RU2453963C2 - Активный фильтр с многоуровневой топологией - Google Patents

Активный фильтр с многоуровневой топологией Download PDF

Info

Publication number
RU2453963C2
RU2453963C2 RU2009141969/07A RU2009141969A RU2453963C2 RU 2453963 C2 RU2453963 C2 RU 2453963C2 RU 2009141969/07 A RU2009141969/07 A RU 2009141969/07A RU 2009141969 A RU2009141969 A RU 2009141969A RU 2453963 C2 RU2453963 C2 RU 2453963C2
Authority
RU
Russia
Prior art keywords
power semiconductor
terminal
phase
semiconductor devices
branch
Prior art date
Application number
RU2009141969/07A
Other languages
English (en)
Other versions
RU2009141969A (ru
Inventor
Тобиас БЕРНХАРД (DE)
Тобиас БЕРНХАРД
Мике ДОММАШК (DE)
Мике ДОММАШК
Йорг ДОРН (DE)
Йорг ДОРН
Инго ОЙЛЕР (DE)
Инго ОЙЛЕР
Франц КАРЛЕЦИК-МАЙЕР (DE)
Франц КАРЛЕЦИК-МАЙЕР
Йорг ЛАНГ (DE)
Йорг ЛАНГ
Джон-Уилльям ШТРАУСС (DE)
Джон-Уилльям ШТРАУСС
Квок-Буу ТУ (DE)
Квок-Буу ТУ
Карстен ВИТТШТОК (DE)
Карстен ВИТТШТОК
Клаус ВЮРФЛИНГЕР (DE)
Клаус ВЮРФЛИНГЕР
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2009141969A publication Critical patent/RU2009141969A/ru
Application granted granted Critical
Publication of RU2453963C2 publication Critical patent/RU2453963C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • H02J3/1857Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters wherein such bridge converter is a multilevel converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Предоставлено недорогое устройство (1) для оказания влияния на передачу электроэнергии к имеющей несколько фаз линии (2) переменного тока с фазовыми модулями (5a, 5b, 5c), которые содержат соответственно контактный вывод (6a, 6b, 6c) переменного напряжения для соединения с одной фазой линии (2) переменного тока и два соединительных вывода (7p, 7n), причем между каждым соединительным выводом (7р, 7n) и каждым контактным выводом (6a, 6b, 6c) переменного напряжения проходит ветвь (8ap, 8bp, 8cp, 8an, 8bn, 8cn) фазового модуля, состоящая из последовательного соединения подмодулей (9), которые содержат, соответственно, схему на силовых полупроводниковых приборах и накопитель энергии (15), параллельно подключенный к схеме на силовых полупроводниковых приборах, причем соединительные выводы (7p, 7n) соединены друг с другом, при этом схема на силовых полупроводниковых приборах имеет отключаемые силовые полупроводниковые приборы (13), которые соединены друг с другом по полумостовой схеме. Технический результат - уменьшение стоимости. 6 з.п. ф-лы, 3 ил.

Description

Изобретение относится к устройству для оказания влияния на передачу электроэнергии к имеющей несколько фаз линии переменного тока с фазовыми модулями, которые содержат, соответственно, контактный вывод переменного напряжения для соединения с одной фазой линии переменного тока и два соединительных вывода, причем между каждым соединительным выводом и каждым контактным выводом переменного напряжения проходит ветвь фазового модуля, состоящая из последовательного соединения подмодулей, которые содержат, соответственно, схему на силовых полупроводниковых приборах и накопитель энергии, параллельно подключенный к схеме на силовых полупроводниковых приборах, причем соединительные выводы соединены друг с другом.
Такое устройство уже известно из описания изобретения к патенту США 6075350. Там описан так называемый многоуровневый полупроводниковый преобразователь электроэнергии, который предусмотрен для фильтрования высших гармоник частоты сети линии переменного тока, а также для компенсации реактивной мощности. Уже известный полупроводниковый преобразователь электроэнергии содержит для каждой фазы сети переменного напряжения один фазовый модуль, который имеет контактный вывод переменного напряжения, с помощью которого каждый фазовый модуль соединен, соответственно, с одной фазой линии переменного тока. При этом каждый фазовый модуль содержит последовательное соединение подмодулей, которые выполнены в виде двухполюсников, причем каждый подмодуль имеет конденсатор и параллельно подключенную к конденсатору полную мостовую схему из силовых полупроводниковых приборов. К каждому из этих отключаемых силовых полупроводниковых приборов параллельно с противоположной фазой подключен нулевой вентиль. В качестве отключаемых силовых полупроводниковых приборов во внимание принимают, например, схемные элементы типа IGBT, GTO или подобные. С помощью полной мостовой схемы при целесообразном управлении отключаемыми силовыми полупроводниковыми приборами к зажимам каждого подмодуля можно прикладывать конденсаторное напряжение, нулевое напряжение или инвертированное конденсаторное напряжение. Фазовые модули на своем конце, обращенном от контактного вывода переменного напряжения, соединены в звезду. Посредством подключения или отключения подмодулей с помощью схемы на силовых полупроводниковых приборах можно постепенно ступенями приближать синусоидальное напряжение. При этом полная мостовая схема обеспечивает максимально возможную гибкость при проведении коммутационных операций. Однако полная мостовая схема требует наличия большого числа модулей силовых полупроводниковых приборов, в результате чего увеличиваются расходы на подобное устройство.
Поэтому задача изобретения состоит в том, чтобы предоставить в распоряжение недорогое устройство названного выше вида.
Изобретение решает эту задачу за счет того, что схема на силовых полупроводниковых приборах содержит отключаемые силовые полупроводниковые приборы, которые соединены друг с другом по полумостовой схеме.
В соответствии с изобретением предоставлен активный фильтр с многоуровневой топологией. Другими словами, для каждой фазы или в случае использования активного фильтра в промежуточном звене постоянного тока для каждого полюса предусмотрен фазовый модуль, который состоит из последовательного соединения подмодулей. Подмодули являются двухполюсниками и содержат два контактных зажима. При этом каждый подмодуль имеет накопитель энергии, например конденсатор, к которому параллельно подключена схема на силовых полупроводниковых приборах. В зависимости от управления силовыми полупроводниковыми приборами схемы на силовых полупроводниковых приборах на контактных зажимах может генерироваться напряжение, падающее на накопителе энергии, или нулевое напряжение. В противоположность многоуровневому активному фильтру согласно уровню техники в соответствии с изобретением предусмотрена полумостовая схема. Такие топологии до сих пор были известны только в связи с высоковольтной электропередачей постоянного тока. Использование полной мостовой схемы в связи с высоковольтной электропередачей постоянного тока исключается, так как на основе полной мостовой схемы невозможна подача электроэнергии в промежуточное звено постоянного тока. В основе изобретения лежит идея, что известное лишь из передачи энергии соединение силовых полупроводниковых приборов можно использовать также и для активного фильтра. Подавление высших гармоник в сети переменного тока или в промежуточном звене постоянного тока в соответствии с изобретением также возможно с помощью полумостовой схемы, которая в противоположность уровню техники на своих контактных зажимах не может генерировать инвертированное напряжение накопителя энергии. Большое преимущество полумостовой схемы по сравнению с полной мостовой схемой заключается в расходах, поскольку на основании полумостовой схемы в активном фильтре следует использовать только половину модулей силовых полупроводниковых приборов.
В первой целесообразной форме выполнения полумостовой схемы каждый подмодуль содержит первый контактный зажим, второй контактный зажим, накопитель энергии и содержащую два последовательно соединенных, отключаемых силовых полупроводниковых прибора ветвь силовых полупроводниковых приборов, которая параллельно подключена к накопителю энергии, причем с каждым отключаемым силовым полупроводниковым прибором параллельно соединен противоположный по фазе нулевой вентиль, и точка соединения эмиттера первого отключаемого силового полупроводникового прибора из ветви силовых полупроводниковых приборов и анода противоположного по фазе нулевого вентиля, подчиненного первому отключаемому силовому полупроводниковому прибору, образует первый контактный зажим, и точка соединения отключаемых силовых полупроводниковых приборов из ветви силовых полупроводниковых приборов и нулевых вентилей образует второй контактный зажим.
В форме выполнения, отличающейся от приведенной выше, каждый подмодуль содержит первый контактный зажим и второй контактный зажим, причем схема на силовых полупроводниковых приборах имеет содержащую два последовательно соединенных, отключаемых силовых полупроводниковых прибора ветвь силовых полупроводниковых приборов, которая параллельно подключена к накопителю энергии, при этом с каждым отключаемым силовым полупроводниковым прибором параллельно соединен противоположный по фазе вентиль, и точка соединения коллектора первого отключаемого силового полупроводникового прибора из ветви силовых полупроводниковых приборов и катода противоположного по фазе нулевого вентиля, подчиненного первому отключаемому силовому полупроводниковому прибору, образует первый контактный зажим, и точка соединения отключаемых силовых полупроводниковых приборов из ветви силовых полупроводниковых приборов и нулевого вентиля образует второй контактный зажим.
Согласно целесообразному усовершенствованному варианту осуществления изобретения предусмотрен еще один фазовый модуль, который содержит соединенный с потенциалом Земли заземляющий вывод и два соединительных вывода, причем между каждым соединительным выводом и заземляющим выводом, в каждом случае, проходит ветвь фазового модуля, которая состоит из последовательного соединения подмодулей, при этом каждый соединительный вывод соединен с соединительным выводом оставшихся фазовых модулей. Согласно данному предпочтительному усовершенствованному варианту осуществления изобретения обеспечивается не только демпфирование системы обратной последовательности. Более того, благодаря заземлению создается возможность также и для стекания токов системы нулевой последовательности, так что становится возможным также и их подавление в линии переменного тока.
В соответствии с предпочтительной формой осуществления изобретения предусмотрен конденсаторный модуль с заземляющим выводом и двумя соединительными выводами, при этом между заземляющим выводом и каждым соединительным выводом выполнена конденсаторная ветвь, которая состоит из одного или нескольких включенных последовательно конденсаторов, причем каждый соединительный вывод соединен с соединительным выводом ветвей фазового модуля. Также возможно стекание токов системы нулевой последовательности и через заземляющий вывод конденсаторного модуля. Таким образом, конденсаторный модуль дополнительно к описанному выше фазовому модулю может быть оснащен заземляющим выводом или предусмотрен как раз вместо него. Как у заземленного фазового модуля, так и у конденсаторного модуля целесообразным является центральное расположение заземляющего вывода, таким образом, целесообразна симметричная форма выполнения конденсаторного модуля. Поэтому ветви фазового модуля, проходящие каждый раз между соединительным выводом и заземляющим выводом, являются идентичными. То же самое имеет силу в части последовательного соединения конденсаторов или в части обоих конденсаторов, которые размещены в ветви между заземляющим выводом и соединительным выводом. На основе этой формы выполнения при передаче энергии также может быть обеспечена высокая степень симметрии.
Другие целесообразные формы выполнения и преимущества изобретения являются предметом последующего описания примеров выполнения изобретения со ссылкой на фигуры, где одинаковые ссылочные позиции указывают на одинаково действующие конструктивные элементы схемы, при этом
на фигуре 1 показан пример выполнения устройства по изобретению в заменяющем изображении,
на фигуре 2 показан еще один пример выполнения устройства по изобретению, и
на фигуре 3 показан еще один пример выполнения устройства по изобретению.
На фигуре 1 показан пример выполнения устройства 1 по изобретению, которое подключено к линии 2 переменного тока с фазами 2а, 2b и 2 с. При этом линия 2 переменного тока проходит между сетью 3 электроснабжения и нагрузкой 4, посредством которой происходит несимметричная нагрузка сети 3 электроснабжения или же линии 2 переменного тока, причем одновременно генерируются высшие гармоники номинальной частоты переменного напряжения линии 2 переменного тока. Устройство 1 предусмотрено для компенсации несимметрий и, в частности, для подавления указанных высших гармоник.
Устройство 1, представленное на фигуре 1, содержит три фазовых модуля 5а, 5b и 5с, которые соответственно имеют контактные выводы 6а, 6b и 6с для переменного напряжения, соединенные с фазой 2а, 2b или же 2с линии 2 переменного тока. Кроме того, каждый фазовый модуль 5а, 5b и 5с содержит соответственно два соединительных вывода 7р и 7n, при этом между каждым контактным выводом 6а, 6b и 6с переменного напряжения и каждым соединительным выводом 7р или же 7n проходит ветвь Sap, 8bp, 8cp, 8an, 8bn и 8 сn фазового модуля. Каждая из этих шести ветвей фазового модуля состоит из последовательного соединения подмодулей 9.
Подмодули 9 выполнены в виде двухполюсников и имеют первый контактный зажим 10, а также второй контактный зажим 11. Кроме того, каждый подмодуль 9 имеет в распоряжении ветвь 12 силовых полупроводниковых приборов, которая содержит два соединенных последовательно друг с другом, отключаемых силовых полупроводниковых прибора 13, как, например, схемные элементы типа IGBT. К каждому отключаемому силовому полупроводниковому прибору 13 параллельно с противоположной фазой подключен нулевой вентиль 14. Ветвь 12 силовых полупроводниковых приборов параллельно подключена к конденсатору 15 как накопителю энергии. Эмиттер представленного на фигуре 1 внизу отключаемого силового полупроводникового прибора 13 и анод нулевого вентиля 14, подключенного параллельно к указанному выше, отключаемому силовому полупроводниковому прибору 13, лежат на потенциале первого контактного зажима 10 подмодуля. Второй контактный зажим лежит на потенциале точек соединения между обоими отключаемыми силовыми полупроводниковыми приборами 13 и, таким образом, на потенциале точки соединения между обоими последовательно включенными нулевыми вентилями 14.
В зависимости от управления отключаемыми силовыми полупроводниковыми приборами 13 на контактных зажимах 10 и 11 происходит падение либо конденсаторного напряжения, либо нулевого напряжения. Но этого можно достичь также и с помощью другого указанного выше соединения приведенных конструктивных элементов схемы.
Посредством целесообразного, не показанного на фигуре 1, управления отключаемыми силовыми полупроводниковыми приборами происходит зарядка конденсаторов 15 каждого подмодуля 9. Однако управляющее и регулирующее устройство включает в себя, кроме того, также и способ, с помощью которого распознаются высшие гармоники переменного тока, проходящего в линии переменного тока. Указанные высшие гармоники имеют частоту, которая представляет собой целочисленное кратное номинальным частотам напряжения в линии переменного тока. Посредством целесообразного управления отключаемыми силовыми полупроводниковыми приборами 13 благодаря заряженным конденсаторам 9 генерируется напряжение, которое запускает компенсирующий ток или ток, протекающий через фильтр, который подается в линию 2 переменного тока и способствует тому, чтобы подавлялись высшие гармоники, а также асимметрии тока в линии 2 переменного тока.
На фигуре 2 показан еще один пример устройства 1 по изобретению с фазовыми модулями 5а, 5b и 5с, которые, в каждом случае, имеют две ветви 8ар, 8an, 8bp, 8bn, 8 ср или 8 сn фазового модуля. Для обеспечения возможности отекания токов системы нулевой последовательности предусмотрен дополнительный фазовый модуль 5d, который тоже имеет два соединительных вывода 7р и 7n, которые с помощью соединительного провода соединены с соединительными выводами 7р или же 7n фазовых модулей 5а, 5b и 5с. Однако в противоположность фазовым модулям 5а, 5b и 5с фазовый модуль 5d не имеет контактного вывода переменного напряжения, но имеет заземляющий вывод 16, через который в случае целесообразного управления отключаемыми силовыми полупроводниковыми приборами подмодулей 9 ветвей 8dp и 8dn фазовых модулей могут стекать токи системы нулевой последовательности. Таким образом, согласно такой предпочтительной форме выполнения изобретения имеется возможность также для подавления несимметрий на основании токов системы нулевой последовательности.
На фигуре 3 показан еще один пример выполнения изобретения, но при этом соединительные выводы 7р или 7n фазовых модулей 5а, 5b и 5с соединены с соединительными выводами 7р или 7n фазовых модулей 5а, 5b и 5с посредством соединительных выводов 7р или 7n конденсаторного модуля 17. Конденсаторный модуль 17 содержит заземляющий вывод 16, причем между заземляющим выводом 16 и каждым соединительным выводом 7р или 7n подключен соответственно конденсатор 18. Само собой разумеется, что между заземляющим выводом 16 и каждым соединительным выводом 7р или 7n конденсаторного модуля 17 может быть предусмотрено также несколько последовательно соединенных конденсаторов 18. При этом имеется возможность для стекания токов системы нулевой последовательности через заземляющий вывод 16. Кроме того, благодаря целесообразному управлению отключаемыми силовыми полупроводниковыми приборами фазовых модулей 5а, 5b и 5с имеется возможность для подачи реактивной мощности емкости конденсатора в линию 2 переменного тока. Таким образом, благодаря этой усовершенствованной форме выполнения устройства 1 по изобретению обеспечивается также возможность компенсации реактивной мощности. Разумеется, что в рамках изобретения можно использовать заземленный по центру фазовый модуль, который на фигуре 2 обозначен позицией 5d, также вместе с конденсаторным модулем 16, а также с тремя фазовыми модулями 5а, 5b и 5с, при этом соединительные выводы 7р или 7n через соединительный провод будут присоединены к общему потенциалу.

Claims (7)

1. Устройство (1) для оказания влияния на передачу электроэнергии к имеющей несколько фаз (2a, 2b, 2c) линии (2) переменного тока с фазовыми модулями (5a, 5b, 5c), которые содержат соответственно контактный вывод (6a, 6b, 6c) переменного напряжения для соединения с одной фазой линии (2) переменного тока и два соединительных вывода (7p, 7n), причем между каждым соединительным выводом (7p, 7n) и каждым контактным выводом (6a, 6b, 6c) переменного напряжения проходит ветвь (8aр, 8bp, 8cp, 8an, 8bn, 8 сn) фазового модуля, состоящая из последовательного соединения подмодулей (9), которые содержат соответственно схему на силовых полупроводниковых приборах и накопитель (15) энергии, параллельно подключенный к схеме на силовых полупроводниковых приборах, причем соединительные выводы (7p, 7n) соединены друг с другом, отличающееся тем, что схема на силовых полупроводниковых приборах содержит отключаемые силовые полупроводниковые приборы (13), которые соединены друг с другом по полумостовой схеме.
2. Устройство (1) по п.1, отличающееся тем, что каждый подмодуль (9) содержит первый контактный зажим (10), второй контактный зажим (11), накопитель энергии (15) и содержащую два последовательно соединенных, отключаемых силовых полупроводниковых прибора (13) ветвь (12) силовых полупроводниковых приборов, которая параллельно подключена к накопителю (15) энергии, причем с каждым отключаемым силовым полупроводниковым прибором (13) параллельно соединен противоположный по фазе нулевой вентиль (14), и точка соединения эмиттера первого отключаемого силового полупроводникового прибора (13) из ветви силовых полупроводниковых приборов и анода противоположного по фазе нулевого вентиля (14), подчиненного первому отключаемому силовому полупроводниковому прибору, образует первый контактный зажим (10), и точка соединения отключаемых силовых полупроводниковых приборов (13) из ветви (12) силовых полупроводниковых приборов и нулевых вентилей (14) образует второй контактный зажим (11).
3. Устройство (1) по п.1, отличающееся тем, что каждый подмодуль (9) содержит первый контактный зажим, второй контактный зажим, причем схема на силовых полупроводниковых приборах имеет содержащую два последовательно соединенных, отключаемых силовых полупроводниковых прибора ветвь силовых полупроводниковых приборов, которая параллельно подключена к накопителю энергии, при этом с каждым отключаемым силовым полупроводниковым прибором параллельно соединен противоположный по фазе вентиль, и точка соединения коллектора первого отключаемого силового полупроводникового прибора из ветви силовых полупроводниковых приборов и катода противоположного по фазе нулевого вентиля, подчиненного первому отключаемому силовому полупроводниковому прибору, образует первый контактный зажим, и точка соединения отключаемых силовых полупроводниковых приборов из ветви силовых полупроводниковых приборов и нулевого вентиля образует второй контактный зажим.
4. Устройство (1) по п.2, отличающееся тем, что содержит дополнительный фазовый модуль (8d), который содержит соединенный с потенциалом Земли заземляющий вывод (16) и два соединительных вывода (7p, 7n), причем между каждым соединительным выводом (7p, 7n) и заземляющим выводом (16) в каждом случае проходит ветвь (8dp, 8dn) фазового модуля, которая состоит из последовательного соединения подмодулей (9), при этом каждый соединительный вывод (7p, 7n) соединен с соединительным выводом (7p, 7n) оставшихся фазовых модулей (5a, 5b, 5c).
5. Устройство (1) по п.4, отличающееся тем, что содержит конденсаторный модуль (17) с заземляющим выводом (16) и двумя соединительными выводами (7p, 7n), при этом между заземляющим выводом (16) и каждым соединительным выводом (7p, 7n) в каждом случае проходит конденсаторная ветвь, которая состоит из одного или нескольких последовательно включенных конденсаторов (18), причем каждый соединительный вывод (7p, 7n) соединен с соединительным выводом (7p, 7n) ветвей (5a, 5b, 5c) фазового модуля.
6. Устройство (1) по п.3, отличающееся тем, что содержит дополнительный фазовый модуль (8d), который содержит соединенный с потенциалом Земли заземляющий вывод (16) и два соединительных вывода (7p, 7n), причем между каждым соединительным выводом (7p, 7n) и заземляющим выводом (16) в каждом случае проходит ветвь (8dp, 8dn) фазового модуля, которая состоит из последовательного соединения подмодулей (9), при этом каждый соединительный вывод (7p, 7n) соединен с соединительным выводом (7p, 7n) оставшихся фазовых модулей (5a, 5b, 5c).
7. Устройство (1) по п.6, отличающееся тем, что содержит конденсаторный модуль (17) с заземляющим выводом (16) и двумя соединительными выводами (7p, 7n), при этом между заземляющим выводом (16) и каждым соединительным выводом (7p, 7n) в каждом случае проходит конденсаторная ветвь, которая состоит из одного или нескольких последовательно включенных конденсаторов (18), причем каждый соединительный вывод (7p, 7n) соединен с соединительным выводом (7p, 7n) ветвей (5a, 5b, 5c) фазового модуля.
RU2009141969/07A 2007-04-16 2008-04-02 Активный фильтр с многоуровневой топологией RU2453963C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007018343.9 2007-04-16
DE102007018343A DE102007018343A1 (de) 2007-04-16 2007-04-16 Aktivfilter mit einer Multilevel-Topologie

Publications (2)

Publication Number Publication Date
RU2009141969A RU2009141969A (ru) 2011-05-27
RU2453963C2 true RU2453963C2 (ru) 2012-06-20

Family

ID=39712531

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009141969/07A RU2453963C2 (ru) 2007-04-16 2008-04-02 Активный фильтр с многоуровневой топологией

Country Status (7)

Country Link
US (1) US7969238B2 (ru)
EP (1) EP2147491A1 (ru)
CN (1) CN101682190B (ru)
BR (1) BRPI0811050B8 (ru)
DE (1) DE102007018343A1 (ru)
RU (1) RU2453963C2 (ru)
WO (1) WO2008125493A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2538179C1 (ru) * 2013-08-09 2015-01-10 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Устройство фильтрации гармоник сетевого напряжения
RU2670195C2 (ru) * 2015-12-07 2018-10-19 Др. Инж. х.к. Ф. Порше Акциенгезелльшафт Преобразователь, электрическая многофазная система и способ, в котором их применяют

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2763943C (en) 2009-06-18 2016-11-08 Abb Technology Ag An arrangement for exchanging power
WO2011134521A1 (en) * 2010-04-29 2011-11-03 Areva T&D Uk Limited Converter
CN102013685A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 一种基于mmc的无变压器statcom拓扑结构
CN102013690A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 一种基于mmc模块化多电平的无变压器电感储能拓扑结构
CN102013691A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 一种基于mmc模块化多电平逆变器的无变压器电池储能拓扑结构
DE102011003810A1 (de) * 2011-02-08 2012-08-09 Robert Bosch Gmbh Steuerbarer Energiespeicher und Verfahren zum Betreiben eines steuerbaren Energiespeichers
DE102011076515A1 (de) * 2011-05-26 2012-11-29 Robert Bosch Gmbh Energiespeichereinrichtung und System mit Energiespeichereinrichtung
DE102011086087A1 (de) * 2011-11-10 2013-05-16 Ge Energy Power Conversion Gmbh Elektrischer Umrichter
DE102011089648A1 (de) * 2011-12-22 2013-06-27 Robert Bosch Gmbh Energiespeichereinrichtung, System mit Energiespeichereinrichtung und Verfahren zum Ansteuern einer Energiespeichereinrichtung
WO2014086428A1 (de) * 2012-12-07 2014-06-12 Siemens Aktiengesellschaft Mehrstufiger umrichter mit zusatzmodul
CN103036238B (zh) * 2012-12-24 2015-02-04 珠海万力达电气自动化有限公司 一种链式有源电力滤波器链节单元旁路控制结构及方法
DE102013212426A1 (de) * 2013-06-27 2014-12-31 Siemens Aktiengesellschaft Umrichteranordnung mit parallel geschalteten Mehrstufen-Umrichtern sowie Verfahren zu deren Steuerung
CN210692362U (zh) * 2016-12-21 2020-06-05 西门子股份公司 用于多级变流器的双极子模块的电容器及多相多级变流器
WO2019007502A1 (de) * 2017-07-05 2019-01-10 Siemens Aktiengesellschaft Multilevelstromrichter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1550592A1 (ru) * 1988-02-25 1990-03-15 Институт Электродинамики Ан Усср Способ динамической компенсации неактивных составл ющих мощности
RU2254658C1 (ru) * 2004-03-02 2005-06-20 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Трёхфазный транзисторный источник реактивных токов

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648894A (en) * 1994-09-30 1997-07-15 General Electric Company Active filter control
US5751138A (en) * 1995-06-22 1998-05-12 University Of Washington Active power conditioner for reactive and harmonic compensation having PWM and stepped-wave inverters
US5642275A (en) * 1995-09-14 1997-06-24 Lockheed Martin Energy System, Inc. Multilevel cascade voltage source inverter with seperate DC sources
AU2765599A (en) * 1998-02-13 1999-08-30 Wisconsin Alumni Research Foundation Hybrid topology for multilevel power conversion
US6075350A (en) 1998-04-24 2000-06-13 Lockheed Martin Energy Research Corporation Power line conditioner using cascade multilevel inverters for voltage regulation, reactive power correction, and harmonic filtering
DE20122923U1 (de) * 2001-01-24 2010-02-25 Siemens Aktiengesellschaft Stromrichterschaltungen mit verteilten Energiespeichern
US7177165B2 (en) * 2004-06-21 2007-02-13 Ballard Power Systems Corporation System and method for unbalanced independent AC phase voltage control of a 3-phase, 4-wire output DC/AC inverter
CN100539373C (zh) * 2006-10-13 2009-09-09 南京航空航天大学 零电压开关半桥三电平直流变换器
KR100886194B1 (ko) * 2007-06-08 2009-02-27 한국전기연구원 계통 연계형 고압 권선형 유도 발전기 제어 장치
US7710082B2 (en) * 2007-10-18 2010-05-04 Instituto Potosino De Investigacion Cientifica Y Technologica (Ipicyt) Controller for the three-phase cascade multilevel converter used as shunt active filter in unbalanced operation with guaranteed capacitors voltages balance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1550592A1 (ru) * 1988-02-25 1990-03-15 Институт Электродинамики Ан Усср Способ динамической компенсации неактивных составл ющих мощности
RU2254658C1 (ru) * 2004-03-02 2005-06-20 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Трёхфазный транзисторный источник реактивных токов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FANG ZHENG PENG ET AL: "A MULTILEVEL VOLTAGE-SOURCE INVERTER WITTH STPARATE DC SOURCES FOR STATIC VAR GENERATION" IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, VOL.32, NO 5, 1 OCTOBER 1996 (1996-10-01), XP011022083 ISSN: 0093-9994. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2538179C1 (ru) * 2013-08-09 2015-01-10 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Устройство фильтрации гармоник сетевого напряжения
RU2670195C2 (ru) * 2015-12-07 2018-10-19 Др. Инж. х.к. Ф. Порше Акциенгезелльшафт Преобразователь, электрическая многофазная система и способ, в котором их применяют

Also Published As

Publication number Publication date
CN101682190B (zh) 2013-09-11
BRPI0811050B8 (pt) 2023-04-25
BRPI0811050B1 (pt) 2019-02-26
WO2008125493A1 (de) 2008-10-23
JP5371952B2 (ja) 2013-12-18
CN101682190A (zh) 2010-03-24
JP2010524425A (ja) 2010-07-15
US20100127769A1 (en) 2010-05-27
US7969238B2 (en) 2011-06-28
EP2147491A1 (de) 2010-01-27
RU2009141969A (ru) 2011-05-27
DE102007018343A1 (de) 2008-10-30
BRPI0811050A2 (pt) 2015-01-27

Similar Documents

Publication Publication Date Title
RU2453963C2 (ru) Активный фильтр с многоуровневой топологией
US10447173B2 (en) Single-phase five-level active clamping converter unit and converter
EP2587620B1 (en) DC bus balancer circuit
CN103620942B (zh) 变换器
EP3487058B1 (en) Efficient switching for converter circuit
WO2012163841A1 (en) A voltage source converter for a hvdc transmission system
US20150357941A1 (en) Voltage source converter comprising a chain-link converter
CN102577066A (zh) 带无功功率补偿的变换器
WO2011098117A1 (en) Converter for high voltage dc dc transmission
US20160141962A1 (en) Converter
AU2009348270A1 (en) An arrangement for exchanging power
RU2578204C2 (ru) Устройство электропитания для нелинейной, изменяющейся во времени нагрузки
US10277144B2 (en) Four-level power converter
CN108023494B (zh) 一种模块化多电平换流器及其子模块结构
CN102594187A (zh) 四电平拓扑单元及其应用电路
WO2015110185A1 (en) A multilevel converter with reduced ac fault handling rating
WO2014102034A2 (en) Control circuit
WO2014154265A1 (en) Hybrid power converter with modular multilevel strings (m2lc) in neutral point clamping topology
CN109474197B (zh) 一种新型的大容量多电平混合箝位型拓扑结构及拓扑方法
US20210013816A1 (en) Voltage source converter apparatus
CN116345940A (zh) 一种逆变装置及其控制方法
WO2017028890A1 (en) Method of controlling operation of an interface arrangement in a power transmission system
CN105359403A (zh) 变换器
Khan et al. Performance analysis of various switching scheme in multilevel inverters using MATLAB/SIMULINK
JP5371952B6 (ja) マルチレベル接続構成を有するアクティブフィルタ

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20211201