RU2441693C2 - Устройство для концентрирования неона в газовых смесях, содержащих неон - Google Patents

Устройство для концентрирования неона в газовых смесях, содержащих неон Download PDF

Info

Publication number
RU2441693C2
RU2441693C2 RU2009123143/05A RU2009123143A RU2441693C2 RU 2441693 C2 RU2441693 C2 RU 2441693C2 RU 2009123143/05 A RU2009123143/05 A RU 2009123143/05A RU 2009123143 A RU2009123143 A RU 2009123143A RU 2441693 C2 RU2441693 C2 RU 2441693C2
Authority
RU
Russia
Prior art keywords
neon
mixture
pressure chamber
heat exchanger
membrane
Prior art date
Application number
RU2009123143/05A
Other languages
English (en)
Other versions
RU2009123143A (ru
Inventor
Иван Федорович Кузьменко (RU)
Иван Федорович Кузьменко
Вячеслав Алексеевич Горохов (RU)
Вячеслав Алексеевич Горохов
Олег Глебович Талакин (RU)
Олег Глебович Талакин
Original Assignee
Открытое акционерное общество криогенного машиностроения (ОАО "Криогенмаш")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество криогенного машиностроения (ОАО "Криогенмаш") filed Critical Открытое акционерное общество криогенного машиностроения (ОАО "Криогенмаш")
Priority to RU2009123143/05A priority Critical patent/RU2441693C2/ru
Publication of RU2009123143A publication Critical patent/RU2009123143A/ru
Application granted granted Critical
Publication of RU2441693C2 publication Critical patent/RU2441693C2/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04624Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using integrated mass and heat exchange, so-called non-adiabatic rectification, e.g. dephlegmator, reflux exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/80Processes or apparatus using other separation and/or other processing means using membrane, i.e. including a permeation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/30Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/32Neon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Изобретение относится устройству для концентрирования неона из газовых смесей воздухоразделительных установок (ВРУ) и может быть использовано в химической промышленности. Устройство включает источник смеси ВРУ и снабжено дефлегматором 3 сырой неоногелиевой смеси и мембранным блоком, состоящим из двух аппаратов 1, 2, последовательно соединенных друг с другом. Мембранные аппараты 1, 2 содержат мембрану из полых полимерных волокон на основе полисульфона. Мембранный блок снабжен рекуперативным теплообменником 7, а ВРУ - дополнительным дефлегматором 4. Сбросная линия полости 8 высокого давления первого аппарата 1 соединена с входом в дополнительный дефлегматор 4 неона через рекуперативный теплообменник 7, охлаждающий смесь. Входная линия полости 8 высокого давления первого аппарата 1 соединена с тем же теплообменником 7, обеспечивающим температуру неоногелиевой смеси до 263 К. Выводная линия полости 9 низкого давления первого аппарата 1 через дожимающий компрессор 6 и рекуперативный теплообменник 7 соединена с входной линией полости 10 высокого давления второго аппарата 2. Выводная линия полости 11 низкого давления второго аппарата 2 соединена с трубопроводом 18 для отбора целевого продукта - неоногелиевого концентрата. Выводная линия полости 10 высокого давления второго аппарата 2 соединена для рециркуляции с входом в полость 8 высокого давления первого аппарата 1. Устройство позволяет обеспечить высокую эффективность газоразделения неоногелиевой смеси со степенью извлечения неона, близкой к 100%. 1 ил.

Description

Изобретение касается области концентрирования неона, получаемого на крупных воздухоразделительных установках (ВРУ) в виде смеси азот-неон-гелий. Содержание азота в смеси составляет до 60%. Обычно эта смесь, выходящая из дефлегматора ВРУ при давлении 0,55-0,6 МПа абсолютных и температуре порядка 90 К, после подогрева до температуры окружающей среды закачивается в баллоны и поставляется фирмам, специализирующимся в очистке неона криогенно-адсорбционными и ректификационными методами и поставке на рынок чистого неона необходимых кондиций. Технология переработки неоногелиевой смеси и очистки неона от примесей достаточно сложна, трудоемка и требует при реализации значительных затрат энергии и жидкого азота в качестве криоагента.
Принято считать, что данная технология рентабельна при производительности ВРУ по перерабатываемому воздуху 180000 м3/ч и выше. На ВРУ меньшей производительности неон, как правило, не утилизируется и выбрасывается в атмосферу с отдувкой неконденсируемых газов из конденсаторов. Ежегодно в России при этом теряется до 500000 м3 неона. Учитывая, что неон является востребованным дорогостоящим продуктом и единственным источником его получения служит воздух, перерабатываемый на воздухоразделительных установках, следует полагать, что в дальнейшем он будет извлекаться и на ВРУ меньшей производительности. Поэтому возникает необходимость в концентрировании неона путем очистки его на начальной стадии от азота для того, чтобы при дальнейшей транспортировке и очистке смеси упростить технологию и снизить эксплуатационные затраты на заполнение и транспортировку баллонов, а также затраты энергии и жидкого азота на получение товарного неона.
Известны устройства концентрирования неона, опубликованные в [1, 3], которые содержат трубчатый дефлегматор, в межтрубном пространстве которого кипит жидкий азот под вакуумом, с адсорбером. Регенерация адсорбента производится ступенчатым изменением давления и вакуумной откачкой на второй стадии. Устройства имеют ряд недостатков:
- повышенное потребление жидкого азота, необходимое для осуществления процесса очистки;
- значительная сложность реализации работы устройств, обусловленное совмещением двух различных технологий - низкотемпературной концентрации и адсорбции.
В патенте RU 2035981 от 27.05.1995 г. приведена мембранная технология разделения газовых смесей, основанная на многоступенчатом принципе. Но используя только мембранную технологию не возможно реализовать высокую эффективность разделения одновременно с высоким коэффициентом извлечения неона и гелия (4).
Наиболее близкое решение проблемы первичной концентрации неона осуществляется в устройстве [2], опубликованном в научно-техническом журнале («Технические газы», 2005 №3, стр.25-31) - комбинированная установка для глубокого обогащения неонового концентрата, авторы: Бондаренко В.Л., Базаров О.Н. и др.
В [2] приведено описание блока очистки неоногелиевой смеси, получаемой на ВРУ. Схема узла включает дефлегматор с охлаждением кипящим азотом при атмосферном давлении (первая зона), под вакуумом (вторая зона) и блок криогенных адсорберов. После комбинированного дефлегматора концентрация неона возрастает примерно до 70%. Данное устройство взято в качестве прототипа.
Недостатками данного устройства являются:
- повышенное потребление жидкого азота, холод паров которого не утилизируется;
- затраты энергии в вакуум-насосе как для охлаждения дефлегматора и адсорберов, так и для регенерации адсорбера;
- неизбежные потери неона при регенерации вследствие «размытой» временной границы при ступенчатом изменении давления;
- установка требует специального обслуживания с применением дорогостоящих средств аналитического контроля, что практически трудно осуществимо и нецелесообразно на ВРУ при их целевой направленности на обеспечение потребителя азотом, кислородом, аргоном.
Технической задачей изобретения является создание устройств на совместной базе ВРУ и мембранной технологии для обеспечения высокой эффективности газоразделения неоногелиевой смеси со степенью извлечения неона, близкой к 100%. Технический результат, обеспечивающий решение задачи, заключается в увеличении степени очистки исходной смеси от азота с первоначальной концентрацией N2 - 60% до 0,5-0,2%, что не достигалось в известных устройствах ни в ВРУ, ни в мембранных установках. Существенно упрощается эксплуатация устройств, основанных на комбинировании мембранной технологии и ВРУ, позволяющем быстро, в течение 5 минут, выходить на режим и плавно изменять его в случае необходимости. Существенно возрастает долговечность устройств (мембрана в течение 10 лет не изменяет диффузионные характеристики). При реализации предлагаемого изобретения не применяются ни дорогостоящий азот, ни сорбенты, требующие периодической регенерации.
Для определения реализации предлагаемого изобретения были использованы результаты научно-исследовательских и конструкторских работ, выполненных в ОАО «Криогенмаш» по исследованию газопроницаемости азота, неона и гелия, определению факторов разделения смесей гелий-азот и неон-азот мембранных аппаратов, изготовленных на основе полых волокон из полисульфона (под фактором разделения имеется в виду отношение проницаемостей чистых газов при одинаковых условиях). Полученные данные свидетельствуют о необычайно высоких значениях факторов разделения Ne-N2 (порядка 20) и He-N2 (порядка 90).
Расчеты промышленных процессов очистки смеси от азота, основанные на комбинировании ВРУ и мембранных установок, подтверждают достижение требуемых характеристик, сформулированных в технической задаче.
Как показали проведенные исследования, понижение температуры процесса до 268-263 К увеличивает фактор разделения более чем на 40% и, тем самым, обеспечивает гарантированно необходимое концентрирование Ne.
Температура процесса, равная 263 К, является оптимальной, так как при более низкой температуре ухудшаются механические свойства полимера и снижается ресурс эксплуатации мембраны.
Полученные экспериментально высокие характеристики разделения неоногелиевых смесей позволили разработать простой и эффективный мембранный блок обогащения неоно-гелиевой смеси в составе ВРУ, работающей при температуре окружающей среды без применения криоагентов, и обеспечивающий снижение концентрации азота до 0,5%-0,2% и повышение содержания неона до 65%. Установлена оптимальная температура смеси на входе в мембранные модули на уровне 263 К, что позволяет резко повысить фактор разделения мембраны, для чего применен специальный теплообменник.
На чертеже представлена принципиальная схема устройства для концентрирования неона на ВРУ. Устройство включает в себя мембранный блок, состоящий из двух мембранных аппаратов - 1 и 2 на основе полых волокон, изготовленных из полисульфона; дефлегматора неона ВРУ - 3; дополнительного дефлегматора неона - 4; компрессора ВРУ - 5; компрессора дожимающего - 6, расположенного между аппаратами 1 и 2; рекуперативного теплообменника - 7 для нагревания газа, поступающего первый аппарат - 1, охлаждения газового потока, поступающего во второй аппарат, до температуры 263 К и отбросного газа, содержащего в основном азот и направляемого в дефлегматор - 4, до температуры 120 К. Аппарат 1 имеет полость высокого давления - 8 (внутриволоконное пространство) и полость низкого давления - 9 (межволоконное пространство). Аппарат 2 аналогично включает полость высокого - 10 и низкого - 11 давлений. Устройство оборудовано регулирующими клапанами - 12, 13, 14, 15 и системой управления - 16, предназначенной для управления клапанами, а также для измерения и регистрации состава смесей и необходимых расходов газовых потоков. Для подачи исходной смеси предусмотрен трубопровод 17; для подачи концентрата неона (продукта) используется трубопровод 18; для отбросного газа (азота с малым содержанием неона), направляемого в ВРУ, предусмотрен трубопровод 19.
Пример осуществления работы устройства
Несконденсированный пар при давлении примерно 0,55 МПа абсолютных, содержащий неоногелиевую смесь (с расходом 11,1 м3/ч и составом: N2 - 50%; Ne - 35%; He - 15%), поступает из дефлегматоров 3 и 4 в теплообменник 7, нагревается до температуры 263 К и направляется в полость высокого давления первого мембранного аппарата 1. За счет селективной проницаемости легких газов при прохождении через мембрану в полость низкого давления 9 (0,1 МПа) аппарата 1 формируется смесь, обогащенная неоном, гелием и водородом. Отбросной газ (с расходом 5,7 м3/ч и составом: N2 - 96,2%; Ne - 3,8%; Не - 0,0%) при давлении порядка 0,55 МПа, обогащенный в основном азотом, но содержащий заметную концентрацию неона, через клапаны 14 и 12 направляется через рекуперативный теплообменник 7 в трубное пространство дополнительного дефлегматора 4, в межтрубном пространстве которого кипит азот при давлении примерно 0,12 МПа. Несконденсированная смесь из дополнительного дефлегматора 4 присоединяется к неоногелиевой смеси из основного дефлегматора 3. Обогащенная неоном смесь из полости низкого давления аппарата 1 через регулирующий клапан 15 поступает в дожимающий компрессор 6, сжимается до 0,6 МПа, охлаждается в концевом холодильнике и дополнительно до температуры 263 К - в рекуперативном теплообменнике 7, после чего направляется в полость повышенного давления 10 аппарата 2. Процесс в аппарате 2 происходит аналогично вышеописанному для аппарата 1. При этом смесь из полости повышенного давления во избежание потерь неона рециркулирует на вход аппарата 1, а газ, прошедший через мембрану и содержащий до 68% неона и азота до 0,7%, направляется для заполнения в баллоны в виде неонового концентрата для транспортировки к месту получения чистого неона по трубопроводу 18.
Список источников
1. Головко Г.А. Криогенное производство инертных газов. - Л.: Машиностроение, 1974. - 416 с.
2. Комбинированная установка для глубокого обогащения неонового концентрата / Бондаренко В.Л., Базаров О.Н., Вигуржинская С.Ю. и др. / Технические газы. - 2005. - №3. - С.25-31.
3. Системы криогенного обеспечения процессов производства редких газов при Т=63-78 К / Бондаренко В.Л., Симоненко Ю.М., Лосяков Н.П., Дьяченко О.В. / Технические газы. - 2003. - №4. - С.39-44.
4. Патент RU 2035981. 27.05.1995 г.

Claims (1)

  1. Устройство для концентрирования неона в газовых смесях воздухоразделительных установок ВРУ, включающее источник смеси ВРУ, снабженное дефлегматором сырой неоногелиевой смеси и мембранным блоком, состоящим из двух аппаратов, последовательно соединенных друг с другом, отличающееся тем, что мембранные аппараты содержат мембрану из полых полимерных волокон на основе полисульфона, мембранный блок снабжен рекуперативным теплообменником, а ВРУ - дополнительным дефлегматором, причем сбросная линия полости высокого давления первого аппарата соединена с входом в дополнительный дефлегматор неона через рекуперативный теплообменник, охлаждающий смесь, входная линия полости высокого давления первого аппарата соединена с тем же теплообменником, обеспечивающим температуру неоногелиевой смеси до 263 К, а выводная линия полости низкого давления первого аппарата через дожимающий компрессор и рекуперативный теплообменник соединена с входной линией полости высокого давления второго аппарата, причем выводная линия полости низкого давления второго аппарата соединена с трубопроводом для отбора целевого продукта - неоногелиевого концентрата, а выводная линия полости высокого давления второго аппарата соединена для рециркуляции с входом в полость высокого давления первого аппарата.
RU2009123143/05A 2009-06-18 2009-06-18 Устройство для концентрирования неона в газовых смесях, содержащих неон RU2441693C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009123143/05A RU2441693C2 (ru) 2009-06-18 2009-06-18 Устройство для концентрирования неона в газовых смесях, содержащих неон

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009123143/05A RU2441693C2 (ru) 2009-06-18 2009-06-18 Устройство для концентрирования неона в газовых смесях, содержащих неон

Publications (2)

Publication Number Publication Date
RU2009123143A RU2009123143A (ru) 2010-12-27
RU2441693C2 true RU2441693C2 (ru) 2012-02-10

Family

ID=44055272

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009123143/05A RU2441693C2 (ru) 2009-06-18 2009-06-18 Устройство для концентрирования неона в газовых смесях, содержащих неон

Country Status (1)

Country Link
RU (1) RU2441693C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2486948C1 (ru) * 2012-02-16 2013-07-10 Виталий Леонидович Бондаренко Установка для концентрирования неоногелиевой смеси
RU2486943C1 (ru) * 2011-12-30 2013-07-10 Виталий Леонидович Бондаренко Способ обогащения неоногелиевой смеси и установка для его реализации

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2486943C1 (ru) * 2011-12-30 2013-07-10 Виталий Леонидович Бондаренко Способ обогащения неоногелиевой смеси и установка для его реализации
RU2486948C1 (ru) * 2012-02-16 2013-07-10 Виталий Леонидович Бондаренко Установка для концентрирования неоногелиевой смеси

Also Published As

Publication number Publication date
RU2009123143A (ru) 2010-12-27

Similar Documents

Publication Publication Date Title
MX2013010545A (es) Metodo y sistema para la separación criogenica de aire.
CN104587804A (zh) 运用气体分离膜进行提纯的装置系统
CN111533095A (zh) 一种bog气体提纯氦的设备及其工艺
KR100367165B1 (ko) 고청정 건조공기의 제조방법
CN110498401B (zh) 氦气回收净化装置
CN109126358B (zh) 特种气体的提纯工艺及提纯装置
RU2441693C2 (ru) Устройство для концентрирования неона в газовых смесях, содержащих неон
CN111547691A (zh) 一种氢含量高的bog气体提氦气的设备及其工艺
US7449047B2 (en) Method and device for separating a gas flow using a membrane for enriching at least one gas component in the gas flow
CN107641535B (zh) 膜深冷耦合分离提纯多种气体的装置及方法
CN210559394U (zh) 氦气回收净化装置
CN115976575B (zh) 一种带干燥、提纯功能的小型制氢系统
CN216171118U (zh) 一种运用复合工艺进行氦气提纯的装置系统
CN113908663B (zh) 加压多级“吸收、冷凝、吸附”模块组合式有机废气回收方法
KR101830752B1 (ko) 연소가스 중 이산화탄소 회수율 향상 방법 및 장치
CN113244734A (zh) 油气回收方法
WO2019083412A1 (ru) Установка и способ получения жидкого диоксида углерода из газовых смесей
CN217628265U (zh) 冷却管路及沼气净化装置脱碳系统
CN205137496U (zh) 燃气锅炉和燃气轮机烟气用于气调仓储的系统
TWI698396B (zh) 二氧化碳的分離回收方法及分離回收系統
CN106744750B (zh) 一种氖气回收提纯的方法及装置
CN220238195U (zh) 一种稀有气体原料脱除氧化亚氮装置
CN219037383U (zh) 空分装置的加热系统
RU2779486C1 (ru) Способ и установка для получения чистого гелия
CN221522485U (zh) 一种沼气膜提纯及cng压缩系统

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner