RU2446385C2 - Способ измерения деформации и устройство для его осуществления - Google Patents

Способ измерения деформации и устройство для его осуществления Download PDF

Info

Publication number
RU2446385C2
RU2446385C2 RU2010125543/28A RU2010125543A RU2446385C2 RU 2446385 C2 RU2446385 C2 RU 2446385C2 RU 2010125543/28 A RU2010125543/28 A RU 2010125543/28A RU 2010125543 A RU2010125543 A RU 2010125543A RU 2446385 C2 RU2446385 C2 RU 2446385C2
Authority
RU
Russia
Prior art keywords
measuring element
magnetic field
measuring
deformation
magnetoelastic
Prior art date
Application number
RU2010125543/28A
Other languages
English (en)
Other versions
RU2010125543A (ru
Inventor
Виталий Федорович Новиков (RU)
Виталий Федорович Новиков
Александр Васильевич Радченко (RU)
Александр Васильевич Радченко
Владимир Павлович Евко (RU)
Владимир Павлович Евко
Original Assignee
Виталий Федорович Новиков
Александр Васильевич Радченко
Владимир Павлович Евко
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Виталий Федорович Новиков, Александр Васильевич Радченко, Владимир Павлович Евко filed Critical Виталий Федорович Новиков
Priority to RU2010125543/28A priority Critical patent/RU2446385C2/ru
Publication of RU2010125543A publication Critical patent/RU2010125543A/ru
Application granted granted Critical
Publication of RU2446385C2 publication Critical patent/RU2446385C2/ru

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

Изобретение относится к измерительной технике и может быть использовано для измерения деформации грунта, горных пород, зданий, сооружений и железобетонных конструкций. Способ измерения деформации включает локальное намагничивание измерительного элемента с последующей регистрацией магнитного поля рассеяния. При этом осуществляют разнонаправленное локальное намагничивание одного или нескольких заданных участков измерительного элемента, выполненного из материала с пьезомагнитным эффектом остаточно намагниченного состояния. Затем измерительный элемент многократно нагружают и разгружают до деформации, превышающей максимальную рабочую деформацию, после чего под заданной нагрузкой осуществляют локальное намагничивание одного или нескольких заданных участков измерительного элемента, выполненного из материала с магнитоупругим гистеризисом. Устройство для измерения деформации включает измерительный элемент, который изготовлен из ферромагнитного материала и намагничивающей катушки, датчик магнитного поля и измерительный элемент. При этом устройство дополнительно снабжено элементами крепления, которыми зафиксирован измерительный элемент, выполненный составным или монолитным с участками из материала, обладающего магнитоупругим гистерезистом и пьезомагнитным эффектом. 2 н. и 2 з.п.ф-лы, 2 ил.

Description

Изобретение относится к измерительной технике и предназначено для измерения деформации грунта, горных пород, зданий, сооружений и железобетонных конструкций.
Известны «Способ определения напряженно-деформированного состояния изделия из ферромагнитного материала и устройство для его осуществления. Способ включает измерение нормальной составляющей магнитного поля вдоль поверхности изделия в различных его точках, определение градиента величины напряженности магнитного поля между концами зафиксированного по длине отрезка линии, при этом первоначально измеряют нормальную составляющую магнитного поля одновременно в двух точках между концами зафиксированного по длине отрезка линии, затем измеряют составляющую одновременно в двух точках на концах зафиксированного по длине отрезка линии, компланарно отстоящего вдоль поверхности изделия на расстоянии от первоначального отрезка (з-ка №98117174, G01L 1/12, G01N 27/72, оп. 27.06.2000 г.).
Недостатком вышеуказанного способа является сложность обработки получаемой информации, зависимость показаний от величины и направления внешнего магнитного поля.
Наиболее близким техническим решением является «Способ определения полей механических напряжений из ферромагнитных материалов», включающий намагничивание в виде разнонаправленных участков детали из ферромагнитного материала, сканирование магнитного поля рассеяния локально намагниченных участков датчиком (патент РФ №2154262, G01L 1/12, оп. 10.08.2000 г., прототип).
Недостатком вышеуказанного способа является зависимость нормальной составляющей магнитного поля рассеяния от позиционирования датчика и влияния предыдущих напряжений на результаты последующих измерений.
Известны устройства для преобразования деформаций (механических напряжений) в электрический сигнал дроссельного или трансформаторного типа, в которых по ЭДС индукции или самоиндукции катушки, снабженной ферромагнитным сердечником, судят о величине действующих в данное время деформаций (М.Н.Гуманюк. Магнитоупругие силоизмерители, стр 35-71. Киев. Технiка, 1981 г., с.182).
Недостатком рассматриваемых устройств является необходимость охватывающей чувствительный элемент катушки (катушек), невозможность работы в режиме запоминания деформации самим магнитоупругим преобразователем.
Наиболее близким техническим решением является «Устройство для измерения силы», содержащее измерительный элемент, намагничивающую катушку, датчик магнитного поля, измерительный элемент, изготовленный в виде проволоки из материала, обладающего магнитоупругим гистерезистом (а.с. СССР №1647296, G01L 1/12, оп. 07.05.1991 г., прототип).
Недостатком вышеуказанного устройства является зависимость показания датчика от его положения относительно чувствительного элемента, зависимость показаний от механической предистории нагружения, в результате чего делается невозможным измерение, если предыдущие нагрузки превышали действующую в момент измерения нагрузку, а также отсутствие устройств для фиксации датчиков поля.
Предлагаемое нами техническое решение устраняет вышеперечисленные недостатки, повышает точность измерения деформаций объектов за счет исключения влияния температурного изменения размеров металла измерительного элемента, позволяет осуществлять измерение деформации как в режиме памяти пиковой нагрузки, действовавшей в заданном интервале времени, так и в аналоговом режиме в любой момент времени и расширяет возможности применения измерительного элемента для измерения деформаций измеряемых длинномерных объектов.
Поставленная цель достигается тем, что способ измерения деформации включает локальное намагничивание измерительного элемента с последующей регистрацией магнитного поля рассеяния, при этом осуществляют разнонаправленное локальное намагничивание одного или нескольких заданных участков измерительного элемента, выполненного из материала с пьезомагнитным эффектом остаточно намагниченного состояния, затем измерительный элемент многократно нагружают и разгружают до деформации, превышающей максимальную рабочую деформацию, после чего под заданной нагрузкой осуществляют локальное намагничивание одного или нескольких заданных участков измерительного элемента, выполненного из материала с магнитоупругим гистеризисом, затем измеряют тангенциальную составляющую магнитного поля рассеяния на заданных участках измерительного элемента с пьезомагнитным эффектом остаточной намагниченности и на заданных участках с магнитоупругим гистеризисом, сканируя заданные участки датчиком поля и регистрируя распределение магнитного поля рассеяния по длине измерительного элемента в виде магнитограммы, величину действующей в момент измерения деформации измерительного элемента определяют по величине магнитного поля заданного участка измерительного элемента с пьезомагнитным эффектом и по градуировочному графику зависимости деформации (ε) от магнитного поля рассеяния (Н) через заданный интервал времени повторяют измерения на заданных участках, обладающих пьезомагнитными свойствами, и участках с магнитоупругим гистеризисом, полученные значения магнитного поля рассеяния сравнивают с первоначальными значениями магнитного поля рассеяния этих участков, максимальное значение деформации измерительного элемента, имевшей место в заданном интервале времени после разнонаправленного локального намагничивания, определяют по изменению величины магнитного поля рассеяния на участках измерительного элемента, обладающих магнитоупругим гистерезисом, и по градуировочному графику зависимости ε от ΔН.
Устройство для измерения деформации включает измерительный элемент, изготовленный из ферромагнитного материала, намагничивающую катушку, датчик магнитного поля, измерительный элемент, дополнительно снабжено элементами крепления, которыми зафиксирован измерительный элемент, выполненный составным или монолитным с участками из материала, обладающего магнитоупругим гистерезистом и пьезомагнитным эффектом, термокомпенсатором, размещенным на элементе крепления и соединенным с измерительным элементом, сканирующим устройством с феррозондовым датчиком, выполненным с возможностью перемещения вдоль измерительного элемента, при этом термокомпенсатор выполнен из материала, отвечающего следующему соотношению:
αt·Lt·ΔTt=α·L·ΔT,
где αt - температурный коэффициент длины материала термокомпенсатора; Lt - длина термокомпенсатора; L - длина измерительного элемента; ΔTt - изменение температуры термокомпенсатора; ΔТ - изменение температуры измерительного элемента; α - температурный коэффициент длины материала измерительного элемента. Устройство дополнительно снабжено, по меньшей мере, двумя подставками, расположенными под измерительным элементом, а элементы крепления выполнены в виде опор с крепежными изделиями.
На фиг.1 изображено устройство для осуществления способа измерения деформации грунта, на фиг.2 изображен график распределения напряженности магнитного поля по длине измерительного элемента.
Устройство для измерения деформации зафиксировано на объекте контроля 1, например на грунте, и содержит элементы крепления 2, составной или монолитный измерительный элемент 3, выполненный из ферромагнитного магнитострикционного материала, термокомпенсатор 4 и сканирующее устройство с феррозондовым датчиком, соединенное с магнитометром (на фиг.1 не показано).
Объект контроля 1 представляет собой горную породу, здание, сооружение, грунт, железобетонные конструкции и т.п. Если объект контроля 1 протяженный, то устройство для измерения деформации многократно дублируют.
Элементы крепления 2 представляют собой, например, опоры с крепежными изделиями, хомуты с крепежными изделиями и т.п. Элементы крепления 2 расположены на объекте контроля 1 с заданным расстоянием между собой и предназначены для передачи деформации объекта контроля 1 измерительному элементу 3. Элементы крепления 2 выполнены из немагнитного материала, например дюраля, титана, дерева.
Измерительный элемент 3 зафиксирован на объекте контроля 1 элементами крепления 2 и соединен термокомпенсатором 4.
Например, один конец измерительного элемента 3 закрепляется на кольце 5 и пропускается через один элемент крепления в виде опоры с крепежными изделиями 2, а другой конец измерительного элемента 3 закрепляется в термокомпенсаторе 4, зафиксированном на другом элементе крепления в виде опоры с крепежными изделиями 2 в натянутом состоянии с заданной деформацией (Фиг.1).
Составной измерительный элемент 3 выполнен из ферромагнитного магнитострикционного материала и представляет собой, по меньшей мере, два участка, например, проволоки или троса, жестко соединенных между собой, при этом один участок, например, проволоки или троса выполнен из материала с эффектом магнитоупругой памяти (обладает магнитоупругим гистерезисом), например, из стали 30X13 после ее старения при температуре 550°С, а другой участок, например, проволоки или троса выполнен из материала с линейным пьезомагнитным эффектом остаточно намагниченного состояния (обладает пьезомагнитными свойствами), например, из стали 30X13, отпущенной при температуре 300°С.
Монолитный измерительный элемент 3 выполнен из ферромагнитного магнитострикционного материала, который обладает пьезомагнитным эффектом остаточно намагниченного состояния и магнитоупругим гистерезисом (эффектом магнитоупругой памяти) и представляет собой, например, проволоку или трос.
Термокомпенсатор 4 установлен и зафиксирован на элементе крепления 2. Термокомпенсатор 4 предназначен для уменьшения влияния температурного изменения размеров металла измерительного элемента 3 на результаты определения деформации исследуемого объекта контроля 1. Термокомпенсатор 4 выполнен из материала, отвечающего следующему соотношению критерия компенсации:
αt·Lt·ΔTt=α·L·ΔТ,
где αt - температурный коэффициент длины материала термокомпенсатора 4;
Lt - длина термокомпенсатора 4;
L - длина измерительного элемента 3;
ΔTt - изменение температуры термокомпенсатора 4;
ΔТ - изменение температуры измерительного элемента 3;
α - температурный коэффициент длины материала измерительного элемента 3.
Если размеры измерительного элемента 3 невелики, то можно считать, что ΔTt=ΔТ и αt·Lt=α·L.
Если термокомпенсатор 4 выполнен, например, из тефлона4, у которого при комнатной температуре αt=280·10-6, а у измерительного элемента 3 α=10·10-6, то для компенсации температурной деформации потребуется термокомпенсатор 4 длиной Lt=17,8 см при длине L=500 см измерительного элемента 3.
Сканирующее устройство с феррозондовым датчиком выполнено с возможностью перемещения вдоль измерительного элемента 3 для снятия данных о его магнитном поле рассеяния на заданных участках 6, обладающих пьезомагнитным эффектом остаточно намагниченного состояния, и на заданных участках 7, обладающих магнитоупругим гистерезисом, измерительного элемента 3.
Например, сканирующее устройство с феррозондовым датчиком выполнено в виде параллелепипеда с канавкой на его торце, на боковых поверхностях канавки зафиксированы два феррозондовых полузонда датчика магнитного поля. Измерительный элемент 3 располагают в канавке сканирующего устройства с феррозондовым датчиком. В процессе снятия данных о магнитном поле рассеяния на заданных участках 6 и 7 измерительного элемента 3 два феррозондовых полузонда датчика магнитного поля размещают параллельно оси измерительного элемента 3 и в одной плоскости с осью измерительного элемента 3.
Устройство для измерения деформации дополнительно снабжено, по меньшей мере, двумя подставками 8, размещенными под измерительным элементом 3.
Подставки 8 служат для исключения несанкционированного прогиба (нагружения) измерительного элемента 3 при осуществлении процедуры намагничивания и измерения.
Способ измерения деформации осуществляют следующим образом.
Первоначально на одном или нескольких заданных участках 6 монолитного или составного измерительного элемента 3 создают разнонаправленное локальное намагничивание в виде двух антипараллельно намагниченных (разнонаправленных) зон под заданной нагрузкой, при этом измерительный элемент 3 расположен с возможностью деформации под действием растягивающей силы. Например, один конец измерительного элемента 3 закреплен в термокомпенсаторе 4, а другой конец измерительного элемента 3 закреплен в кольце 5, расположенном в другом элементе крепления 2 с возможностью перемещения в нем под действием контролируемой силы заданной нагрузки. Создание разнонаправленного локального намагничивания заданных участков 6 осуществляют, например, посредством Ш-образного электромагнита с намагничивающей катушкой, помещенной на центральном магнитопроводе, или постоянными магнитами. Для этого Ш-образный электромагнит приставляют к заданному участку 6 измерительного элемента 3, например, в месте расположения подставки 8 и несколько раз, например 3-5 раз, пропускают по Ш-образному электромагниту импульс намагничивающего тока.
После этого осуществляют многократное чередование, например 20 раз, нагружения и разгружения измерительного элемента 3 до деформации, превышающей максимальную рабочую деформацию объекта контроля 1, например, посредством динамометра, прикрепляемого к кольцу 5. В процессе многократного чередования нагружения и разгружения измерительного элемента 3 снимается необратимая часть намагниченности измерительного элемента 3 и остается квазиобратимая часть локальной разнонаправленной намагниченности, которая, как и ее магнитное поле рассеяния, линейно зависит от деформации.
После этого на одном или нескольких заданных других участках 7 монолитного или составного измерительного элемента 3, работающих в режиме деформационного размагничивания (магнитоупругой памяти), выполненного из материала, обладающего магнитоупругим гистерезисом, осуществляют Ш-образным электромагнитом или постоянным магнитом локальное намагничивание в виде двух антипараллельно намагниченных (разнонаправленных) зон и оставляют их в состоянии остаточной намагниченности.
Затем измеряют деформацию на заданных участках 6 и 7 посредством измерения тангенциальной составляющей магнитного поля рассеяния на одних заданных участках с пьезомагнитным эффектом остаточной намагниченности и на других заданных участках с магнитоупругим гистеризисом измерительного элемента с помощью сканирующего устройства с феррозондовым датчиком, который, сканируя заданные участки 6 и 7, регистрирует распределение магнитного поля рассеяния по длине измерительного элемента 3 в виде магнитограммы.
На Фиг.2 отражено распределение тангенциальной составляющей магнитного поля рассеяния по длине измерительного элемента, где:
а - режим магнитного пьезоэффекта остаточно намагниченного состояния;
б - режим деформационного размагничивания - магнитоупругого гистеризиса (магнитоупругой памяти).
По данным магнитограммы определяют разность максимальных и минимальных значений тангенциальных составляющих магнитного поля рассеяния (сумму по абсолютной величине) в разнонаправлено намагниченных зонах заданного участка 6 с пьезомагнитным эффектом и строится градуировочный график зависимости ε от Н=Нмак-(-Нмин)), а также строится градуировочный график зависимости ε от ΔН=ΔНмак+ΔНмин на заданном участке 7 с магнитоупругим гистеризисом.
После этого определяют величину действующей в момент измерения деформации измерительного элемента 3 по величине разности напряженности в максимуме и минимуме магнитного поля рассеяния на заданных участках 6, обладающих пьезомагнитными свойствами.
Через заданный интервал времени повторяют измерения на заданных участках 6, обладающих пьезомагнитными свойствами, и заданных участках 7 с магнитоупругим гистеризисом, полученные значения магнитного поля рассеяния сравнивают с первоначальными значениями магнитного поля рассеяния заданных участков 6 и 7 и по изменению разности максимальных значений тангенциальных составляющих магнитного поля рассеяния на заданных участках 7, обладающих магнитоупругим гистерезисом, и по градуировочному графику зависимости ε от ΔН=ΔНмак+ΔНмин определяют максимальное значение деформации измерительного элемента 3, действовавшей в заданном интервале времени после намагничивания.
По величине магнитного поля Н на заданном участке 6 определяют деформацию измерительного элемента 3, действовавшую в момент измерения и, соответственно, деформацию объекта контроля 1.
Построение градуировочных графиков зависимостей для пьезомагнитного эффекта (ε от Н=Нмак-(-Нмин)) и магнитогистерезисной составляющей магнитоупругого преобразователя (ε от ΔН=ΔНмак-ΔНмин) осуществляют с помощью стенда для механических испытаний, например Р50.
Предлагаемые нами технические решения повышают точность измерения деформаций объектов за счет исключения влияния температурного изменения размеров металла измерительного элемента, позволяют осуществлять измерение деформации как в режиме памяти пиковой нагрузки в заданном интервале времени, так и в аналоговом режиме в любой момент времени и расширяет возможности применения измерительного элемента для измерения деформаций объектов по его магнитному полю.

Claims (4)

1. Способ измерения деформации, включающий локальное намагничивание измерительного элемента и последующую регистрацию магнитного поля рассеяния, отличающийся тем, что осуществляют разнонаправленное локальное намагничивание одного или нескольких заданных участков измерительного элемента, выполненного из материала с пьезомагнитным эффектом остаточно намагниченного состояния, затем измерительный элемент многократно нагружают и разгружают до деформации, превышающей максимальную рабочую деформацию, после чего под заданной нагрузкой осуществляют локальное намагничивание одного или нескольких заданных участков измерительного элемента, выполненного из материала с магнитоупругим гистеризисом, затем измеряют тангенциальную составляющую магнитного поля рассеяния на заданных участках измерительного элемента с пьезомагнитным эффектом остаточной намагниченности и на заданных участках с магнитоупругим гистеризисом, сканируя заданные участки датчиком поля и регистрируя распределение магнитного поля рассеяния по длине измерительного элемента в виде магнитограммы, величину действующей в момент измерения деформации измерительного элемента определяют по величине магнитного поля заданного участка измерительного элемента с пьезомагнитным эффектом и по градуировочному графику зависимости деформации (ε) от магнитного поля рассеяния (Н), через заданный интервал времени повторяют измерения на заданных участках, обладающих пьезомагнитными свойствами, и участках с магнитоупругим гистеризисом, полученные значения магнитного поля рассеяния сравнивают с первоначальными значениями магнитного поля рассеяния этих участков, максимальное значение деформации измерительного элемента, имевшей место в заданном интервале времени после разнонаправленного локального намагничивания, определяют по изменению величины магнитного поля рассеяния на участках измерительного элемента, обладающих магнитоупругим гистерезисом, и по градуировочному графику зависимости ε от ΔН.
2. Устройство для измерения деформации, включающее измерительный элемент, изготовленный из ферромагнитного материала, намагничивающую катушку, датчик магнитного поля, измерительный элемент, отличающееся тем, что оно дополнительно снабжено элементами крепления, которыми зафиксирован измерительный элемент, выполненный составным или монолитным с участками из материала, обладающего магнитоупругим гистерезисом и пьезомагнитным эффектом, термокомпенсатором, размещенным на элементе крепления и соединенным с измерительным элементом, сканирующим устройством с феррозондовым датчиком, выполненным с возможностью перемещения вдоль измерительного элемента, при этом термокомпенсатор выполнен из материала, отвечающего следующему соотношению:
αt·Lt·ΔTt=α·L·ΔT,
где αt - температурный коэффициент длины материала термокомпенсатора; Lt - длина термокомпенсатора; L - длина измерительного элемента; ΔTt - изменение температуры термокомпенсатора; ΔT - изменение температуры измерительного элемента; α - температурный коэффициент длины материала измерительного элемента.
3. Устройство для измерения деформации по п.2, отличающееся тем, что оно дополнительно снабжено, по меньшей мере, двумя подставками, расположенными под измерительным элементом.
4. Устройство для измерения деформации по п.2, отличающееся тем, что элементы крепления выполнены в виде опор с крепежными изделиями.
RU2010125543/28A 2010-06-21 2010-06-21 Способ измерения деформации и устройство для его осуществления RU2446385C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010125543/28A RU2446385C2 (ru) 2010-06-21 2010-06-21 Способ измерения деформации и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010125543/28A RU2446385C2 (ru) 2010-06-21 2010-06-21 Способ измерения деформации и устройство для его осуществления

Publications (2)

Publication Number Publication Date
RU2010125543A RU2010125543A (ru) 2011-12-27
RU2446385C2 true RU2446385C2 (ru) 2012-03-27

Family

ID=45782281

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010125543/28A RU2446385C2 (ru) 2010-06-21 2010-06-21 Способ измерения деформации и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2446385C2 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL274109A1 (en) * 1988-08-04 1990-02-05 Przed Innowacji I Wdrozen Amu Compensation-type device for force or mass measurements
SU1647296A1 (ru) * 1988-12-22 1991-05-07 Тюменский индустриальный институт им.Ленинского комсомола Устройство дл измерени силы
RU98117174A (ru) * 1997-07-09 2000-06-27 А.А. Дубов Способ определения напряженно-деформированного состояния изделия из ферромагнитного материала и устройство для осуществления этого способа
RU2154262C2 (ru) * 1998-11-16 2000-08-10 Тюменский государственный нефтегазовый университет Способ определения полей напряжений в деталях из ферромагнитных материалов
EP2329943A2 (en) * 2009-12-07 2011-06-08 Aida Engineering, Ltd. Method and apparatus for controlling electric servo press

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2155943C2 (ru) * 1997-07-09 2000-09-10 Дубов Анатолий Александрович Способ определения напряженно-деформированного состояния изделия из ферромагнитного материала и устройство для осуществления этого способа

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL274109A1 (en) * 1988-08-04 1990-02-05 Przed Innowacji I Wdrozen Amu Compensation-type device for force or mass measurements
SU1647296A1 (ru) * 1988-12-22 1991-05-07 Тюменский индустриальный институт им.Ленинского комсомола Устройство дл измерени силы
RU98117174A (ru) * 1997-07-09 2000-06-27 А.А. Дубов Способ определения напряженно-деформированного состояния изделия из ферромагнитного материала и устройство для осуществления этого способа
RU2154262C2 (ru) * 1998-11-16 2000-08-10 Тюменский государственный нефтегазовый университет Способ определения полей напряжений в деталях из ферромагнитных материалов
EP2329943A2 (en) * 2009-12-07 2011-06-08 Aida Engineering, Ltd. Method and apparatus for controlling electric servo press

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ГУМАНЮК М.Н. Магнитоупругие силоизмерители. - Киев: Технiка, 1981, с.35-71. *

Also Published As

Publication number Publication date
RU2010125543A (ru) 2011-12-27

Similar Documents

Publication Publication Date Title
KR20110009078A (ko) 장력 측정 장치
Wang et al. Development of a remote coil magnetoelastic stress sensor for steel cables
Gorkunov et al. The influence of an elastic uniaxial deformation of a medium-carbon steel on its magnetostriction in the longitudinal and transverse directions
Kypris et al. Experimental verification of the linear relationship between stress and the reciprocal of the peak Barkhausen voltage in ASTM A36 steel
Gorkunov et al. Some features in the behavior of magnetic and acoustic characteristics of hot-rolled 08G2B steel under cyclic loading
US20130221950A1 (en) Method and measurement arrangement for measuring mechanical stresses in ferromagnetic workpieces
Al-Hajjeh et al. Characteristics of a magnetostrictive composite stress sensor
Makar et al. The effect of stresses approaching and exceeding the yield point on the magnetic properties of high strength pearlitic steels
RU2452928C2 (ru) Способ измерения деформации и устройство для его осуществления
Apicella et al. Experimental evaluation of external and built-in stress in Galfenol rods
Gorkunov et al. The influence of the magnetoelastic effect on the hysteretic properties of medium-carbon steel during uniaxial loading
Ricken et al. Improved multi-sensor for force measurement of pre-stressed steel cables by means of the eddy current technique
RU2446385C2 (ru) Способ измерения деформации и устройство для его осуществления
Yamazaki et al. Stress-driven magnetic Barkhausen noise generation in FeCo magnetostrictive alloy
Tang et al. Study of a steel strand tension sensor with difference single bypass excitation structure based on the magneto-elastic effect
Usarek et al. Influence of plastic deformation on stray magnetic field distribution of soft magnetic steel sample
Langman Some comparisons between the measurement of stress in mild steel by means of Barkhausen noise and rotation of magnetization
RU2424509C1 (ru) Способ контроля механических свойств стальных металлоконструкций и упругих напряжений в них и устройство для его осуществления
Rękas et al. A measuring setup for testing the mechanical stress dependence of magnetic properties of electrical steels
Gorkunov et al. The influence of elastic deformations on the hysteresis properties of a two-layer ferromagnet composed of components with magnetostrictions of opposite signs
Alonso et al. Magnetostatic determination of variations of internal stress in magnetic steels
Sabol et al. Application of magnetic microwires for sensing stresses in structures
Karagiannis et al. Position sensors based on the delay line principle
RU2764001C1 (ru) Способ контроля механических напряжений в стальных конструкциях магнитоупругим методом
Zakharov et al. Evaluating the structure of a ferromagnetic material based on magnetic-field strength between the poles of an attached two-pole magnetizing device

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130622