопом в эхо-сигналы 6.
Настраивают глубиномерное устройство УЗ дефектоскопа по известным значениям толщины покрытия h, являющейся суммой толщин фрагментов полиэтиленового (h1, h2, h3) и клеевого (h4) слоев образцов.
Измеряют амплитуды Ап, А'п (не показано) и А''п первого полупериода первых эхо-сигналов при минимальной, средней (не показано) и максимальной толщине полиэтиленового слоя на экране УЗ дефектоскопа 7.
При нормативном значении прочности соединения изменение первого полупериода первого эхо-сигнала при контроле происходит только за счет изменения толщины покрытия h вследствие затухания в нем УЗ колебаний.
Строят зависимость (фиг.2) амплитуды первого полупериода эхо-сигнала от толщины покрытия по точкам с координатами (Aнорп; h1+h4), (A'норп; h2+h4), (А''норп; h3+h4), характеризующим амплитуды первого полупериода эхо-сигнала и толщины покрытия при нормативном значении прочности соединения.
Учитывая экспоненциальный вид зависимости изменения амплитуды УЗ колебаний от толщины покрытия h, соединяют построенные точки кривой и получают график функции Анорп=f(h).
Добиваются прогнозируемого снижения прочности соединения полимерного покрытия к металлу на образцах, при этом используют известную зависимость прочности соединения от температуры, получаемую, например, отслаиванием полосы полимерного покрытия с нагретых до различной температуры фрагментов металлической трубы с покрытием.
Нагревают образцы до определенной температуры, характеризующей известное значение прочности соединения.
Выполняют действия, необходимые для построения зависимостей амплитуды первого полупериода первого эхо-сигнала от толщины покрытия h Ап=f(h) на нагретых до температуры t° образцах, в последовательности, рассмотренной ранее (на фиг.2 показан пример зависимости Aп=f(h) при t=40°C и t=70°C).
При увеличении температуры происходит уменьшение прочности соединения, сопровождающееся уменьшением акустического импеданса клеевого слоя, при этом увеличивается коэффициент отражения УЗ колебаний на границе раздела «клеевой слой - металлический слой».
Разрушают соединение покрытия с металлом образцов и наносят между ними слой жидкости для обеспечения возможности прохождения УЗ колебаний.
Выполняют действия, необходимые для построения зависимостей амплитуды первого полупериода первого эхо-сигнала от толщины покрытия h Аразп=f(h) образцах с разрушенным соединением покрытия с металлом (фиг.2).
На металлических трубах с полимерным покрытием с помощью настроенного на образцах УЗ дефектоскопа определяют толщину покрытия и амплитуду первого полупериода первого эхо-сигнала. Определяют прочность соединения покрытия и металлической трубы с помощью полученных на образцах зависимостей.
Пример.
Известно, что при проведении сварки труб диаметром 1420 мм с полиэтиленовым покрытием заводского нанесения при строительстве газопроводов прочность адгезии покрытия к металлу трубы на кромках в отдельных случаях необратимо снижается за счет воздействия сварочного тепла. Необходимо определить прочность адгезии полиэтиленового покрытия из материала «Доплен», приклеенного к металлической трубе диаметром 1420 мм с толщиной стенки 16,8 мм при помощи клея «Тризолен».
Толщина покрытия на таких трубах составляет не менее 3,0 мм (регламентируется ГОСТ Р 51164-98. Трубопроводы стальнее магистральные. Общие требования к защите от коррозии. М.: ИПК Издательство стандартов, 1998, с.4) и не более 5,0 мм (согласно ТУ 14-3-1954-94. Трубы стальные электросварные прямошовные диаметром 1220 и 1420 мм с наружным полиэтиленовым антикоррозионным покрытием).
Изготавливают образцы (фиг.1), включающие фрагменты металлической трубы 1 из стали класса Х-70 размерами 100×100 мм, толщиной 16,8 мм, клеевого слоя покрытия 2 из полимера «Тризолен» размерами 100×100 мм и толщиной 0,5 мм, полиэтиленового слоя 3 из полиэтилена высокого давления «Доплен» размерами 100×100 мм, толщиной 2,5; 3,5 и 4,5 мм.
Наносят фрагменты внутреннего 2 и внешнего 3 слоев покрытия на фрагмент металлической трубы 1 согласно техническим условиям на данный тип покрытия. Соблюдением технологии нанесения добиваются нормативного значения адгезии покрытия с металлом не менее 70 Н/см.
Устанавливают прямой раздельно-совмещенный ПЭП 4 (фиг.1) типа П 112-2.5-К12-002 на поверхность образца с толщиной полиэтиленового слоя h1=2,5 мм (толщина покрытия h с учетом клеевого слоя - 3,0 мм). Вводят импульсы УЗ колебаний во фрагменты полиэтиленового слоя 3, получают многократно отраженные импульсы УЗ колебаний от границы раздела 5, преобразуемые УЗ дефектоскопом общего назначения УД 2-12 в эхо-сигналы 6. Корректируя чувствительность УЗ дефектоскопа, устанавливают амплитуду первого эхо-сигнала, полученного на образце, на стандартный уровень (семь клеток экрана 7 УЗ дефектоскопа УД2-12).
Последовательно устанавливают ПЭП 4 (фиг.1) на поверхность полиэтиленового слоя 3 образцов с толщиной покрытия h=3,0; 4,0 и 5,0 мм. Производят настройку глубиномерного устройства УЗ дефектоскопа по известным значениям толщины покрытия образцов. Определяют амплитуды первого полупериода первого эхо-сигнала на каждом из образцов, измеряемые в делениях экрана (Анорп=3,2; А'норп=2,1; А''норп=1,8).
По точкам с координатами (3,8; 3,0), (2,1; 4,0), (1,8; 5,0) строят зависимость (фиг.2) амплитуды первого полупериода эхо-сигнала от толщины покрытия h Aнорп=f(h), характеризующую нормативное значение адгезионной прочности.
Последовательно нагревают каждый из образцов до температуры t1=40°C и t2=70°C, характеризующей относительное снижение адгезионной прочности соединения от нормативного значения соответственно на 30% (в 0,7 раза) и 60% (в 0,4 раза).
Получают зависимости амплитуды первого полупериода эхо-сигнала от толщины покрытия при различных температурах нагрева образцов, характеризующих изменение прочности адгезии покрытия с металлом в следующей последовательности.
Измеряют амплитуду первого полупериода первого эхо-сигнала при различных температурах нагрева (40°С и 70°С) образцов. На полученную зависимость (фиг.2) наносят точки (3,9; 3,0), (2,7; 4,0), (2,5; 5,0) и (4,7; 3,0), (3,4; 4,0), (3,0; 5,0), соответствующие изменению амплитуды первого полупериода эхо-сигнала от толщины покрытия при различной температуре нагрева, соответственно 40°С и 70°С.
Соединяют кривыми точки зависимости с координатами (3,9; 3,0), (2,7; 4,0), (2,5; 5,0) и (4,7; 3,0), (3,4; 4,0), (3,0; 5,0) получают зависимости А40п=f(h) и А70п=f(h), соответственно.
Отрывают покрытие от металла образцов. На поверхность металла наносят 5% водный раствор карбоксиметилцеллюлозы (КМЦ). Прижимают покрытие к металлу образца. Измеряют амплитуду первого полупериода первого эхо-сигнала образцов при разрушенном соединении. На полученную зависимость (фиг.2) наносят точки (5,9; 3,0), (4,1; 4,0), (3,7; 5,0) соответствующие изменению амплитуды первого полупериода эхо-сигнала от толщины покрытия при разрушенном соединении. Соединяют кривыми точки зависимости с координатами (5,9; 3,0), (4,1; 4,0), (3,7; 5,0) получают зависимость Аразп=f(h).
С помощью настроенного на образцах УЗ дефектоскопа УД 2-12 и ПЭП П112-2.5-К12-002 перемещают преобразователь (сканируют) по участку поверхности покрытия трубы, на котором необходимо определить адгезию покрытия к металлу. По глубиномерному устройству дефектоскопа устанавливают, что толщина покрытия на участке сканирования составляет 4,0 мм. Определяют, что амплитуда первого полупериода первого эхо-сигнала при сканировании составляет 2,7 клетки экрана дефектоскопа. По полученной зависимости (фиг.2) определяют, что на сканируемом участке адгезия снижена на 30% по сравнению с нормативным значением и составляет около 50 Н/см.
Выявление при сканировании участков с разрушенным соединением свидетельствует о наличии влаги между покрытием и металлом трубы, которая обеспечивает прохождение УЗ колебаний в металл.

Claims (3)

1. Способ выявления нарушений соединения полимерного покрытия с металлическими трубами, включающий введение посредством УЗ-дефектоскопа и ПЭП-импульсов УЗ-колебаний в покрытие, прием и преобразование многократно отраженных импульсов УЗ-колебаний в эхо-сигналы, нахождение такого положения ПЭП, при котором амплитуда первого эхо-сигнала максимальна, установление амплитуды первого эхо-сигнала на заданный уровень, настройку глубиномерного устройства дефектоскопа и определение зависимости амплитуды первого эхо-сигнала от толщины покрытия при нормативных параметрах приклеивания покрытия к металлу на образцах с различной толщиной покрытия, отличающийся тем, что определяют амплитуды первого полупериода первого эхо-сигнала на образцах различной толщины с различной величиной прочности соединения покрытия с металлом, нормативной, сниженной на известную величину, с разрушенным соединением, строят зависимости амплитуды первого полупериода первого эхо-сигнала от толщины покрытия для каждой величины прочности соединения, определяют амплитуду первого полупериода первого эхо-сигнала и толщину покрытия на трубе и определяют прочность соединения с помощью полученных зависимостей.
2. Способ выявления нарушений соединения полимерного покрытия с металлическими трубами по п.1, отличающийся тем, что для снижения прочности соединения на известную величину ступенчато нагревают образцы.
3. Способ выявления нарушений соединения полимерного покрытия с металлическими трубами по п.1, отличающийся тем, что для разрушения соединения покрытия с металлом образцов отслаивают покрытие от металла, между которыми наносят слой жидкости для прохождения УЗ-колебаний из покрытия в металл.
RU2008113969/28A 2008-04-09 2008-04-09 Способ выявления нарушений соединения полимерного покрытия с металлическими трубами RU2457480C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008113969/28A RU2457480C2 (ru) 2008-04-09 2008-04-09 Способ выявления нарушений соединения полимерного покрытия с металлическими трубами

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008113969/28A RU2457480C2 (ru) 2008-04-09 2008-04-09 Способ выявления нарушений соединения полимерного покрытия с металлическими трубами

Publications (2)

Publication Number Publication Date
RU2008113969A RU2008113969A (ru) 2009-10-20
RU2457480C2 true RU2457480C2 (ru) 2012-07-27

Family

ID=41262521

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008113969/28A RU2457480C2 (ru) 2008-04-09 2008-04-09 Способ выявления нарушений соединения полимерного покрытия с металлическими трубами

Country Status (1)

Country Link
RU (1) RU2457480C2 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU771540A1 (ru) * 1978-07-18 1980-10-15 Предприятие П/Я Г-4725 Способ ультразвукового контрол соединений металлических изделий с неметаллическим покрытием
SU1698746A1 (ru) * 1989-09-04 1991-12-15 Предприятие П/Я Р-6462 Способ ультразвукового контрол сплошности соединени двух материалов с различным акустическим сопротивлением
JP2001226707A (ja) * 1999-12-10 2001-08-21 Sumitomo Metal Ind Ltd ステーブクーラの検査方法、同装置、パイプをコアとする多層構造物の検査方法及び同装置
RU2188414C2 (ru) * 1999-11-09 2002-08-27 ОАО "Газпром" Способ выявления нарушений соединения полиэтиленового антикоррозионного покрытия заводского нанесения с металлическими трубами
RU2278378C1 (ru) * 2005-03-09 2006-06-20 Общество с ограниченной ответственностью "Уралтрансгаз" (ООО "Уралтрансгаз") Способ выявления нарушений соединения полимерного покрытия с металлическими трубами

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU771540A1 (ru) * 1978-07-18 1980-10-15 Предприятие П/Я Г-4725 Способ ультразвукового контрол соединений металлических изделий с неметаллическим покрытием
SU1698746A1 (ru) * 1989-09-04 1991-12-15 Предприятие П/Я Р-6462 Способ ультразвукового контрол сплошности соединени двух материалов с различным акустическим сопротивлением
RU2188414C2 (ru) * 1999-11-09 2002-08-27 ОАО "Газпром" Способ выявления нарушений соединения полиэтиленового антикоррозионного покрытия заводского нанесения с металлическими трубами
JP2001226707A (ja) * 1999-12-10 2001-08-21 Sumitomo Metal Ind Ltd ステーブクーラの検査方法、同装置、パイプをコアとする多層構造物の検査方法及び同装置
RU2278378C1 (ru) * 2005-03-09 2006-06-20 Общество с ограниченной ответственностью "Уралтрансгаз" (ООО "Уралтрансгаз") Способ выявления нарушений соединения полимерного покрытия с металлическими трубами

Also Published As

Publication number Publication date
RU2008113969A (ru) 2009-10-20

Similar Documents

Publication Publication Date Title
Alleyne et al. Optimization of Lamb wave inspection techniques
RU2313783C2 (ru) Способ измерения сцепления покрытия с подложкой
US5526689A (en) Acoustic emission for detection of corrosion under insulation
CA2258439C (en) Ultrasonic lamb wave technique for measurement of pipe wall thickness at pipe supports
Alleyne et al. The long range detection of corrosion in pipes using Lamb waves
US7565252B2 (en) Method for automatic differentiation of weld signals from defect signals in long-range guided-wave inspection using phase comparison
Mažeika et al. Measurement of velocity and attenuation for ultrasonic longitudinal waves in the polyethylene samples
US6772638B2 (en) UT detection and sizing method for thin wall tubes
Liu et al. Guided waves based diagnostic imaging of circumferential cracks in small-diameter pipe
CN104374823B (zh) 一种管道补口热收缩带粘接质量超声无损检测方法
US5404754A (en) Ultrasonic detection of high temperature hydrogen attack
EP2778673B1 (en) Ultrasonic inspection method for diffusion bonded articles
JPS60104255A (ja) 固体を非破壊状態で検査するための装置と方法
Cawley Guided waves in long range nondestructive testing and structural health monitoring: Principles, history of applications and prospects
CN112154324B (zh) 使用多模声学信号来检测、监控和确定金属结构中变化的位置
KR102481199B1 (ko) 유도 초음파 및 초음파 센서를 이용한 상수도 관로 두께 측정 장치
US4854173A (en) Measurement of intergranular attack in stainless steel using ultrasonic energy
RU2457480C2 (ru) Способ выявления нарушений соединения полимерного покрытия с металлическими трубами
KR100966543B1 (ko) 유도 초음파를 이용한 배관 내부 침적층 평가 장치
US20230049260A1 (en) Acoustic Detection of Defects in a Pipeline
RU2188414C2 (ru) Способ выявления нарушений соединения полиэтиленового антикоррозионного покрытия заводского нанесения с металлическими трубами
RU2485493C1 (ru) Способ выявления нарушений соединения полимерного покрытия с металлическими трубами
Bertoncini et al. 3D characterization of defects in Guided Wave monitoring of pipework using a magnetostrictive sensor
KR102481198B1 (ko) 상수 관로의 유도 초음파 및 초음파 센서를 이용한 두께 측정 방법
Suzuki et al. Feasibility study of air-coupled ultrasonic vertical reflection method using a single probe

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150410