RU2444134C2 - Способы передачи для ccfi/pcfich в системе беспроводной связи - Google Patents

Способы передачи для ccfi/pcfich в системе беспроводной связи Download PDF

Info

Publication number
RU2444134C2
RU2444134C2 RU2010100811/07A RU2010100811A RU2444134C2 RU 2444134 C2 RU2444134 C2 RU 2444134C2 RU 2010100811/07 A RU2010100811/07 A RU 2010100811/07A RU 2010100811 A RU2010100811 A RU 2010100811A RU 2444134 C2 RU2444134 C2 RU 2444134C2
Authority
RU
Russia
Prior art keywords
ccfi
codewords
codeword
codebook
component
Prior art date
Application number
RU2010100811/07A
Other languages
English (en)
Other versions
RU2010100811A (ru
Inventor
Дзоон-Йоунг ЧО (KR)
Дзоон-Йоунг ЧО
Фарук КХАН (US)
Фарук КХАН
Чжоуюэ ПИ (US)
Чжоуюэ ПИ
Цзяньчжун ЧЖАН (US)
Цзяньчжун ЧЖАН
Original Assignee
Самсунг Электроникс Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40252655&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2444134(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Самсунг Электроникс Ко., Лтд. filed Critical Самсунг Электроникс Ко., Лтд.
Publication of RU2010100811A publication Critical patent/RU2010100811A/ru
Application granted granted Critical
Publication of RU2444134C2 publication Critical patent/RU2444134C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0029Reduction of the amount of signalling, e.g. retention of useful signalling or differential signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0606Space-frequency coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0668Orthogonal systems, e.g. using Alamouti codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

Изобретение относится к системам связи. Технический результат заключается в повышении эффективности схемы разнесения передачи. Раскрыт способ передачи индикатора формата канала управления (CCFI), известного также как PCFICH (физический канал индикатора формата канала управления), для случая, когда длина кодированного CCFI не является целым числом, кратным трем, содержащий отображение множества двухбитовых CCFI на кодовую книгу, причем каждое компонентное кодовое слово имеет три бита; генерацию последовательности кодовых слов, выбранных из кодовой книги, путем повторения выбранного компонентного кодового слова предопределенное количество раз; генерацию кодового слова посредством конкатенации последовательности выбранных компонентных кодовых слов с первоначальными CCFI битами; и передачу кодового слова, несущего информацию о CCFI. Способ дополнительно содержит этап генерации перестановки каждого из четырех кодовых слов путем назначения К повторений трехбитового компонентного кодового слова количеству К блоков ресурсов соответственно и отображения остальных К битов каждого из четырех кодовых слов отдельно на количество К блоков ресурсов. 6 н. и 18 з.п. ф-лы, 6 ил., 1 табл.

Description

Область техники
Настоящее изобретение относится к способу и устройству для кодирования канала CCFI (индикатора формата канала управления), известного также как PCFICH (физический канал индикатора формата канала управления), более конкретно к способу и устройству для кодирования CCFI канала с использованием конкатенации повторяемых (3,2) кодовых слов и исходных CCFI битов для случая, когда общая результирующая кодированная длина CCFI не является целым числом, кратным трем.
Предшествующий уровень техники
Мультиплексирование с ортогональным частотным разделением (OFDM) представляет собой технологию для мультиплексирования данных в частотной области. Символы модуляции переносятся на частотных поднесущих. Общая ширина полосы в системе OFDM делится на узкополосные частотные блоки, называемые поднесущими. Количество поднесущих равно размеру N быстрого преобразования Фурье (FFT)/обратного FFT (IFFT), используемого в системе. В целом, число поднесущих, используемых для данных, меньше, чем N, поскольку некоторые из поднесущих, расположенные на краю спектра частот, зарезервированы как защитные поднесущие. Обычно никакая информация не может быть передана на защитных поднесущих.
Типичная сотовая система радиосвязи включает в себя совокупность стационарных базовых станций (BS), которая определяет зону радиопокрытия или соту. Как правило, между базовой станцией и мобильной станцией имеется путь распространения радиоволн не по линии видимости (NLOS) ввиду природных и техногенных объектов, которые находятся между базовой станцией и мобильной станцией. Как следствие, радиоволны распространяются путем отражения, дифракции и рассеяния. Поступающие волны на мобильной станции (MS) в направлении нисходящей линии (на BS в направлении восходящей линии) испытывают конструктивные и деструктивные суммирования ввиду разных фаз отдельных волн. Это объясняется тем, что на высоких несущих частотах, обычно используемых в сотовой беспроводной связи, малые изменения в дифференциальных задержках распространения вносят большие изменения в фазы отдельных волн. Когда MS движется, или происходят изменения в рассеивающей среде, пространственные вариации амплитуды и фазы составного принимаемого сигнала будут проявляться как временные вариации, известные как рэлеевское замирание или быстрое замирание. Изменяющийся во времени характер беспроводного канала требует очень высокого отношения сигнал/шум (SNR), чтобы обеспечить желаемую вероятность битовых ошибок или пакетных ошибок.
Разнесение широко используется для противодействия эффекту быстрого замирания. Идея заключается в предоставлении приемнику множества реплик с замиранием для сигнала, несущего одну и ту же информацию. В предположении независимого замирания каждой из антенных ветвей вероятность того, что мгновенное SNR ниже определенного порога по каждой ветви, составляет примерно рL, где р - вероятность того, что мгновенное SNR ниже определенного порога по каждой антенной ветви.
Методы разнесения, в принципе, делятся на следующие категории: пространственное, угловое, поляризационное, полевое, частотное, временное и многолучевое разнесение. Пространственное разнесение может быть достигнуто с использованием множества передающих или приемных антенн. Пространственное разделение между множеством антенн выбирается так, чтобы ветви разнесения испытывали замирание с малой корреляцией или без корреляции. Разнесение передачи использует множество передающих антенн, чтобы обеспечить приемник с множеством некоррелированных реплик одного и того же сигнала. Схемы разнесения передачи могут быть дополнительно разделены на схемы разнесения передачи разомкнутого контура и разнесения передачи замкнутого контура. В методе разнесения передачи разомкнутого контура не требуется обратной связи из приемника. В известной конфигурации разнесения передачи замкнутого контура приемник вычисляет настройку фазы и амплитуды, которая должна применяться в антеннах передатчика, чтобы максимизировать мощность принимаемого сигнала в приемнике. В другой конфигурации разнесения передачи замкнутого контура, упоминаемой как селективное разнесение передачи (STD), приемник обеспечивает информацию обратной связи в передатчик на антенну(ы), которая(ые) должна(ы) использоваться для передачи.
Биты динамической категории 0 (Cat0) относятся к LTE терминологии, используемой органом стандартизации 3GPP LTE. Функция Cat0 состоит в поддержке масштабирования канала управления нисходящей линии путем указания числа разрешений планирования нисходящей линии и восходящей линии. Текущее рабочее допущение состоит в том, что биты динамической Cat0 имеют максимальный размер два бита, и биты динамической Cat0 должны передаваться однократно в течение каждого подкадра, где присутствует элемент канала управления (ССЕ). Информация, передаваемая битами Cat0, включает в себя, без ограничения указанным, число OFDM символов, используемых для всех каналов управления в подкадре. Разнесение передачи битов Cat0 не финализировано, и целью настоящего изобретения является предложить простую и эффективную схему разнесения передачи, которая вводит в канал как пространственное, так и частотное разнесение. Различные подходы кодирования и разнесения передачи были предложены как для битов Категории 0, так и ACK/NACK каналов. На заседании 3GPP стандарта RAN1 в мае 2007 года биты Категории 0 были переименованы в CCFI (индикатор формата канала управления). В настоящем изобретении предлагается один дополнительный способ кодирования, а также способы отображения ресурсов частотной области для передачи CCFI канала.
Кроме того, было предложено использовать (3,2,2) двоичный линейный код для отображения 2 Cat0 битов в 3-битовое кодовое слово С1С2С3, и это кодовое слово принадлежит кодовой книге размера четыре с минимальным расстоянием Хэмминга между любыми двумя парами кодовых слов. Одним из примеров (3,2) кодовой книги является
с1с2с3 ∈ С1 = {111, 100, 010, 001}.
Поскольку размер (3,2) кодовой книги, как указано выше, равен трем, лишь повторение 3-битовых кодовых слов может только быть подходящим для случая, когда длина кодированного CCFI является целым числом, кратным трем.
Раскрытие изобретения
Технические проблемы
Поэтому важно обеспечить способ кодирования CCFI в случае, когда длина кодированного CCFI не является целым числом, кратным трем.
Техническое решение
Поэтому одним из аспектов настоящего изобретения является предоставление улучшенного способа и устройства для решения вышеуказанных проблем.
Другим аспектом настоящего изобретения является предложить способ CCFI кодирования в случае, когда длина кодированного CCFI не является целым числом, кратным трем.
В одном из вариантов осуществления настоящего изобретения предлагается кодировать CCFI канал с помощью конкатенации повторяемых (3,2) кодовых слов и некодированных CCFI битов в том случае, когда общая длина кодового слова не является целым числом, кратным трем. Поскольку размер (3,2) кодовой книги, как указано выше, равен трем, важно обеспечить способ кодирования CCFI в случае, когда длина кодированного CCFI не является целым числом, кратным трем.
Как показано в таблице ниже, устанавливается отображение между двумя битами CCFI и компонентными кодовыми словами в (3,2) кодовой книге.
CCFI биты b1b2 Компонентное кодовое слово с1с2с3 (предполагается (3,2) кодовая книга С2) Компонентное кодовое слово с1с2с3 (предполагается (3,2) кодовая книга С1)
00 000 111
01 011 100
10 101 010
11 110 001
Кодовые слова длины 32 генерируются в следующих процедурах.
(1) Компонентное кодовое слово длины 3
с1с2с3
генерируется, как показано в таблице выше;
(2) компонентное кодовое слово
с1с2с3
повторяется десять раз для генерации последовательности длиной 30; и
(3) последовательность длиной 30 конкатенируется с исходными CCFI битами
b1b2.
Результирующими четырьмя кодовыми словами кодовой книги А, соответствующими каждому кодовому слову кодовой книги C2, являются:
000 000 000 000 000 000 000 000 000 000 00 (сw1)
011 011 011 011 011 011 011 011 011 011 01 (cw2)
101 101 101 101 101 101 101 101 101 101 10 (cw3)
110 110 110 110 110 110 110 110 110 110 11 (cw4).
Кодовая книга А
В другом варианте осуществления настоящего изобретения, если CCFI имеет только три состояния (т.е. CCFI - это любые три из "00", "01", "10" и "11"), то любое из трех кодовых слов в приведенном выше наборе может быть использовано для переноса информации CCFI.
В другом варианте осуществления настоящего изобретения для кодовой книги, сформированной выше, выполняются перестановки по столбцам, чтобы обеспечить соответствие K 1×2 RU конфигурации ресурсов, которая имеет в общей сложности 4K кодированных битов. В этом способе перестановки, основываясь на последовательной конкатенации повторяемых кодовых слов, К повторений 3-битового компонентного кодового слова назначаются К RU (оставляя открытым один бит на каждый RU), а затем оставшиеся К битов отображаются отдельно на К RU. Другие кодовые слова кодовой книги А могут выводиться тем же способом. Результирующая кодовая книга, выведенная из кодовой книги А, называется кодовой книгой В, как показано ниже. Кодовая книга В может быть лучше, чем кодовая книга А, в каналах с замиранием, так как полное повторение на RU отображается в максимально возможной степени.
0000 0000 0000 0000 0000 0000 0000 0000 (cw1)
0110 0111 0111 0110 0111 0111 0110 0111 (cw2)
1011 1010 1011 1011 1010 1011 1011 1010 (cw3)
1101 1101 1100 1101 1101 1100 1101 1101 (cw4)
Кодовая книга B
В другом варианте осуществления настоящего изобретения вариация кодовой книги А может быть получена отображением CCFI битов на кодовую книгу C1, вместо кодовой книги C2. То же самое повторение и конкатенация используются при создании этой новой кодовой книги, называемой кодовой книгой C.
111 111 111 111 111 111 111 111 111 111 00 (cw1)
100 100 100 100 100 100 100 100 100 100 01 (cw2)
010 010 010 010 010 010 010 010 010 010 10 (cw3)
001 001 001 001 001 001 001 001 001 001 11 (cw4)
Кодовая книга C
В другом варианте осуществления настоящего изобретения та же самая перестановка по столбцам, как указано выше, применяется к кодовой книге С для получения кодовой книги D.
1111 1111 1111 1111 1111 1111 1110 1110 (cw1)
1001 1000 1000 1001 1000 1000 1000 1001 (cw2)
0100 0101 0100 0100 0101 0100 0101 0100 (cw3)
0010 0010 0011 0010 0010 0011 0011 0011 (cw4)
Кодовая книга D
В другом варианте осуществления настоящего изобретения, если CCFI имеет только три состояния, любые три кодовых слова в данной кодовой книге (например, кодовой книге A, B, C, D и т.д.) могут быть использованы для переноса CCFI информации.
Полезные эффекты
Настоящее изобретение может обеспечить способ кодирования CCFI в случае, когда длина кодированного CCFI не является целым числом, кратным трем.
Краткое описание чертежей
Более полное понимание изобретения и многие сопутствующие его преимущества будут очевидны и более понятны со ссылкой на следующее подробное описание при рассмотрении в связи с прилагаемыми чертежами, на которых одинаковые ссылочные позиции обозначают те же самые или аналогичные компоненты, на которых:
фиг.1 является иллюстрацией приемопередающего тракта с мультиплексированием с ортогональным частотным разделением (OFDM) с трактом передатчика и трактом приемника;
фиг.2 показывает Alamouti схему 2×1 пространственно-временного разнесения;
фиг.3 показывает Alamouti 2×1 пространственно-частотную схему;
фиг.4 показывает пример способа перестановки по столбцам; и
фиг.5 и 6 - блок-схемы, иллюстрирующие процедурные этапы передачи и приема CCFI соответственно различным вариантам осуществления настоящего изобретения.
Режим осуществления изобретения
Несколько подходов кодирования и разнесения передачи были предложены для битов Категории 0 и ACK/NACK каналов. На заседании 3GPP стандарта RAN1 в мае 2007 года биты Категории 0 были переименованы в CCFI (индикатор формата канала управления). При реализации принципа настоящего изобретения раскрыто несколько дополнительных способов кодирования, а также способов отображения ресурсов частотной области для передачи CCFI канала. Здесь CCFI также известен как PCFICH (физический канал индикатора формата управления).
OFDM представляет собой технологию для мультиплексирования данных в частотной области. Символы модуляции переносятся на частотных поднесущих. Фиг.1 иллюстрирует тракт OFDM приемопередатчика с трактом передатчика и трактом приемника. Пример тракта OFDM приемопередатчика показан на фиг.1. В тракте 100 передатчика сигналы управления или сигналы данных модулируются модулятором 101, и модулированные сигналы подвергаются последовательно-параллельному преобразованию посредством последовательно-параллельного (S/P) преобразователя 112. Блок 114 обратного быстрого преобразования Фурье (IFFT) используется для передачи модулированного сигнала или данных из частотной области во временную область, и модулированные сигналы, преобразованные во временную область, подвергаются параллельно-последовательному преобразованию посредством параллельно-последовательного (P/S) преобразователя 116. Циклический префикс (СР) или нулевой префикс (ZP) добавляется к каждому символу OFDM на этапе 118 вставки СР, чтобы избежать или, альтернативно, смягчить воздействия многолучевого замирания в канале 122 многолучевого замирания. Сигналы из каскада 118 вставки циклического префикса (СР) подаются на блок 120 радиочастотной (RF) обработки передатчика, радиочастотный усилитель 121, а затем на одну или несколько антенн 123. Таким образом, сигналы, переданные трактом 100 передатчика, принимаются трактом 140 приемника. В тракте 140 приемника, в предположении достижения идеальной временной и частотной синхронизации, сигналы, принятые одной или несколькими приемными антеннами 125, подаются на радиочастотный блок 124 обработки приемника, обрабатываются в блоке 126 удаления циклического префикса (СР), который удаляет циклический префикс (СР) принятого сигнала. Сигналы, обработанные в блоке 126 удаления циклического префикса (СР), далее подвергаются последовательно-параллельному преобразованию в последовательно-параллельном преобразователе 128. Блок 130 быстрого преобразования Фурье (FFT) переносит принятые сигналы из временной области в частотную область для дальнейшей обработки, в том числе параллельно-последовательного преобразования посредством параллельно-последовательного преобразователя 132 и демодуляции посредством демодулятора 134 сигналов.
Общая ширина полосы системы OFDM делится на узкополосные частотные блоки, называемые поднесущими. Количество поднесущих равно размеру N FFT/IFFT, используемому в системе. В целом, число поднесущих, используемых для данных, меньше, чем N, поскольку некоторые из поднесущих, расположенные на краю спектра частот, зарезервированы в качестве защитных поднесущих. Как правило, никакая информация не может передаваться на защитных поднесущих.
Типичная сотовая система радиосвязи включает в себя совокупность стационарных базовых станций (BS), которые определяют зону радиопокрытия или соту. Как правило, между базовой станцией и мобильной станцией имеется путь распространения радиоволн не по линии видимости (NLOS) ввиду природных и техногенных объектов, которые находятся между базовой станцией и мобильной станцией. Как следствие, радиоволны распространяются путем отражения, дифракции и рассеяния. Поступающие волны на мобильной станции (MS) в направлении нисходящей линии (на BS в направлении восходящей линии) испытывают конструктивные и деструктивные суммирования ввиду разных фаз отдельных волн. Это объясняется тем, что на высоких несущих частотах, обычно используемых в сотовой беспроводной связи, малые изменения в дифференциальных задержках распространения вносят большие изменения фаз отдельных волн. Дополнительно, когда MS движется, или когда происходят изменения в рассеивающей среде, пространственные вариации амплитуды и фазы составного принимаемого сигнала будут проявляться как временные вариации, известные как рэлеевское замирание или быстрое замирание. Изменяющийся во времени характер беспроводного канала требует очень высокого отношения сигнал/шум (SNR), чтобы обеспечить желаемую вероятность битовых ошибок или пакетных ошибок.
Разнесение широко используется для противодействия эффектам быстрого замирания. Идея заключается в предоставлении приемника с множеством реплик с замиранием сигнала с одной и той же информацией пеленга. В предположении независимого замирания сигналов, передаваемых каждой из антенных ветвей, вероятность того, что мгновенное SNR ниже определенного порога по каждой ветви, составляет примерно рL, где р - вероятность того, что мгновенное SNR ниже определенного порога по каждой антенной ветви; L - число антенных ветвей. С точки зрения системной операции "антенная ветвь" также известна как "антенный порт" и указывает число антенн на базовой станции.
Методы разнесения, пригодные для использования, делятся на следующие категории: пространственное, угловое, поляризационное, полевое, частотное, временное и многолучевое разнесение. Пространственное разнесение может быть достигнуто с использованием множества передающих или приемных антенн. Пространственное разделение между множеством антенн выбрано так, чтобы ветви разнесения испытывали замирание с малой корреляцией или без корреляции сигналов в процессе перехода между передающей и приемной антеннами. Разнесение передачи использует множество передающих антенн, чтобы обеспечить приемник множеством некоррелированных реплик одного и того же сигнала. Схемы разнесения передачи могут быть дополнительно разделены на схемы разнесения передачи разомкнутого контура и разнесения передачи замкнутого контура. В методе разнесения передачи разомкнутого контура не требуется обратной связи из приемника. В известной конфигурации разнесения передачи замкнутого контура приемник вычисляет настройку фазы и амплитуды, которая должна применяться в антеннах передатчика, чтобы максимизировать мощность принимаемого сигнала в приемнике. В другой конфигурации разнесения передачи замкнутого контура, упоминаемой как селективное разнесение передачи (STD), приемник обеспечивает информацию обратной связи в передатчик на антенну(ы), которая(ые) должна(ы) использоваться для передачи.
Примером схемы разнесения передачи разомкнутого контура является схема Alamouti 2×1 пространственно-временного разнесения. Фиг.2 показывает схему Alamouti 2×1 пространственно-временного разнесения. При таком подходе в течение любого периода символа два символа данных передаются одновременно от двух передающих антенн ANT1 и ANT2. Предположим, что в течение первого символьного интервала t1 символы, передаваемые от ANT1 и ANT2, обозначены как S1 и S2 соответственно, как показано на фиг.2. В течение следующего символьного периода символами, передаваемыми от ANT1 и ANT2, являются -S2* и S1* соответственно, где х* представляет собой комплексно-сопряженное х. При определенной обработке в приемнике могут быть восстановлены исходные символы S1 и S2. Здесь требуются мгновенные оценки h1 и h2 усиления канала для ANT1 и ANT2 соответственно для корректного восстановления в приемнике. Это требует отдельных пилот-символов для обеих антенн, чтобы обеспечить оценку усиления канала в приемнике. Выигрыш от разнесения, получаемый путем кодирования Alamouti, является таким же, как тот, который может быть достигнут при объединении максимального отношения (MRC).
2×1 Alamouti схема может также быть реализована в форме пространственно-частотного кодирования. Фиг.3 показывает 2×1 Alamouti схему, реализованную в форме пространственно-частотного кодирования. В этом случае два символа посылаются на двух разных частотах, т.е. поднесущих f1 и f2, например, на разных поднесущих в системе OFDM, как показано на фиг.3. При реализации в форме пространственно-частотного кодирования в схеме разнесения передачи разомкнутого контура схема 2×1 Alamouti пространственно-частотного разнесения, изображенная на фиг.3, показывает схему Alamouti 2×1 пространственно-частотного разнесения, в которой в течение любого периода символа два символа данных передаются одновременно от двух передающих антенн ANT1 и ANT2. В течение передачи первой частоты f1 символы, передаваемые от ANT1 и ANT2, обозначены как S1 и S2 соответственно, как показано на фиг.3. В течение следующего символьного периода символами, передаваемыми от ANT1 и ANT2, являются -S2* и S1* соответственно, где х* представляет собой комплексно-сопряженное х. В приемнике могут быть восстановлены исходные символы S1 и S2. Здесь требуются мгновенные оценки h1 и h2 усиления канала для ANT1 и ANT2 соответственно для корректного восстановления в приемнике. Это требует отдельных пилот-символов для обеих антенн, чтобы обеспечить оценку усиления канала в приемнике. Выигрыш от разнесения, получаемый путем кодирования Alamouti, такой же, как тот, который может быть достигнут при объединении максимального отношения (MRC).
Принятые сигналы r1 и r2 в мобильной станции на поднесущей f1, r1 и на поднесущей f2, r2 могут быть записаны следующим образом:
Figure 00000001
,
где h1 и h2 усиления канала от ANT1 и ANT2 соответственно. Здесь предполагается, что канал от данной антенны не изменяется между поднесущими f1 и f2. Мобильная станция выполняет коррекцию на принятых сигналах и комбинирует два принятых сигнала (r1 и r2), чтобы восстановить символы S1 и S2.
Figure 00000002
.
Можно видеть, что оба передаваемых символа S1 и S2 достигают полного пространственного разнесения.
Термин "биты Динамической Категории 0 (Cat0)" являются LTE терминологией, используемой органом стандартизации 3GPP LTE. Функция Cat0 состоит в поддержке масштабирования канала управления нисходящей линии путем указания числа разрешений планирования нисходящей линии и восходящей линии. Текущее рабочее допущение состоит в том, что биты динамической Cat0 имеют максимальный размер два бита и должны передаваться в течение каждого подкадра, где присутствует элемент канала управления (ССЕ). Информация, передаваемая битами Cat0, включает в себя, без ограничения указанным, число OFDM символов, используемых для всех каналов управления в подкадре. Разнесение передачи битов Cat0 не финализировано, и одной из целей настоящего изобретения является предложить простую и эффективную схему разнесения передачи и приема, которая обеспечивает ввод в канал как пространственного, так и частотного разнесения. Различные подходы кодирования и разнесения передачи были обсуждены как для битов Категории 0, так и ACK/NACK каналов. На заседании 3GPP стандарта RAN1 в мае 2007 года биты Категории 0 были переименованы в CCFI (индикатор формата канала управления). В настоящем изобретении предлагается один дополнительный способ кодирования, а также способы отображения ресурсов частотной области для передачи CCFI канала.
Кроме того, было предложено использовать (3,2,2) двоичный линейный код для отображения двух Cat0 битов в 3-битовое кодовое слово С1С2С3 и назначить это кодовое слово кодовой книге размера четыре с минимальным расстоянием Хэмминга между любыми парами кодовых слов. Линейный код (n,k,d) означает код с длиной каждого кодового слова n кодированных битов, и каждое кодовое слово соответствует сообщению с длиной k информационных битов. Минимальным расстоянием Хэмминга кодовой книги является d. Как только 3-битовое кодовое слово определено, оно будет повторяться и согласовываться по скорости для подгонки к 2К канальным символам, которые должны использоваться для Cat0 битов. (3,2) кодовая книга является сокращенной записью (3,2,2) кода. Одним из примеров (3,2) кодовой книги является
с1с2с3 ∈ С1 = {111, 100, 010, 001}.
В одном варианте осуществления настоящего изобретения предлагается кодировать CCFI канал с помощью конкатенации повторяемых (3,2) кодовых слов и некодированных CCFI битов в том случае, когда общая длина кодового слова не является целым числом, кратным трем. Поскольку размер (3,2) кодовой книги, как указано выше, равен трем, важно обеспечить способ кодирования CCFI в случае, когда длина кодированного CCFI не является целым числом, кратным трем.
Например, когда общее число К 1×2 блоков ресурсов (RU) назначено CCFI каналу, имеется 2К канальных символов и 4К канальных битов, в предположении QPSK модуляции по каждому канальному символу. Здесь 1×2 RU занимает один OFDM символ и две соседние поднесущие. Например, когда К=8 RU, то имеется 2К=16 канальных символов и 32 кодированных бита. 32 не является целым числом, кратным трем.
Как показано в таблице 1, устанавливается отображение между двумя CCFI битами и компонентными кодовыми словами в (3,2) кодовой книге. Таблица 1 является отображением между CCFI битами и компонентными кодовыми словами, как показано выше. Здесь (3,2) кодовая книга является
с1с2с3 ∈ С2 = {000, 011, 101, 110}.
Отметим, что показанная выше (3,2) кодовая книга является эквивалентной к
с1с2с3 ∈ С1 = {111, 100, 010, 001}.
CCFI биты b1 и b2 являются исходными CCFI битами. Компонентные кодовые слова двух (3,2) кодовых книг С1 и С2, соответствующих каждому состоянию CCFI битов, показаны в таблице 1.
Таблица 1
Отображение между CCFI битами и компонентными кодовыми словами
CCFI биты b1b2 Компонентное кодовое слово с1с2с3 (предполагается (3,2) кодовая книга С2) Компонентное кодовое слово с1с2с3 (предполагается (3,2) кодовая книга С1)
00 000 111
01 011 100
10 101 010
11 110 001
Четыре кодовых слова с длиной 32, генерируемые для CCFI битов b1b2, показаны ниже для примера, приведенного выше. Здесь используется (3,2) кодовая книга С2. Кодовые слова длиной 32 генерируются модулятором 101 с помощью следующих процедурных этапов.
(1) Компонентное кодовое слово длины 3
с1с2с3
генерируется, как показано в таблице 1 выше;
(2) компонентное кодовое слово
с1с2с3
повторяется десять раз для генерации последовательности длиной 30; и
(3) последовательность длиной 30 конкатенируется с исходными CCFI битами
b1b2.
Здесь кодовое слово
с1с2с3
повторяется
4К/3
раз, и результирующая последовательность конкатенируется с исходными CCFI битами
b1b2.
Эта конкатенированная битовая последовательность является финальной канальной битовой последовательностью, которая должна модулироваться и отображаться на канальный символ.
Результирующими четырьмя кодовыми словами кодовой книги А, соответствующими каждому кодовому слову кодовой книги C2, являются:
000 000 000 000 000 000 000 000 000 000 00 (сw1)
011 011 011 011 011 011 011 011 011 011 01 (cw2)
101 101 101 101 101 101 101 101 101 101 10 (cw3)
110 110 110 110 110 110 110 110 110 110 11 (cw4).
Кодовая книга А
В другом варианте осуществления настоящего изобретения, если CCFI имеет только три состояния (т.е. CCFI - это любые три из "00", "01", "10" и "11"), то любое из трех кодовых слов в приведенном выше наборе может быть использовано для передачи информации CCFI.
В другом варианте осуществления настоящего изобретения для кодовой книги, сформированной выше, выполняются перестановки по столбцам, чтобы обеспечить соответствие K 1×2 RU конфигурации ресурсов, которая имеет в общей сложности 4K кодированных битов. Фиг.4 показывает пример способа перестановки по столбцам. В этом способе перестановки, основываясь на последовательной конкатенации повторяемых кодовых слов, К повторений 3-битового компонентного кодового слова назначаются К RU (оставляя открытым один бит на каждый RU), а затем оставшиеся К битов отображаются отдельно на К RU. Перестановка CW4 показана на фиг.4. Другие кодовые слова для кодовой книги А могут выводиться тем же способом. Результирующая кодовая книга, выведенная из кодовой книги А, называется кодовой книгой В, как показано ниже. Кодовая книга В может быть лучше, чем кодовая книга А в каналах с замиранием, так как полное повторение до RU отображается в максимально возможной степени.
0000 0000 0000 0000 0000 0000 0000 0000 (cw1)
0110 0111 0111 0110 0111 0111 0110 0111 (cw2)
1011 1010 1011 1011 1010 1011 1011 1010 (cw3)
1101 1101 1100 1101 1101 1100 1101 1101 (cw4)
Кодовая книга B
В другом варианте осуществления настоящего изобретения вариация кодовой книги А может быть получена отображением CCFI битов на кодовую книгу Cl вместо кодовой книги C2, как показано в таблице 1. То же самое повторение и конкатенация используются при создании этой новой кодовой книги, называемой кодовой книгой C.
111 111 111 111 111 111 111 111 111 111 00 (cw1)
100 100 100 100 100 100 100 100 100 100 01 (cw2)
010 010 010 010 010 010 010 010 010 010 10 (cw3)
001 001 001 001 001 001 001 001 001 001 11 (cw4)
Кодовая книга C
В другом варианте осуществления настоящего изобретения та же самая перестановка по столбцам, как показано на фиг.4, применяется к кодовой книге С для получения кодовой книги D.
1111 1111 1111 1111 1111 1111 1110 1110 (cw1)
1001 1000 1000 1001 1000 1000 1000 1001 (cw2)
0100 0101 0100 0100 0101 0100 0101 0100 (cw3)
0010 0010 0011 0010 0010 0011 0011 0011 (cw4)
Кодовая книга D
В другом варианте осуществления настоящего изобретения, если CCFI имеет только три состояния, любые три кодовых слова в данной кодовой книге (например, кодовая книга A, B, C, D и т.д.) могут быть использованы для переноса CCFI информации.
На фиг.5 и 6 показаны блок-схемы, иллюстрирующие процедурные этапы передачи и приема CCFI согласно различным вариантам осуществления настоящего изобретения.
На фиг.5 представлена процедура генерации кодовых книг А и С. Когда CCFI передается в передатчике, двухбитовый CCFI отображается на 3-битовое кодовое слово кодовой книги Cl или C2, как показано в таблице 1, на этапе 201, трехбитовое кодовое слово повторяется предопределенное число раз, причем предопределенное число раз является минимальным значением частного
4К/3,
где К - число блоков ресурсов на этапе 203, результирующая битовая последовательность конкатенируется с первоначальными CCFI битами на этапе 205, и, таким образом, генерируется окончательная битовая последовательность и передается передающими антеннами. На стороне приемника приемные антенны принимают переданную результирующую битовую последовательность от передатчика на этапе 211, демодулятор приемника демодулирует принятую битовую последовательность на этапе 213, и приемник получает информацию, переносимую посредством CCFI, на этапе 215, и, тем самым, полученная информация, переносимая в CCFI, используется приемником.
На фиг.6 представлена процедура генерации кодовых книг B и D. Когда CCFI предается в передатчике, двухбитовый CCFI отображается на трехбитовое кодовое слово кодовой книги С1 или С2, как показано в таблице 1, на этапе 301, причем трехбитовое кодовое слово повторяется предопределенное число раз, где предопределенное число раз является частным 4К/3, где К - число блоков ресурсов, на этапе 303, и результирующая битовая последовательность конкатенируется с исходными CCFI битами на этапе 305, и, таким образом, генерируется битовая последовательность. Здесь битовая последовательность может иллюстрироваться как cw4, показанная на фиг.4. На этапе 307 передние К повторений трехбитового кодового слова, как показано в таблице 1, в результирующей битовой последовательности отображаются на количество К блоков ресурсов соответственно, причем один бит каждого из блоков ресурсов открыт, а остальные К битов битовой последовательности отдельно отображаются на открытый бит каждого из количества К блоков ресурсов на этапе 309. Этап 307 может быть проиллюстрирован как промежуточные RU#1-RU#8, каждый из которых имеет один бит открытым, как показано в промежуточной битовой последовательности, показанной на фиг.4. Этап 309 может быть проиллюстрирован как окончательные RU#1-RU#8, каждому из которых выделены четыре бита, как показано результирующей битовой последовательностью, показанной на фиг.4. Результирующие отображенные битовые последовательности передаются передающими антеннами. На стороне приемника приемные антенны принимают переданную результирующую последовательность от передатчика на этапе 311, демодулятор приемника демодулирует принятую битовую последовательность на этапе 313, и приемник получает информацию, переносимую CCFI, на этапе 315, и, таким образом, полученная информация, переносимая посредством CCFI, используется приемником.
Модулятор 101 и IFFT 114 передатчика 100 включают в себя основанный на микропроцессорах контроллер. Демодулятор 134 и FFT 130 приемника 140 включают в себя основанный на микропроцессорах контроллер.

Claims (24)

1. Способ передачи индикатора формата канала управления (CCFI), содержащий этапы
отображения множества двухбитовых CCFI на одну выбранную из первой кодовой книги и второй кодовой книги, причем множество CCFI выбрано из группы, состоящей из "00", "01", "10" и "11", первая кодовая книга содержит кодовые слова, выбранные из группы, состоящей из компонентных кодовых слов "000", "011", "101" и "110", соответствующих указанному CCFI, и вторая кодовая книга содержит кодовые слова, выбранные из группы компонентных кодовых слов, состоящей из компонентных кодовых слов "111", "100", "010" и "001", соответствующих указанному CCFI;
генерации последовательности кодовых слов, выбранных из первой кодовой книги или второй кодовой книги, путем повторения выбранного компонентного кодового слова предопределенное количество раз, причем предопределенное количество раз определяется минимальным значением частного 4K/3, где К - число блоков ресурсов, занимающих один символ мультиплексирования с ортогональным частотным разделением (OFDM) и две соседних поднесущих;
генерации кодового слова посредством конкатенации последовательности выбранных компонентных кодовых слов с первоначально назначенными CCFI битами; и
передачи кодового слова, несущего информацию о CCFI.
2. Способ по п.1, когда CCFI имеет четыре состояния, состоящие из "00", "01", "10" и "11", дополнительно содержащий
этап генерации третьей кодовой книги, содержащей четыре кодовых слова, путем конкатенации последовательности компонентных кодовых слов, выбранных из первой кодовой книги, с назначенным CCFI, которому соответствует выбранное компонентное кодовое слово, и четыре кодовых слова представляют собой "000 000 000 000 000 000 000 000 000 000 00", "011 011 011 011 011 011 011 011 011 011 01", "101 101 101 101 101 101 101 101 101 101 10" и "110 110 110 110 110 110 110 110 110 110 11", причем четыре кодовых слова соответствуют назначенному CCFI.
3. Способ по п.1, когда CCFI имеет три состояния, выбранные из группы, состоящей из "00", "01", "10" и "11", дополнительно содержащий этап генерации третьей кодовой книги, содержащей три кодовых слова, путем конкатенации последовательности компонентных кодовых слов, выбранных из первой кодовой книги, с назначенным CCFI, которому соответствует выбранное компонентное кодовое слово, и три кодовых слова выбраны из группы, состоящей из "000 000 000 000 000 000 000 000 000 000 00", "011 011 011 011 011 011 011 011 011 011 01", "101 101 101 101 101 101 101 101 101 101 10" и "110 110 110 110 110 110 110 110 110 110 11",
причем три кодовых слова соответствуют назначенному CCFI.
4. Способ по п.1, когда CCFI имеет четыре состояния, состоящие из "00", "01", "10" и "11", дополнительно содержащий этап генерации четвертой кодовой книги, содержащей четыре кодовых слова, путем конкатенации последовательности компонентных кодовых слов, выбранных из второй кодовой книги, с назначенным CCFI, которому соответствует выбранное компонентное кодовое слово, четыре кодовых слова представляют собой "111 111 111 111 111 111 111 111 111 111 00", "100 100 100 100 100 100 100 100 100 100 01", "010 010 010 010 010 010 010 010 010 010 10" и "001 001 001 001 001 001 001 001 001 001 11", причем четыре кодовых слова соответствуют назначенному CCFI.
5. Способ по п.1, когда CCFI имеет три состояния, выбранные из группы, состоящей из "00", "01", "10" и "11", дополнительно содержащий этап генерации четвертой кодовой книги, содержащей три кодовых слова, путем конкатенации последовательности компонентных кодовых слов, выбранных из второй кодовой книги, с назначенным CCFI, которому соответствует выбранное компонентное кодовое слово, три кодовых слова выбраны из группы, состоящей из "111 111 111 111 111 111 111 111 111 111 00", "100 100 100 100 100 100 100 100 100 100 01", "010 010 010 010 010 010 010 010 010 010 10" и "001 001 001 001 001 001 001 001 001 001 11", причем три кодовых слова соответствуют назначенному CCFI.
6. Способ по п.2, когда CCFI имеет четыре состояния, состоящие из "00", "01", "10" и "11", дополнительно содержащий этап генерации перестановки каждого из четырех кодовых слов путем отображения передних К повторений трехбитового компонентного кодового слова в четырех кодовых словах на количество К блоков ресурсов соответственно, причем один бит каждого из блоков ресурсов открыт, и отображения остальных К битов каждого из четырех кодовых слов отдельно на открытый бит каждого из количества К блоков ресурсов.
7. Способ по п.6, когда CCFI имеет четыре состояния, состоящие из "00", "01", "10" и "11", дополнительно содержащий этап генерации пятой кодовой книги, имеющей четыре кодовых слова, причем четыре кодовых слова представляют собой "0000 0000 0000 0000 0000 0000 0000 0000", "0110 0110 0110 0110 0110 0110 0110 0110", "1011 1011 1011 1011 1011 1011 1011 1011" и "1101 1101 1101 1101 1101 1101 1101 1101", причем четыре кодовых слова соответствуют назначенным CCFI.
8. Способ по п.4, когда CCFI имеет четыре состояния, состоящие из "00", "01", "10" и "11", дополнительно содержащий этап генерации перестановки каждого из четырех кодовых слов путем отображения передних К повторений трехбитового компонентного кодового слова в четырех кодовых словах на количество К блоков ресурсов соответственно, причем один бит каждого из блоков ресурсов является открытым, и отображения остальных К битов каждого из четырех кодовых слов отдельно на открытый бит каждого из количества К блоков ресурсов.
9. Способ по п.8, когда CCFI имеет четыре состояния, состоящие из "00", "01", "10" и "11", дополнительно содержащий генерацию шестой кодовой книги, имеющей четыре кодовых слова, причем четыре кодовых слова представляют собой "1111 1111 1111 1111 1111 1111 1111 1111", "1001 1001 1001 1001 1001 1001 1001 1001", "0100 0100 0100 0100 0100 0100 0100 0100" и "0010 0010 0010 0010 0010 0010 0010 0010", причем четыре кодовых слова соответствуют назначенному CCFI.
10. Способ по п.7, когда CCFI имеет три состояния, выбранные из группы, состоящей из "00", "01", "10" и "11", дополнительно содержащий этап генерации пятой кодовой книги, имеющей три кодовых слова, причем три кодовых слова выбираются из "0000 0000 0000 0000 0000 0000 0000 0000", "0110 0110 0110 0110 0110 0110 0110 0110", "1011 1011 1011 1011 1011 1011 1011 1011" и "1101 1101 1101 1101 1101 1101 1101 1101", причем три кодовых слова соответствуют назначенному CCFI.
11. Способ по п.9, когда CCFI имеет три состояния, выбранные из группы, состоящей из "00", "01", "10" и "11", дополнительно содержащий этап генерации шестой кодовой книги, имеющей три кодовых слова, причем три кодовых слова выбраны из "1111 1111 1111 1111 1111 1111 1111 1111", "1001 1001 1001 1001 1001 1001 1001 1001", "0100 0100 0100 0100 0100 0100 0100 0100" и "0010 0010 0010 0010 0010 0010 0010 0010", причем три кодовых слова соответствуют назначенному CCFI.
12. Устройство для передачи индикатора формата канала управления (CCFI), содержащее кодер, отображающий множество двухбитовых CCFI на одну выбранную из первой кодовой книги и второй кодовой книги, причем множество CCFI выбрано из группы, состоящей из "00", "01", "10" и "11", первая кодовая книга содержит кодовые слова, выбранные из группы, состоящей из компонентных кодовых слов "000", "011", "101" и "110", соответствующих назначенному CCFI, и вторая кодовая книга содержит кодовые слова, выбранные из группы компонентных кодовых слов, состоящей из компонентных кодовых слов "111", "100", "010" и "001", соответствующих назначенному CCFI; генерирующий последовательность кодовых слов, выбранных из первой кодовой книги или второй кодовой книги, путем повторения выбранного компонентного кодового слова предопределенное количество раз, причем предопределенное количество раз определяется минимальным значением частного 4K/3, где К - число блоков ресурсов, занимающих один OFDM символ и две соседних поднесущих; и генерирующий кодовое слово посредством конкатенации последовательности выбранных компонентных кодовых слов с первоначально назначенными CCFI битами; и
радиочастотный усилитель, обеспечивающий передачу кодового слова, несущего информацию о CCFI.
13. Способ приема формата канала управления, содержащий этапы приема кодового слова индикатора формата канала управления (CCFI);
получения CCFI, соответствующего принятому кодовому слову CCFI, причем CCFI ассоциирован с числом OFDM символов, используемых для передачи каналов управления в подкадре; и
приема канала управления с использованием CCFI,
причем кодовое слово CCFI является одним из, по меньшей мере, "0110 1101 1011 0110 1101 1011 0110 1101", "1011 0110 1101 1011 0110 1101 1011 0110" и "1101 1011 0110 1101 1011 0110 1101 1011".
14. Способ по п.13, дополнительно содержащий прием символов модуляции, модулированных посредством QPSK модуляции, и
демодулирование символов модуляции для получения кодового слова CCFI.
15. Способ по п.13, в котором CCFI является одним из, по меньшей мере, "01", "10" и '"11", что соответствует "0110 1101 1011 0110 1101 1011 0110 1101", "1011 0110 1101 1011 0110 1101 1011 0110" и "1101 1011 0110 1101 1011 0110 1101 1011" соответственно.
16. Устройство для приема формата канала управления, содержащее:
приемник для приема кодового слова индикатора формата канала управления (CCFI);
демодулятор для получения CCFI, соответствующего принятому кодовому слову CCFI, причем CCFI ассоциирован с числом OFDM символов, используемых для передачи каналов управления в подкадре; и
причем приемник выполнен с возможностью приема канала управления с использованием CCFI, и
кодовое слово CCFI является одним из, по меньшей мере, "0110 1101 1011 0110 1101 1011 0110 1101", "1011 0110 1101 1011 0110 1101 1011 0110" и "1101 1011 0110 1101 1011 0110 1101 1011".
17. Устройство по п.16, дополнительно содержащее
приемник для приема символов модуляции, модулированных посредством QPSK модуляции, и
демодулятор для демодулирования символов модуляции для получения кодового слова CCFI.
18. Устройство по п.16, в котором CCFI является одним из, по меньшей мере, "01", "10" и "11", что соответствует "0110 1101 1011 0110 1101 1011 0110 1101, "1011 0110 1101 1011 0110 1101 1011 0110" и "1101 1011 0110 1101 1011 0110 1101 1011" соответственно.
19. Способ передачи формата канала управления, содержащий этапы генерации индикатора формата канала управления (CCFI), причем CCFI ассоциирован с числом OFDM символов, используемых для передачи каналов управления в подкадре;
генерации кодового слова CCFI, соответствующего CCFI; и
передачи кодового слова CCFI,
причем кодовое слово CCFI является одним из, по меньшей мере, "0110 1101 1011 0110 1101 1011 0110 1101", "1011 0110 1101 1011 0110 1101 1011 0110" и "1101 1011 0110 1101 1011 0110 1101 1011".
20. Способ по п.19, дополнительно содержащий
модуляцию символов посредством QPSK модуляции для передачи кодового слова CCFI, и
передачу символов модуляции.
21. Способ по п.19, в котором CCFI является одним из, по меньшей мере, "01", "10" и "11", что соответствует "0110 1101 1011 0110 1101 1011 0110 1101", "1011 0110 1101 1011 0110 1101 1011 0110" и "1101 1011 0110 1101 1011 0110 1101 1011" соответственно.
22. Устройство для приема формата канала управления, содержащее:
приемник для приема кодового слова индикатора формата канала управления (CCFI); и
модулятор для получения CCFI, соответствующего принятому кодовому слову CCFI, причем CCFI ассоциирован с числом OFDM символов, используемых для передачи каналов управления в подкадре;
причем приемник выполнен с возможностью приема канала управления с использованием CCFI, и
кодовое слово CCFI является одним из, по меньшей мере, "0110 1101 1011 0110 1101 1011 0110 1101", "1011 0110 1101 1011 0110 1101 1011 0110" и "1101 1011 0110 1101 1011 0110 1101 1011".
23. Устройство по п.22, дополнительно содержащее
приемник для приема символов модуляции, модулированных посредством QPSK модуляции, и
демодулятор для демодулирования символов модуляции для получения кодового слова CCFI.
24. Устройство по п.22, в котором CCFI является одним из, по меньшей мере, "01", "10" и "11", что соответствует "0110 1101 1011 0110 1101 1011 0110 1101", "1011 0110 1101 1011 0110 1101 1011 0110" и "1101 1011 0110 1101 1011 0110 1101 1011" соответственно.
RU2010100811/07A 2007-07-12 2008-07-11 Способы передачи для ccfi/pcfich в системе беспроводной связи RU2444134C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US92979107P 2007-07-12 2007-07-12
US60/929,791 2007-07-12
US92986907P 2007-07-16 2007-07-16
US60/929,869 2007-07-16
US12/213,012 2008-06-12

Publications (2)

Publication Number Publication Date
RU2010100811A RU2010100811A (ru) 2011-07-20
RU2444134C2 true RU2444134C2 (ru) 2012-02-27

Family

ID=40252655

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010100811/07A RU2444134C2 (ru) 2007-07-12 2008-07-11 Способы передачи для ccfi/pcfich в системе беспроводной связи

Country Status (11)

Country Link
US (3) US8094747B2 (ru)
JP (1) JP5080646B2 (ru)
KR (1) KR101492291B1 (ru)
CN (2) CN101803235B (ru)
AU (1) AU2008273139B2 (ru)
BR (1) BRPI0814544B1 (ru)
CA (1) CA2694514C (ru)
DE (1) DE202008018251U1 (ru)
MY (1) MY145505A (ru)
RU (1) RU2444134C2 (ru)
ZA (1) ZA201000211B (ru)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100404799B1 (ko) * 2001-04-25 2003-11-07 엘지전자 주식회사 교환기의 지정 경로 설정 방법
KR101422014B1 (ko) * 2007-05-10 2014-07-23 엘지전자 주식회사 기본 코드 반복 방식에 의한 긴 코드 생성 방법 및 이를이용한 제어 정보 전송 방법
US8391400B2 (en) * 2007-06-20 2013-03-05 Qualcomm Incorporated Control channel format indicator frequency mapping
US8094747B2 (en) * 2007-07-12 2012-01-10 Samsung Electronics Co., Ltd. Transmit methods for CCFI/PCFICH in a wireless communication system
CN101895925B (zh) 2009-05-22 2014-11-05 中兴通讯股份有限公司 一种实现中继站下行协作重传的方法及中继站
US8331483B2 (en) 2009-08-06 2012-12-11 Lg Electronics Inc. Method for transmitting feedback information via a spatial rank index (SRI) channel
WO2011046225A1 (ja) 2009-10-16 2011-04-21 日本電気株式会社 復号装置および復号方法、並びに記録媒体
US8634365B2 (en) * 2010-04-29 2014-01-21 Telefonaktiebolaget Lm Ericsson (Publ) System and method for allocating transmission resources
CN101944985B (zh) * 2010-09-20 2015-03-25 中兴通讯股份有限公司 一种信道状态信息反馈方法
US8917586B2 (en) 2010-10-01 2014-12-23 Blackberry Limited Orthogonal resource selection transmit diversity and resource assignment
CN102904851A (zh) * 2011-07-26 2013-01-30 中兴通讯股份有限公司 一种实现pcfich映射的方法和系统
US8908492B2 (en) 2011-08-11 2014-12-09 Blackberry Limited Orthogonal resource selection transmit diversity and resource assignment
US9143215B2 (en) 2011-08-11 2015-09-22 Blackberry Limited Orthogonal resource selection transmit diversity and resource assignment
US8891353B2 (en) * 2011-08-11 2014-11-18 Blackberry Limited Orthogonal resource selection transmit diversity and resource assignment
CN107104776B (zh) 2011-09-30 2021-02-12 三星电子株式会社 用于发送和接收数据的方法、接收器和发送器
CN105610559B (zh) * 2015-12-08 2018-11-06 合肥东芯通信股份有限公司 一种盲解控制格式指示的值的方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2236752C2 (ru) * 1999-07-06 2004-09-20 Самсунг Электроникс Ко., Лтд Устройство и способ кодирования/декодирования индикатора комбинации транспортного формата в системе мобильной связи мдкрк
RU2251224C2 (ru) * 2002-04-09 2005-04-27 Самсунг Электроникс Ко.,Лтд Устройство и способ передачи информации управления для широковещательной/многоабонентской службы мультимедиа в системе мобильной связи

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE522538C2 (sv) * 2001-08-11 2004-02-17 Samsung Electronics Co Ltd Förfarande för att minska antalet bitar som behövs för att sända ortogonal-kod-information över en kontrollkanal i ett HSDPA-system
US7630886B2 (en) * 2005-01-14 2009-12-08 Nokia Corporation Hochwald construction of unitary matrix codebooks via eigen coordinate transformations
US20070036067A1 (en) 2005-08-12 2007-02-15 Interdigital Technology Corporation Method and apparatus for sending downlink control information in an orthogonal frequency division multiple access system
WO2007063393A2 (en) 2005-11-30 2007-06-07 Nokia Corporation Apparatus, method and computer program product providing retransmission utilizing multiple arq mechanisms
US7602745B2 (en) 2005-12-05 2009-10-13 Intel Corporation Multiple input, multiple output wireless communication system, associated methods and data structures
WO2008021062A1 (en) * 2006-08-11 2008-02-21 Interdigital Technology Corporation Wireless communication method and system for indexing codebook and codeword feedback
US7961807B2 (en) * 2007-03-16 2011-06-14 Freescale Semiconductor, Inc. Reference signaling scheme using compressed feedforward codebooks for multi-user, multiple input, multiple output (MU-MIMO) systems
US7990920B2 (en) * 2007-04-26 2011-08-02 Samsung Electronics Co., Ltd. Transmit diversity for acknowledgement and category 0 bits in a wireless communication system
US8228783B2 (en) * 2007-05-04 2012-07-24 Texas Instruments Incorporated Base station transmitter for use with an OFDM communications system, a method of dynamically allocating OFDM symbols for PDCCH in the system and a user equipment receiver for use with the system
KR101422014B1 (ko) * 2007-05-10 2014-07-23 엘지전자 주식회사 기본 코드 반복 방식에 의한 긴 코드 생성 방법 및 이를이용한 제어 정보 전송 방법
US7629902B2 (en) * 2007-06-08 2009-12-08 Samsung Electronics Co., Ltd. MIMO wireless precoding system robust to power imbalance
US8094747B2 (en) * 2007-07-12 2012-01-10 Samsung Electronics Co., Ltd. Transmit methods for CCFI/PCFICH in a wireless communication system
US8340199B2 (en) 2008-10-27 2012-12-25 Samsung Electronics Co., Ltd. 8-transmit antenna reference signal design for downlink communications in a wireless system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2236752C2 (ru) * 1999-07-06 2004-09-20 Самсунг Электроникс Ко., Лтд Устройство и способ кодирования/декодирования индикатора комбинации транспортного формата в системе мобильной связи мдкрк
RU2251224C2 (ru) * 2002-04-09 2005-04-27 Самсунг Электроникс Ко.,Лтд Устройство и способ передачи информации управления для широковещательной/многоабонентской службы мультимедиа в системе мобильной связи

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP TSG RAN WG1 Meeting #49bis, R1-073098, Samsung, Coding for CCFI Transmission, 29.06.2007. 3GPP TSG RAN WG1 #49bis, R1-072722, Mitsubishi Electric, On fourth value of CCFI (Cat0), 29.06.2007. *

Also Published As

Publication number Publication date
BRPI0814544B1 (pt) 2020-02-11
CA2694514A1 (en) 2009-01-15
US20120076221A1 (en) 2012-03-29
DE202008018251U1 (de) 2012-04-18
US8351527B2 (en) 2013-01-08
US8442136B2 (en) 2013-05-14
MY145505A (en) 2012-02-29
US20120076222A1 (en) 2012-03-29
AU2008273139A1 (en) 2009-01-15
US8094747B2 (en) 2012-01-10
KR101492291B1 (ko) 2015-02-11
AU2008273139B2 (en) 2011-09-15
CN101803235B (zh) 2013-09-25
CN101803235A (zh) 2010-08-11
JP2010533414A (ja) 2010-10-21
JP5080646B2 (ja) 2012-11-21
BRPI0814544A2 (pt) 2015-01-06
RU2010100811A (ru) 2011-07-20
KR20100044797A (ko) 2010-04-30
CA2694514C (en) 2014-09-09
US20090015443A1 (en) 2009-01-15
ZA201000211B (en) 2011-03-30
CN103427956A (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
RU2444134C2 (ru) Способы передачи для ccfi/pcfich в системе беспроводной связи
JP6001607B2 (ja) 無線通信システムにおける確認応答及びカテゴリー0ビットのための送信ダイバーシティ
EP2015504A2 (en) Transmit methods for CCFI/PCFICH in a wireless communication system
Cheema et al. A robust coarse timing synchronizer design for cooperative diversity OFDM system
Khan et al. Zhouyue Pi, Richardson, TX (US)
Sheikh et al. Orthogonal Variable Spreading Factor (OVSF) based image Transmission using Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) System
Pi et al. i 2-bit
Pi et al. Zhang et a].(45) Date of Patent:* May 14, 2013