RU2446533C1 - Способ определения места однофазного замыкания на землю в сети с изолированной нейтралью - Google Patents

Способ определения места однофазного замыкания на землю в сети с изолированной нейтралью Download PDF

Info

Publication number
RU2446533C1
RU2446533C1 RU2010132425/07A RU2010132425A RU2446533C1 RU 2446533 C1 RU2446533 C1 RU 2446533C1 RU 2010132425/07 A RU2010132425/07 A RU 2010132425/07A RU 2010132425 A RU2010132425 A RU 2010132425A RU 2446533 C1 RU2446533 C1 RU 2446533C1
Authority
RU
Russia
Prior art keywords
frequency
line
voltage
phase
damage
Prior art date
Application number
RU2010132425/07A
Other languages
English (en)
Inventor
Рамиль Гамилович Мустафин (RU)
Рамиль Гамилович Мустафин
Елена Евгеньевна Котельникова (RU)
Елена Евгеньевна Котельникова
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (КГЭУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (КГЭУ) filed Critical Государственное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (КГЭУ)
Priority to RU2010132425/07A priority Critical patent/RU2446533C1/ru
Application granted granted Critical
Publication of RU2446533C1 publication Critical patent/RU2446533C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

Использование: в области электротехники. Технический результат заключается в повышении точности. Способ заключается в фиксации момента повреждения, подаче на шины распределительного устройства, питающего линии электропередачи, высокочастотного напряжения, частотой выше промышленной частоты 50 Гц, измерении параметров аварийного режима в начале линии осуществляют путем измерения высокочастотного фазного напряжения и высокочастотного фазного тока, определении дальности до места повреждения по параметрам аварийного режима и характеристикам линии электропередачи, при этом в качестве характеристики линии электропередачи используют высокочастотное погонное сопротивление нулевой последовательности линии электропередачи. 3 ил.

Description

Изобретение относится к релейной защите электрических систем и позволяет ввести новый класс защит - высокочастотные дистанционные защиты по токам нулевой последовательности. Область действия данной защиты - воздушные линии электропередачи.
Самыми распространенными видами повреждений, до 70% от всех повреждений, в распределительных сетях являются однофазные замыкания на землю (ОЗЗ). Основные виды релейной защиты от ОЗЗ реагируют на токи нулевой последовательности Iо и напряжения нулевой последовательности Uo. При этом их можно подразделить на два вида:
- защиты, реагирующие на возникающий при ОЗЗ естественный ток нулевой последовательности Iо, напряжение нулевой последовательности Uo;
- защиты, реагирующие на возникающий при ОЗЗ ток нулевой последовательности, создаваемый искусственным путем, на частоте, отличной от 50 Гц.
Защиты первого типа могут работать с токами и напряжениями нулевой последовательности первой гармоники F1, частотой 50 Гц. Кроме этого, широкое применение получили защиты, работающие на высших гармониках, кратных частоте первой гармоники F1, которые измеряют амплитуды высших гармоник, например амплитуду третьей гармоники, частотой 3F1. Все защиты данного типа, работающие по току и напряжению нулевой последовательности, позволяют обнаружить возникновение ОЗЗ, определить поврежденный фидер, линию электропередачи с ОЗЗ. При этом данные защиты не позволяют определить дальность до места повреждения.
Дистанционные защиты, описанные в книге Чернобровов Н.В., Семенов В.А. Релейная защита энергетических систем. Москва: Энергоатомиздат, 1988, с.361, приняты за прототип. Основным элементом дистанционной защиты является реле сопротивления, реагирующее на полное (активное и реактивное) сопротивление участка линии до мeста повреждения Хл, которое вычисляется на основе измерения аварийных токов I и напряжений U в начале линии, по формуле:
Figure 00000001
.
Сопротивление Хл зависит от дальности до места повреждения L. Определив Хл и зная погонное сопротивление линии Хп (сопротивление линии на единицу длины линии), можно определить дальность до места повреждения L:
Figure 00000002
Дистанционные защиты позволяют определить дальность до мecта повреждения, но не могут определить, на какой отпайке произошло повреждение. Например, когда имеется две отпайки, расходящиеся от одной точки, при этом сопротивление Хл будет одинаковым, при повреждении на одной или на другой отпайке.
Задачей, на решение которой направлено данное техническое решение, является определение места однофазного замыкания на землю в сети с изолированной нейтралью по высокочастотным токам нулевой последовательности.
Сети с изолированной нейтралью, это сети среднего напряжения 6/10/35 кВ. Предлагаемый способ предназначен для сетей с воздушными линиями электропередачи. Такие сети характеризуются большой разветвленностью. Во-первых, от шин одной подстанции могут исходить большое число линий электропередачи, до нескольких десятков линий на одну секцию шин. Во-вторых, каждая отдельная линия электропередачи может иметь несколько отпаек, боковых отходящих от основной линии ответвлений. Все это создает большие трудности при обнаружении места повреждения. При ОЗЗ в сетях с изолированной нейтралью токи аварийного режима малы, поскольку это емкостные токи, которые создают емкостные нагрузки линий электропередачи (Чернобровов Н.В., Семенов В.А. Релейная защита энергетических систем. - Москва: Энергоатомиздат, 1988, с.288).
Технический результат достигается подачей на шины распределительного устройства, питающего защищаемые линии электропередачи, высокочастотного напряжения, с частотой Fв, отличающейся от промышленной частоты 50 Гц, параметры аварийного режима в начале линии определяются путем измерения высокочастотного, с частотой Fв, фазного напряжения и высокочастотного, с частотой Fв, фазного тока в начале линии, а при определении дальности до места однофазного замыкания на землю в качестве характеристики линии электропередачи используется высокочастотное, для частоты Fв, погонное сопротивление нулевой последовательности линии электропередачи, для разветвленной линии электропередачи поврежденное ответвление (с однофазным замыканием на землю) определяется по максимальному относительному (по сравнению с нормальным режимом, и с учетом высокочастотного, с частотой Fв, фазного напряжения в начале линии) уменьшению высокочастотного, с частотой Fв, фазного напряжения в конце поврежденного ответвления.
Первым шагом для решения проблемы определения дальности до места повреждения является создание дополнительных токов, создаваемых искусственным путем - так называемых наложенных токов, применение которых описано в книге М.А.Шабад, Защита от однофазных замыканий на землю в сетях 6-35 кВ, Москва: Энергопрогресс, 2007 (стр.33). При этом дополнительное напряжение, которое создает наложенные токи, подается по схеме фаза-земля. Поэтому, по отношению к дополнительным, наложенным токам, сеть электропередачи становится сетью с заземленной нейтралью, и это существенно влияет на поведение наложенных токов и напряжений.
Для того чтобы имелась возможность измерять токи Iв и напряжения Uв дополнительного тока, отдельно от токов промышленной частоты 50 Гц, дополнительный ток создается на частоте Fв, значительно отличающейся от 50 Гц. Для осуществления предлагаемого способа определения места однофазного замыкания на землю в сети с изолированной нейтралью важно, чтобы использовалась максимально большая частота Fв, что увеличивает величину погонного сопротивления линии электропередачи на рабочей частоте.
Верхняя граница частоты Fв ограничена волновыми эффектами при распространении токов высокой частоты по линии электропередачи. Линии электропередачи среднего напряжения имеют длину порядка 10 километров. Соответственно длина волны λ, частоты Fв должна быть намного больше длины линии, и это создает верхнюю границу Fв частотами порядка десяти килогерц.
Применение дополнительного тока высокой частоты Fв:
- не мешает работе силового оборудования распределительной сети;
- не изменяет режимы работы сети (сеть с изолированной нейтралью);
- не мешает работе защит, основанных на измерении токов и напряжений промышленной частоты 50 Гц;
- источник дополнительного высокочастотного напряжения легко подсоединяется к сети (через высокочастотные конденсаторы, или используя измерительный трансформатор напряжения).
На фиг.1 изображена схема сети с высокочастотными конденсаторами;
на фиг.2 - однолинейная схема сети, имеющая отпайку, на фиг.3 - с измерительным трансформатором напряжения.
Рассмотрим распределительное устройство 1 (фиг.1), с шин 2 которого питаются защищаемые линии электропередачи 3. На шины 2 распределительного устройства через три высокочастотных конденсатора 4 с генератора 5 подается высокочастотное напряжение. Высокочастотное напряжение Uв измеряется трансформатором напряжения 6, высокочастотные токи Iв измеряются трансформаторами тока 7. Таким образом, измерив параметры аварийного режима, высокочастотное напряжение Uв и высокочастотные токи Iв, определяется высокочастотное сопротивление Хв отрезка линии 3 до места повреждения, до ОЗЗ:
Figure 00000003
При определении дальности L до места однофазного замыкания на землю в качестве характеристики линии электропередачи используется высокочастотное погонное сопротивление линии электропередачи Хвп:
Figure 00000004
При этом при расчете дальности L до места ОЗЗ необходимо учитывать схему подачи высокочастотного напряжения на шины 2 распределительного устройства 1, схему измерения высокочастотного напряжения Uв. Для схемы, изображенной на фиг.1, необходимо учитывать высокочастотное (на частоте Fв) сопротивление конденсаторов 4.
Каждая фаза трехфазной линии электропередачи может рассматриваться отдельно. Это связано с достаточно малой взаимной индуктивностью фаз, малой частотой Fв, малыми длинами линий электропередачи в сетях среднего напряжения.
Затухание α высокочастотных сигналов (уменьшение амплитуды за счет потерь в линии) при распространении вдоль линии электропередачи зависит от частоты Fв и длины линии L:
Figure 00000005
где α - дБ,
К1 ~ 0,005,
К2 ~ 0,0002,
Fв - кГц,
L - км.
(формула (5) приведена в книге: Ю.П.Шкарин, Высокочастотные тракты каналов связи по линиям электропередачи, Москва: Энергопрогресс, 2001 (стр.83)).
Из (5) видно, что на частотах Fb порядка 10 кГц и на длинах линии L порядка 10 км - затуханием α высокочастотного сигнала можно пренебречь.
Продольное сопротивление линии электропередачи имеет, в основном, индуктивный характер, поэтому сопротивление линии зависит от рабочей частоты. При частоте 50 Гц погонное сопротивление нулевой последовательности линии имеет величину порядка 0,2 Ом/км. Тогда на частоте Fв, равной 10 кГц, погонное сопротивление линии будет в 200 раз больше (за счет зависимости индуктивного сопротивления от частоты), и будет иметь величину порядка 40 Ом/км. Для линии длиной L=10 км общее сопротивление линии будет равно 400 Ом.
Такие большие величины сопротивлений линии на высокой частоте Fв, равной 10кГц, имеют два следствия.
Во-первых, потребуется генератор высокой частоты 5 сравнительно малой мощности. Пусть высокочастотное напряжение Uв равно 100 В, соответственно высокочастотный ток Iв будет иметь величину порядка (100 В/400 Ом) 0,25 А. Иными словами, линия 3 будет потреблять порядка (100 В*0,25А) 25 Вт высокочастотной мощности (при появлении ОЗЗ в конце линии).
Во-вторых, большая величина погонного сопротивления линии приведет к тому, что при повреждении, при ОЗЗ, вдоль линии возникнет градиент высокочастотного напряжения Uв: если в точке ОЗЗ напряжение (относительно земли) станет равным нулю, то при движении в сторону источника питания линии, напряжение будет достаточно быстро расти.
Рассмотрим однолинейную схему (фиг.2) распределительного устройства 1, с шин 2 которого питается линия электропередачи 3, имеющая отпайку в точке 8 (линия разветвляется на две одинаковые линии). На верхней отпайке имеется повреждение - ОЗЗ 9, что приводит к уменьшению на конце линии 10 высокочастотного напряжения Uв. При этом вдоль линии, между отпайкой 8 и ОЗЗ 9 возникнет градиент, и высокочастотное напряжение Uв в точке отпайки 8 будет выше, чем в точке ОЗЗ 9. Таким образом, относительное уменьшение высокочастотного напряжения Uв на конце линии 10 будет больше, чем относительное уменьшение высокочастотного напряжения Uв на конце линии 11. По этому признаку можно различить отпайку с повреждением 10 (имеющую ОЗЗ 9), от отпайки без повреждения 11. При этом необходимо учитывать возможное уменьшение высокочастотного напряжения Uв в начале линии (на шинах 2), при возникновении повреждения - ОЗЗ.
Линия среднего напряжения 6/10кВ бывает нагружена на силовой понижающий трансформатор (0,4кВ низкое напряжение). При этом понижающий трансформатор имеет конфигурацию треугольник - звезда. В результате, в нормальном режиме, когда по линии распространяется высокочастотное напряжение нулевой последовательности, высокочастотное напряжение Uв не проходит на сторону низкого напряжения. Однако при появлении ОЗЗ, высокочастотное напряжение Uв одной фазы меньше напряжения двух других фаз, и на низкой стороне появляется высокочастотное напряжение. Это позволяет измерять высокочастотное напряжение на низкой стороне.
Если в составе распределительного устройства 1 (фиг.3) присутствует измерительный трансформатор 12, то имеется вторая возможность подачи высокочастотного напряжения на шины 2. На выводы разомкнутого треугольника измерительного трансформатора 12 с генератора 5 подается высокочастотное напряжение. При этом на шины 2 с измерительного трансформатора 12 будет подаваться высокочастотное напряжение нулевой последовательности, и отпадает потребность в установке дополнительных высокочастотных конденсаторов.
Таким образом, изобретение относится к релейной защите электрических систем и позволяет ввести новый класс защит - высокочастотные дистанционные защиты по высокочастотным токам нулевой последовательности.

Claims (1)

  1. Способ определения места однофазного замыкания на землю в сети с изолированной нейтралью, заключающийся в фиксации момента повреждения, измерении параметров (токов и напряжений) аварийного режима в начале линии, определении дальности до места повреждения по параметрам аварийного режима и характеристикам (погонному сопротивлению) линии электропередачи, подаче на шины распределительного устройства, питающего защищаемые линии электропередачи, высокочастотного с частотой F напряжения, отличающийся тем, что параметры аварийного режима и поврежденная фаза определяются путем измерения высокочастотного с частотой F фазного напряжения и высокочастотного с частотой F фазного тока в начале линии, при определении дальности до места однофазного замыкания на землю в качестве характеристики линии электропередачи используется высокочастотное для частоты F погонное сопротивление нулевой последовательности линии электропередачи, для разветвленной линии электропередачи поврежденное ответвление (с однофазным замыканием на землю) определяется по максимальному относительному (по сравнению с нормальным режимом и с учетом высокочастотного с частотой F фазного напряжения в начале линии) уменьшению высокочастотного с частотой F фазного напряжения в конце поврежденного ответвления.
RU2010132425/07A 2010-08-02 2010-08-02 Способ определения места однофазного замыкания на землю в сети с изолированной нейтралью RU2446533C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010132425/07A RU2446533C1 (ru) 2010-08-02 2010-08-02 Способ определения места однофазного замыкания на землю в сети с изолированной нейтралью

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010132425/07A RU2446533C1 (ru) 2010-08-02 2010-08-02 Способ определения места однофазного замыкания на землю в сети с изолированной нейтралью

Publications (1)

Publication Number Publication Date
RU2446533C1 true RU2446533C1 (ru) 2012-03-27

Family

ID=46031006

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010132425/07A RU2446533C1 (ru) 2010-08-02 2010-08-02 Способ определения места однофазного замыкания на землю в сети с изолированной нейтралью

Country Status (1)

Country Link
RU (1) RU2446533C1 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103163417A (zh) * 2013-03-29 2013-06-19 昆明理工大学 一种基于短时窗高低频暂态能量比值的虚幻接地识别方法
RU2498331C1 (ru) * 2012-06-05 2013-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Способ определения дальности до однофазного замыкания на землю в линиях электропередачи
RU2499998C1 (ru) * 2012-05-28 2013-11-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Способ определения дальности до однофазного замыкания на землю в линиях электропередачи
CN105203877A (zh) * 2015-09-18 2015-12-30 广东电网有限责任公司电力科学研究院 能够消除量测误差影响的单回输电线路零序参数辨识方法
CN106291259A (zh) * 2016-10-31 2017-01-04 云南电网有限责任公司昆明供电局 一种主动信号法单相接地故障指示器提取特征信号的方法
RU2638088C2 (ru) * 2015-05-12 2017-12-11 Общество с ограниченной ответственностью "Электроавтоматика" Способ измерения расстояния до места замыкания на землю
RU2699948C1 (ru) * 2017-09-29 2019-09-11 Бендер ГмбХ унд Ко. КГ Способ и устройство контроля для выборочного определения емкости утечки подсистемы в незаземленной системе электропитания

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4559491A (en) * 1982-09-14 1985-12-17 Asea Aktiebolag Method and device for locating a fault point on a three-phase power transmission line
RU2097893C1 (ru) * 1995-04-28 1997-11-27 Александр Владимирович Малеев Способ направленной защиты от однофазного замыкания на землю в электрической сети переменного тока и устройство для его осуществления
RU2248077C2 (ru) * 2002-10-07 2005-03-10 Исследовательский центр "Бреслер" Способ дистанционной защиты линии электропередачи
RU78988U1 (ru) * 2008-07-22 2008-12-10 Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет)" (ГОУВПО "МЭИ (ТУ)") Устройство частотной токовой защиты кабельных линий

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4559491A (en) * 1982-09-14 1985-12-17 Asea Aktiebolag Method and device for locating a fault point on a three-phase power transmission line
RU2097893C1 (ru) * 1995-04-28 1997-11-27 Александр Владимирович Малеев Способ направленной защиты от однофазного замыкания на землю в электрической сети переменного тока и устройство для его осуществления
RU2248077C2 (ru) * 2002-10-07 2005-03-10 Исследовательский центр "Бреслер" Способ дистанционной защиты линии электропередачи
RU78988U1 (ru) * 2008-07-22 2008-12-10 Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет)" (ГОУВПО "МЭИ (ТУ)") Устройство частотной токовой защиты кабельных линий

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЧЕРНОБРОВОВ Н.В., Семенов В.А. Релейная защита энергетических систем. - М.: Энергоатомиздат, 1998, с.361. *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2499998C1 (ru) * 2012-05-28 2013-11-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Способ определения дальности до однофазного замыкания на землю в линиях электропередачи
RU2498331C1 (ru) * 2012-06-05 2013-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Способ определения дальности до однофазного замыкания на землю в линиях электропередачи
CN103163417A (zh) * 2013-03-29 2013-06-19 昆明理工大学 一种基于短时窗高低频暂态能量比值的虚幻接地识别方法
CN103163417B (zh) * 2013-03-29 2015-05-20 昆明理工大学 一种基于短时窗高低频暂态能量比值的虚幻接地识别方法
RU2638088C2 (ru) * 2015-05-12 2017-12-11 Общество с ограниченной ответственностью "Электроавтоматика" Способ измерения расстояния до места замыкания на землю
CN105203877A (zh) * 2015-09-18 2015-12-30 广东电网有限责任公司电力科学研究院 能够消除量测误差影响的单回输电线路零序参数辨识方法
CN106291259A (zh) * 2016-10-31 2017-01-04 云南电网有限责任公司昆明供电局 一种主动信号法单相接地故障指示器提取特征信号的方法
CN106291259B (zh) * 2016-10-31 2018-10-23 云南电网有限责任公司昆明供电局 一种主动信号法单相接地故障指示器提取特征信号的方法
RU2699948C1 (ru) * 2017-09-29 2019-09-11 Бендер ГмбХ унд Ко. КГ Способ и устройство контроля для выборочного определения емкости утечки подсистемы в незаземленной системе электропитания

Similar Documents

Publication Publication Date Title
RU2446533C1 (ru) Способ определения места однофазного замыкания на землю в сети с изолированной нейтралью
RU2416804C2 (ru) Устройство и способ для определения места аварийного заземления
Jamali et al. Protection of transmission lines in multi-terminal HVDC grids using travelling waves morphological gradient
CN103840437B (zh) 配电网铁磁谐振与单相接地故障的快速诊断与处理方法
CN109478778B (zh) 用于检测三相配电网络中的故障的方法和装置
CN103701106B (zh) 一种适用于微电网的继电保护方法
RU2499998C1 (ru) Способ определения дальности до однофазного замыкания на землю в линиях электропередачи
Burgess et al. Minimising the risk of cross-country faults in systems using arc suppression coils
CN103823160B (zh) 配电网自适应接地选线方法与装置
RU2695278C1 (ru) Способ определения места однофазного замыкания фидера на землю в кабельных сетях среднего напряжения
CN105572545A (zh) 一种电力线路故障测距装置和测距方法
Zheng et al. Improved differential protection scheme for long distance UHVDC transmission line
Meghwani et al. An on-line fault location technique for DC microgrid using transient measurements
Olejnik Adaptive zero-sequence overcurrent criterion for earth fault detection for fault current passage indicators in resistor grounded medium voltage networks
EP1599738B1 (en) Detection of earth faults in three phase systems
EP3185025B1 (en) Electrical fault location method
Jia et al. Impedance-based earth fault location for a non-directly grounded distribution systems
RU2631121C2 (ru) Способ селективного определения отходящей линии с однофазным замыканием на землю в распределительных сетях напряжением 6-35 кВ
Kachesov et al. Parametric method of fault location in distribution networks
Zhang et al. SLG (Single-Line-to-Ground) Fault Location in NUGS (Neutral Un-effectively Grounded System)
RU2498331C1 (ru) Способ определения дальности до однофазного замыкания на землю в линиях электропередачи
RU108637U1 (ru) Устройство для определения расстояния от источника питания до места обрыва изолированного провода трехфазной воздушной линии напряжением свыше 1000 в, расположенной на опорах контактной сети переменного тока
RU2558265C1 (ru) Способ определения расстояния до мест двойных замыканий на землю на линиях электропередачи в сетях с малыми токами замыкания на землю
Guerrero et al. AC ground fault location method for frequency converters based on AC phases and grounding resistor voltage measurements
RU116243U1 (ru) Устройство определения расстояния до места короткого замыкания на землю проводов воздушных линий напряжением свыше 1000 в, расположенных на опорах контактной сети переменного тока

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130803