RU2457436C1 - Чувствительный элемент гироскопа - Google Patents

Чувствительный элемент гироскопа Download PDF

Info

Publication number
RU2457436C1
RU2457436C1 RU2011115587/28A RU2011115587A RU2457436C1 RU 2457436 C1 RU2457436 C1 RU 2457436C1 RU 2011115587/28 A RU2011115587/28 A RU 2011115587/28A RU 2011115587 A RU2011115587 A RU 2011115587A RU 2457436 C1 RU2457436 C1 RU 2457436C1
Authority
RU
Russia
Prior art keywords
wave
longitudinal
sound duct
acoustic
transverse
Prior art date
Application number
RU2011115587/28A
Other languages
English (en)
Inventor
Екатерина Сергеевна Грибкова (RU)
Екатерина Сергеевна Грибкова
Александр Николаевич Перегудов (RU)
Александр Николаевич Перегудов
Анна Андреевна Поженская (RU)
Анна Андреевна Поженская
Михаил Михайлович Шевелько (RU)
Михаил Михайлович Шевелько
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" filed Critical Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ"
Priority to RU2011115587/28A priority Critical patent/RU2457436C1/ru
Application granted granted Critical
Publication of RU2457436C1 publication Critical patent/RU2457436C1/ru

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

Изобретение относится к области приборостроения, а именно к приборам ориентации, навигации и систем управления подвижными объектами и предназначено для измерения угловой скорости. Чувствительный элемент гироскопа содержит излучающий преобразователь акустической объемной поперечной волны 1, расположенный на одном из концов твердотельного звукопровода 2, выполненного из изотропного материала, другой конец которого представляет собой наклонную грань 4, параллельную вектору поляризации излученной поперечной волны и обеспечивающую нормальное падение возникающей при отражении от этой грани продольной составляющей волны на приемный преобразователь продольных колебаний 5, расположенный на боковой грани звукопровода. При наличии вращения появляется помимо поперечной составляющей продольная составляющая волны, которая может регистрироваться приемным преобразователем продольных волн на боковой грани звукопровода. Возникающий при этом сигнал пропорционален скорости вращения. Изобретение обеспечивает повышение отношения сигнал-шум и чувствительность. 2 з.п. ф-лы, 3 ил.

Description

Изобретение относится к области приборостроения, а именно к приборам ориентации, навигации и систем управления подвижными объектами и предназначено для измерения угловой скорости ультразвуковым методом.
Известные лазерные и волоконно-оптические гироскопы (Сысоева С. «Автомобильные гироскопы», Компоненты и технологии, №1, 2007, www.kit-e.ru/archive.php?year=2007&number=1) широко используются в инерциальной навигации и системах наведения. Они позволяют получить удовлетворительную точность, однако имеют высокую стоимость и крупные габариты. Это не позволяет использовать их в областях, требующих низкостоимостных малогабаритных гироскопов, таких как системы автомобильной безопасности, потребительские товары, медицинское оборудование.
Известные микромеханические гироскопы, имеющие малые габариты, имеют, однако, низкую точность, а также низкую устойчивость к нагрузкам, так как в их конструкцию входит механический колебательный элемент на упругих подвесах. Это не позволяет использовать микромеханические гироскопы в областях, требующих устойчивости к нагрузкам, например, в изделиях военно-промышленного комплекса.
Известно, что колебания частиц в акустических волнах сопровождаются инерциальными эффектами, что делает возможным использование этих волн в гироскопии в целях создания чувствительных элементов гироскопов, отличающихся устойчивостью к нагрузкам и точностью, достаточной в условиях поставленной задачи.
Известно устройство для измерения угловой скорости с помощью объемных акустических волн (патент №2397445, МПК G01P 3/44, опуб. 28.08.2010), основанное на регистрации ортогональной компоненты излученной поперечной волны, возникающей в результате действия силы Кориолиса и пропорциональной скорости вращения. Достоинством известного способа является устойчивость к механическим нагрузкам. Недостаток способа - повышенный уровень помех, связанный с тем, что сложно выделить информативную составляющую из одновременно поступающих на приемник ортогональных составляющих и излученной объемной поперечной волны.
Задачей настоящего изобретения является разработка устройства для измерения скорости вращения с малым уровнем шума.
Поставленная задача решается за счет того, что предлагаемый чувствительный элемент гироскопа, также как и известное устройство, содержит твердотельный звукопровод, выполненный из изотропного материала и имеющий форму, обеспечивающую распространение объемных акустических волн, и содержит два акустических преобразователя, один из которых, излучающий преобразователь поперечных волн, установлен на одном из концов звукопровода. Но, в отличие от известного устройства, грань звукопровода, расположенная напротив конца с излучающим преобразователем, выполнена ориентированной параллельно вектору поляризации излученной поперечной волны и расположена под углом к направлению распространения упомянутой волны, обеспечивающим нормальное падение возникающей отраженной продольной волны на боковую грань с расположенным на ней приемным преобразователем продольных волн.
Техническим результатом является уменьшение уровня шумов. Это достигается за счет пространственного разделения продольной и поперечной составляющей волны при отражении от наклонной грани и за счет поляризационного разделения приемного преобразователя, позволяющего фиксировать только продольную компоненту колебаний, что обеспечивает снижение уровня посторонних сигналов (шумов).
Технический результат достигается за счет того, что при отсутствии вращения вокруг оси, совпадающей с направлением распространения поперечной волны, объемная акустическая поперечная волна, возбуждаемая излучающим преобразователем, расположенным на одном из торцов звукопровода, не принимается приемным преобразователем продольных колебаний, расположенным на боковой грани звукопровода. Это объясняется тем, что возбуждаемая волна по мере распространения со скоростью, не зависящей от направления поляризации, в звукопроводе сохраняет поляризацию, то есть направление колебания частиц, и на отражающем скошенном конце создаются колебания с направлением поляризации, параллельным наклонной отражающей грани. Это приводит к тому, что на грань с приемным преобразователем отражается только поперечная волна такой же поляризации, как исходная, и которая не фиксируется приемным преобразователем продольных волн. Малейшее вращение вокруг указанной оси порождает наличие направления поляризации, непараллельной отражающей грани, и, следовательно, появление отраженной продольной волны, фиксируемой приемным преобразователем на боковой грани.
Совокупность признаков, сформулированная в п.2 формулы изобретения, характеризует чувствительный элемент гироскопа, в котором боковая поверхности звукопровода имеет поверхностную обработку, обеспечивающую гашение паразитных колебаний.
Совокупность признаков, сформулированная в п.3 формулы изобретения, характеризует чувствительный элемент гироскопа, в котором боковая поверхностная обработка выполнена в виде канавок. Такая обработка позволяет повысить отношение сигнал-шум, и таким образом, чувствительность, за счет уменьшения коэффициента отражения и увеличения коэффициента рассеяния, так как наиболее важным источником шумов в изобретении является акустическая реверберация за счет многократного переотражения сигнала в звукопроводе.
Сущность изобретения поясняется чертежами, где на фиг.1 показана схема устройства, на фиг.2 - показана схема формирования ортогональной компоненты акустической волны, возникающей при вращении за счет действия силы Кориолиса, а на фиг.3 - продольный разрез предлагаемой реализации чувствительного элемента гироскопа.
На фиг.1 представлена конструкция чувствительного элемента гироскопа, содержащего излучающий преобразователь акустической объемной поперечной волны 1 на одном конце твердотельного звукопровода 2, представляющего собой параллелепипед с поверхностной обработкой боковых граней 3 в виде канавок, обеспечивающей гашение паразитных колебаний, и с другим концом в виде наклонной грани 4, угол наклона которой обеспечивает нормальное падение отраженной продольной составляющей волны на приемный преобразователь продольных колебаний 5, расположенный на боковой грани звукопровода. Поверхностная обработка граней 3, например, канавки, сверления, шероховатости или покрытия, позволяет исключить погрешности, связанные с многократным переотражением сигнала от граней звукопровода, что повышает чувствительность устройства. Излучающий преобразователь 1, расположенный на одном из концов звукопровода, генерирует в звукопроводе объемную поперечную акустическую волну, направление поляризации которой параллельно наклонной отражающей грани 4 звукопровода. При отражении такой поперечной волны появляется только поперечная волна такой же поляризации и приемный преобразователь 5, находящийся на боковой грани звукопровода и являющийся приемником только продольных волн, не будет детектировать колебаний. При наличии вращения звукопровода, в результате действия силы Кориолиса, при распространении объемной поперечной акустической волны в звукопроводе возникают вторичные колебания в поперечной волне, приводящие к непараллельности направления поляризации к грани и, следовательно, к появлению продольной составляющей колебаний, фиксируемых приемным преобразователем.
В качестве технологических изотропных материалов при изготовлении устройства, соответствующего изобретению, для звукопровода и преобразователей могут использоваться, например, плавленый кварц и термостабильное стекло. Использование изотропного материала позволяет снизить стоимость устройства, как за счет меньшей стоимости материала звукопровода, так и снижения затрат на его изготовление.
Формирование вторичных колебаний ξс частотой ω для объемной поперечной акустической волны, распространяющейся вдоль оси вращения звукопровода X, проиллюстрировано на фиг.2. Поляризация волны, определяемая излучающим преобразователем, совпадает с осью Z, т.е. смещения частиц ξ0 среды лежат в плоскости YOZ. Если тело подвергнуть вращению вокруг оси X с угловой частотой Ω, то возникающие силы Кориолиса создадут дополнительные смещения ξC, гармонически распределенные вдоль оси Х в среде. Таким образом, в объемной акустической волне возникают вторичные колебания, имеющие относительно излучаемой волны ортогональную поляризацию.
Первичные колебания ξ0 не приводят к появлению продольной составляющей волны при отражении от грани, параллельной вектору этих колебаний. Суммарное колебание первичных ξ0 и вторичных ξC колебаний имеют линейную поляризацию, направление которой изменяется при вращении звукопровода и становится непараллельным его проекции на скошенную грань звукопровода, что приводит при отражении излученной волны от наклонного конца звукопровода к появлению не только поперечной составляющей ξt, но и продольной составляющей волны ξl (фиг.3).
Описание изобретения свидетельствует о том, что предложен новый чувствительный элемент гироскопа на объемных волнах, в основе которого лежит иной принцип измерения угловой скорости. При этом достигается технический результат - уменьшение уровня шумов - за счет отличающих конструктивных элементов, наклонной грани и приемного преобразователя продольной волны, расположенного в области падения продольной волны на боковую грань звукопровода, которые обеспечивают пространственное и поляризационное отделение информативной продольной составляющей волны. Дополнительно в изобретении реализуется возможность использования непрерывного режима излучения, что приводит к возможности использования больших коэффициентов усиления при дальнейшей обработке сигнала с чувствительного элемента гироскопа.

Claims (3)

1. Чувствительный элемент гироскопа, содержащий твердотельный звукопровод, выполненный из изотропного материала, имеющий форму, обеспечивающую распространение объемных акустических волн, содержащий два акустических преобразователя, один из которых, излучающий преобразователь поперечных волн, установлен на одном из концов звукопровода, отличающийся тем, что грань звукопровода, расположенная напротив конца с излучающим преобразователем, выполнена ориентированной параллельно вектору поляризации излученной поперечной волны и расположена под углом к направлению распространения упомянутой волны, обеспечивающим нормальное падение возникающей отраженной продольной волны на боковую грань с расположенным на ней приемным преобразователем продольных волн.
2. Чувствительный элемент гироскопа по п.1, отличающийся тем, что боковые грани звукопровода имеют поверхностную обработку, обеспечивающую гашение паразитных акустических колебаний.
3. Чувствительный элемент гироскопа по п.2, отличающийся тем, что боковые грани звукопровода имеют поверхностную обработку в виде канавок.
RU2011115587/28A 2011-04-20 2011-04-20 Чувствительный элемент гироскопа RU2457436C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011115587/28A RU2457436C1 (ru) 2011-04-20 2011-04-20 Чувствительный элемент гироскопа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011115587/28A RU2457436C1 (ru) 2011-04-20 2011-04-20 Чувствительный элемент гироскопа

Publications (1)

Publication Number Publication Date
RU2457436C1 true RU2457436C1 (ru) 2012-07-27

Family

ID=46850782

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011115587/28A RU2457436C1 (ru) 2011-04-20 2011-04-20 Чувствительный элемент гироскопа

Country Status (1)

Country Link
RU (1) RU2457436C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5052225A (en) * 1989-02-20 1991-10-01 Yasushi Ishii Acoustic gyroscope
US5303588A (en) * 1989-06-01 1994-04-19 Robert Bosch Gmbh Sensor for determining angular velocity
RU2392625C1 (ru) * 2009-05-18 2010-06-20 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина) Способ измерения угловой скорости
RU2397445C1 (ru) * 2009-05-18 2010-08-20 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина) Чувствительный элемент гироскопа
RU2400709C2 (ru) * 2008-02-04 2010-09-27 Валерий Иванович Гупалов Способ измерения абсолютной угловой скорости и акустоэлектронный гироскоп для его реализации

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5052225A (en) * 1989-02-20 1991-10-01 Yasushi Ishii Acoustic gyroscope
US5303588A (en) * 1989-06-01 1994-04-19 Robert Bosch Gmbh Sensor for determining angular velocity
RU2400709C2 (ru) * 2008-02-04 2010-09-27 Валерий Иванович Гупалов Способ измерения абсолютной угловой скорости и акустоэлектронный гироскоп для его реализации
RU2392625C1 (ru) * 2009-05-18 2010-06-20 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина) Способ измерения угловой скорости
RU2397445C1 (ru) * 2009-05-18 2010-08-20 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина) Чувствительный элемент гироскопа

Similar Documents

Publication Publication Date Title
JP5629265B2 (ja) 超音波流量計
US7500403B2 (en) Ultrasonic flow sensor having interlaid transmitting and receiving elements
US6360609B1 (en) Method and system for interpreting and utilizing multimode dispersive acoustic guided waves
EP2545345B1 (en) Apparatus and method for sensing fluid flow in a pipe with variable wall thickness
JP6082023B2 (ja) 超音波を使用して弾性特性を測定するための方法
JP2005010159A (ja) インピーダンス整合遅延線を使用して外部被膜を有する部品の厚さを測定する方法及び装置
Nishizawa et al. Detection of shear wave in ultrasonic range by using a laser Doppler vibrometer
KR101513697B1 (ko) 파이프 두께 측정이 가능한 초음파 변환 장치 및 이를 이용한 유속 측정 장치
JP2010169494A (ja) 圧縮強度測定方法及びその方法を用いた圧縮強度測定装置
RU2392625C1 (ru) Способ измерения угловой скорости
RU2457436C1 (ru) Чувствительный элемент гироскопа
RU2426131C1 (ru) Способ и устройство для измерения угловой скорости
RU2460078C1 (ru) Способ измерения угловой скорости
Buick et al. Application of the acousto-optic effect to pressure measurements in ultrasound fields in water using a laser vibrometer
JP5827809B2 (ja) 超音波探触子及び管状対象物の周長測定方法
JP2011038870A (ja) 超音波流量計およびこれを用いた流速測定方法
RU2397445C1 (ru) Чувствительный элемент гироскопа
JP4565093B2 (ja) 可動式fbg超音波センサ
JP4368591B2 (ja) 超音波流量計
Gribkova et al. Solid-state motion sensors on acoustic waves. Theory and experiment
RU2777296C1 (ru) Чувствительный элемент гироскопа
JP2014192692A (ja) 弾性表面波デバイス及びこれを用いた物理量検出装置
JP2007033115A (ja) 超音波流量計の検出部
Chang et al. Experimental measurements of the phase and group velocities of body waves in a transversely isotropic medium
SU815614A1 (ru) Ультразвуковой способ измерени МОдул юНгА

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170421