RU2440243C1 - Способ визуализации работы экструдера - Google Patents

Способ визуализации работы экструдера Download PDF

Info

Publication number
RU2440243C1
RU2440243C1 RU2010122384/05A RU2010122384A RU2440243C1 RU 2440243 C1 RU2440243 C1 RU 2440243C1 RU 2010122384/05 A RU2010122384/05 A RU 2010122384/05A RU 2010122384 A RU2010122384 A RU 2010122384A RU 2440243 C1 RU2440243 C1 RU 2440243C1
Authority
RU
Russia
Prior art keywords
extrusion
temperature
pressure
operator
measured
Prior art date
Application number
RU2010122384/05A
Other languages
English (en)
Other versions
RU2010122384A (ru
Inventor
Сергей Иванович Малафеев (RU)
Сергей Иванович Малафеев
Сергей Николаевич Сагиров (RU)
Сергей Николаевич Сагиров
Original Assignee
Сергей Иванович Малафеев
Сергей Николаевич Сагиров
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сергей Иванович Малафеев, Сергей Николаевич Сагиров filed Critical Сергей Иванович Малафеев
Priority to RU2010122384/05A priority Critical patent/RU2440243C1/ru
Publication of RU2010122384A publication Critical patent/RU2010122384A/ru
Application granted granted Critical
Publication of RU2440243C1 publication Critical patent/RU2440243C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92019Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92038Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92085Velocity
    • B29C2948/92095Angular velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92209Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92361Extrusion unit
    • B29C2948/9238Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/9239Screw or gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92361Extrusion unit
    • B29C2948/9238Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/924Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92514Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92533Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/9259Angular velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92885Screw or gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Изобретение относится к автоматизированному контролю и управлению технологическими процессами промышленной переработки полимеров. Техническим результатом заявленного изобретения является повышение точности наблюдения и контроля параметров процессов при экструзии. Технический результат достигается способом визуализации работы экструдера, при котором измеряют угловую скорость и крутящий момент привода шнека, значения температуры в зонах нагрева и экструзии, давление в зоне экструзии, преобразуют измеренные сигналы в цифровые коды, передают их по каналу связи на пульт оператора и отображают измеренные значения на операторской панели. При этом дополнительно на основе математического описания процесса экструзии и измеренных значений моделируют вращательное движение шнека и перемещение материала, вычисляют в режиме реального времени распределение давления и температуры в канале и зоне экструзии и синтезируют анимационное изображение на операторской панели. 3 ил.

Description

Предлагаемое изобретение относится к автоматизированному контролю и управлению технологическими процессами промышленной переработки полимеров.
Известны способы визуализации работы экструдера, при которых измеряют скорость и крутящий момент привода шнека, значения температуры в зонах нагрева и экструзии, давление в зоне экструзии, преобразуют измеренные сигналы в цифровые коды, передают их по каналу связи на пульт оператора и отображают измеренные значения на операторской панели с помощью показывающих приборов или монитора (Патент РФ №2130831, МКИ В29С 47/92; Робин А., Пименов В. Автоматизированная система управления экструзионной линией // Современные технологии автоматизации, 2004, №4. - С.46-51).
При реализации известных способов обеспечивается визуальный контроль за работой экструдера путем получения информации о текущих значениях основных переменных, характеризующих технологический процесс.
Недостатками известных способов является низкая точность наблюдения температуры и давления в процессе движения и нагрева материала, обусловленная измерением усредненных значений температуры и давления в ограниченном количестве точек. При этом выполняется измерение температуры не самого материала, а поверхности канала. Вследствие инерционности процессов теплопередачи в движущемся потоке материала измеряемая температура отличается от действительной температуры материала на несколько градусов.
Из известных технических решений наиболее близким по достигаемому результату к предлагаемому является способ визуализации работы экструдера, при котором измеряют скорость и крутящий момент привода шнека, значения температуры в зонах нагрева и экструзии, давление в зоне экструзии, преобразуют измеренные сигналы в цифровые коды, передают их по каналу связи на пульт оператора и отображают измеренные значения на операторской панели (Малафеев С.И., Сагиров С.Н. Автоматизированная система управления экструзией полимерных материалов // Приборы и системы. Управление, контроль, диагностика, 2010, №2. - С.10-12).
При реализации известных способов обеспечивается визуальный контроль работы экструдера путем получения информации о текущих значениях переменных, характеризующих технологический процесс.
При реализации известного способа обеспечивается визуальный контроль работы экструдера путем получения информации о текущих значениях переменных, характеризующих технологический процесс, и представления этой информации для оператора с помощью мониторов, индикаторов и цифровых показывающих приборов.
Недостатками известного способа является низкая точность наблюдения температуры и давления в процессе движения и нагрева материала, обусловленная измерением усредненных значений температуры и давления в ограниченном количестве точек. При этом выполняется измерение температуры не самого материала, а поверхности канала. Вследствие инерционности процессов теплопередачи в движущемся потоке материала измеряемая температура отличается от действительной температуры материала на несколько градусов.
Цель предлагаемого изобретения - повышение точности наблюдения параметров процессов при экструзии.
Поставленная цель достигается тем, что в известном способе визуализации работы экструдера, при котором измеряют угловую скорость и крутящий момент привода шнека, значения температуры в зонах нагрева и экструзии, давление в зоне экструзии, преобразуют измеренные сигналы в цифровые коды, передают их по каналу связи на пульт оператора и отображают измеренные значения на операторской панели, дополнительно на основе математического описания процесса экструзии и измеренных значений параметров процесса моделируют вращательное движение шнека и перемещение материала, вычисляют в режиме реального времени распределение давления, температуры и скоростей в канале и зоне экструзии и синтезируют анимационное изображение на операторской панели.
По сравнению с наиболее близким аналогичным решением предлагаемое техническое решение имеет следующие новые признаки:
- на основе математического описания процесса экструзии и измеренных значений параметров процесса моделируют вращательное движение шнека и перемещение материала;
- вычисляют в режиме реального времени распределение давления, температуры и скоростей в канале и зоне экструзии;
- синтезируют анимационное изображение на операторской панели.
Следовательно, заявляемое техническое решение соответствует требованию «новизна».
При реализации предлагаемого изобретения повышается точность контроля параметров технологического процесса. Это обеспечивается использованием для визуализации работы экструдера информации об основных доступных переменных: температуры, давления, угловой скорости шнека, крутящего момента. Указанная информация в цифровой форме имеется в системе управления экструдером и с помощью средств передачи данных передается на пульт оператора, где с помощью средств моделирования используется для восстановления пространственной картины процессов в канале экструдера и синтеза с помощью средств компьютерной графики картины движения материала. При этом обеспечивается визуализация пространственного распределения температуры, давления и скоростей.
Следовательно, заявляемое техническое решение соответствует требованию «положительный эффект».
По каждому отличительному признаку проведен поиск известных технических решений в области компьютерной графики, электротехники, химического машиностроения и обработки полимеров.
Операции синтеза анимационного изображения на операторской панели используются для построения изображений, например, в системах наблюдения летательных аппаратов (Патент РФ №2328764, МПК G05D 1/10, 2008). В известной системе изображение синтезируется на основе данных, получаемых от приборов непосредственного наблюдения и измерения. В предлагаемом техническом решении изображение синтезируется на основе результатов вычисления распределений давления, температуры и скоростей в канале и зоне экструзии, выполненных на основе математического описания процесса экструзии и измеренных значений параметров процесса.
Операция вычисления распределения давления, температуры и скоростей в канале и зоне экструзии используется при моделировании процессов в экструдерах (Малафеев С.И., Дегтярев К.А. Исследование и моделирования течения вязкой жидкости в винтовом канале экструдера // Материалы VI Международной конференции по неравновесным процессам в соплах и струях (NPNJ-06). 26 июня - 1 июля 2006 г., Санкт-Петербург. М., Вузовская книга, 2010. - С.237-239). Однако в предлагаемом техническом решении процедура вычисления осуществляется в реальном масштабе времени.
Операция моделирования на основе математического описания процесса экструзии и измеренных значений параметров процесса вращательного движения шнека и перемещения материала в известных технических решениях аналогичного назначения не обнаружена.
Таким образом, указанные признаки обеспечивают заявляемому техническому решению соответствие требованию «существенные отличия».
Сущность предполагаемого изобретения поясняется чертежами. На фиг.1 показана функциональная схема системы визуализации работы экструдера. На чертеже обозначено: 1 - устройство обработки информации (сервер), 2 - монитор; 3 - шина; 4 - датчик крутящего момента; 5 - датчик угловой скорости; 6 - экструдер; 7 - двигатель привода шнека; 8 - блок управления приводом шнека; 9.1, 9.2, 9.3,…, 9.n - датчики температуры; 10 - контроллер температуры; 11.1, 11.2, 11.3,…, 11.n - нагреватели; 12 - датчик давления; 13 - контроллер давления.
Работа системы происходит следующим образом. Экструдируемый материал в виде порошка или гранул поступает в зону загрузки, дальнейшее перемещение происходит за счет вращения шнека. Вращательное движение шнека экструдера 6 обеспечивается электрическим приводом (двигатель 7 и блок управления 8). При движении материала за счет трения происходит его нагрев и плавление. Температура в n зонах, в том числе, в зоне экструзии, измеряется датчиками 9.1…9.n и поддерживается с помощью многоканального контроллера 10 и нагревателей 11.1…11.n. Давление в зоне экструзии измеряется с помощью датчика давления 12 и в общем случае регулируется с помощью контроллера давления 13, воздействующего на привод шнека экструдера 6.
Сигналы с выходов датчиков крутящего момента 4, скорости 5, температуры 9.1…9.n и давления в виде цифровых кодов поступают по шине 3 в устройство обработки информации (сервер) 1. В сервере 1 выполняется программа моделирования температуры и давления в процессе преобразования материала на основании уравнений:
1. Уравнения Навье - Стокса (при учете сжимаемости жидкости):
Figure 00000001
Figure 00000002
,
где ∇ - оператор Гамильтона, Δ - оператор Лапласа, t - время, γ - коэффициент кинематической вязкости, ρ - плотность, р - давление,
Figure 00000003
- векторное поле скоростей,
Figure 00000004
- векторное поле массовых сил.
Неизвестные р и
Figure 00000005
являются функциями времени t и координаты x∈Ω, где Ω∈Rn, n=2,3 - плоская или трехмерная область, в которой движется жидкость.
2. Уравнения двухмерного температурного поля для нестационарного режима:
Figure 00000006
;
Figure 00000007
3. Уравнения непрерывности (закон сохранения массы в элементарном объеме):
Figure 00000008
где ρ=ρ(x, y, z, t) - плотность потока жидкости, V=V(x, y, z, t) - вектор скорости жидкости, х, y, z - координаты точки.
Измеренные значения крутящего момента и угловой скорости используются в качестве исходных данных при расчетах. Измеренные значения температуры и давления используются для коррекции текущих результатов моделирования.
Результаты моделирования в виде диаграмм распределения температуры и давлений и анимационного изображения движения экструдата отображаются на операторской панели. На фиг.2 и фиг.3 показаны примеры диаграмм распределения соответственно температуры и давления экструдата, формируемых на экране монитора.
При реализации предлагаемого изобретения повышается точность контроля параметров технологического процесса. Это обеспечивается использованием для визуализации работы экструдера информации об основных доступных переменных: температуры, давления, угловой скорости шнека, крутящего момента. Указанная информация в цифровой форме имеется в системе управления экструдером и с помощью средств передачи данных передается на пульт оператора, где с помощью средств моделирования используется для восстановления пространственной картины процессов в канале экструдера и синтеза с помощью средств компьютерной графики картины движения материала. При этом обеспечивается визуализация пространственного распределения температуры, давления и скоростей.
Моделирование работы экструдера по сигналам основных датчиков системы управления позволяет визуализировать технологический процесс, контролировать параметры процесса экструзии, фиксировать нарушения технологического процесса и аварийные режимы.
Предлагаемая система визуализации работы экструдера реализована и успешно испытана в автоматизированных линиях, выпускаемой ООО «Владимирский завод полимерного машиностроения «Полимер-Техника».
Следовательно, использование в способе визуализации работы экструдера, при котором измеряют угловую скорость и крутящий момент привода шнека, значения температуры в зонах нагрева и экструзии, давление в зоне экструзии, преобразуют измеренные сигналы в цифровые коды, передают их по каналу связи на пульт оператора и отображают измеренные значения на операторской панели, дополнительно моделирования на основе математического описания процесса экструзии и измеренных значений вращательного движения шнека и перемещения материала, вычисления в режиме реального времени распределений давления и температуры в канале и зоне экструзии и синтез анимационного изображение на операторской панели, обеспечивает повышение точности контроля параметров технологического процесса.
Использование предлагаемого технического решения на экструдерах позволит повысить производительность оборудования и качество продукции.

Claims (1)

  1. Способ визуализации работы экструдера, при котором измеряют угловую скорость и крутящий момент привода шнека, значения температуры в зонах нагрева и экструзии, давление в зоне экструзии, преобразуют измеренные сигналы в цифровые коды, передают их по каналу связи на пульт оператора и отображают измеренные значения на операторской панели, отличающийся тем, что дополнительно на основе математического описания процесса экструзии и измеренных значений моделируют вращательное движение шнека и перемещение материала, вычисляют в режиме реального времени распределение давления и температуры в канале и зоне экструзии, и синтезируют анимационное изображение на операторской панели.
RU2010122384/05A 2010-06-01 2010-06-01 Способ визуализации работы экструдера RU2440243C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010122384/05A RU2440243C1 (ru) 2010-06-01 2010-06-01 Способ визуализации работы экструдера

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010122384/05A RU2440243C1 (ru) 2010-06-01 2010-06-01 Способ визуализации работы экструдера

Publications (2)

Publication Number Publication Date
RU2010122384A RU2010122384A (ru) 2011-12-10
RU2440243C1 true RU2440243C1 (ru) 2012-01-20

Family

ID=45405169

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010122384/05A RU2440243C1 (ru) 2010-06-01 2010-06-01 Способ визуализации работы экструдера

Country Status (1)

Country Link
RU (1) RU2440243C1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111666620B (zh) * 2020-05-29 2023-06-09 黄河水利委员会黄河水利科学研究院 一种颗粒材料侧向压力分布特征定量描述方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3727892A (en) * 1971-12-14 1973-04-17 Usm Corp Feedback control for a continuous mixer having a control of internal pressure
US4759890A (en) * 1985-12-21 1988-07-26 Fried. Krupp Gesellschaft Mit Beschrankter Haftung Process for monitoring a screw or worm extruder, particularly a pin-cylinder extruder
RU2130831C1 (ru) * 1997-12-15 1999-05-27 Воронежская государственная технологическая академия Способ автоматического управления экструдером
JP2000289090A (ja) * 1999-04-08 2000-10-17 Japan Steel Works Ltd:The 押出機用制御装置および押出機システム
RU2328764C1 (ru) * 2004-08-19 2008-07-10 Эрбюс Франс Система дисплея для летательного аппарата
RU2353518C1 (ru) * 2008-01-28 2009-04-27 Эдуард Борисович Попов Система функционального управления червячным экструдером

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3727892A (en) * 1971-12-14 1973-04-17 Usm Corp Feedback control for a continuous mixer having a control of internal pressure
US4759890A (en) * 1985-12-21 1988-07-26 Fried. Krupp Gesellschaft Mit Beschrankter Haftung Process for monitoring a screw or worm extruder, particularly a pin-cylinder extruder
RU2130831C1 (ru) * 1997-12-15 1999-05-27 Воронежская государственная технологическая академия Способ автоматического управления экструдером
JP2000289090A (ja) * 1999-04-08 2000-10-17 Japan Steel Works Ltd:The 押出機用制御装置および押出機システム
RU2328764C1 (ru) * 2004-08-19 2008-07-10 Эрбюс Франс Система дисплея для летательного аппарата
RU2353518C1 (ru) * 2008-01-28 2009-04-27 Эдуард Борисович Попов Система функционального управления червячным экструдером

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A1, 08.04.2004. *
МАЛАФЕЕВ С.И., САГИРОВ С.Н. Автоматизированная система управления экструзией полимерных материалов// Приборы и системы. Управление, контроль, диагностика, 2010, №2, с.10-12. *

Also Published As

Publication number Publication date
RU2010122384A (ru) 2011-12-10

Similar Documents

Publication Publication Date Title
Tlegenov et al. Nozzle condition monitoring in 3D printing
CN108237669A (zh) 用于调节成型机的方法
Pollard et al. Filament temperature dynamics in fused deposition modelling and outlook for control
Abeykoon Design and applications of soft sensors in polymer processing: A review
DE102005038205B4 (de) Windkanal mit einem darin angeordneten Modell, insbesondere einem Modell eines Luftfahrzeugs, zur Erfassung und Auswertung einer Vielzahl von Messdaten sowie Verfahren
CN111164425B (zh) 用于三维打印的监测系统
CN105483305B (zh) 一种基于高炉雷达数据的料层分布可视化方法
CN113063930B (zh) 一种基于神经网络的3d打印混凝土力学性能在线监测方法
Haghighi et al. A hybrid physics-based and data-driven approach for characterizing porosity variation and filament bonding in extrusion-based additive manufacturing
CN104198370B (zh) 滑滚摩擦学性能实验台智能测控系统
CN114326492B (zh) 一种流程工业设备的数字孪生虚实联动系统
RU2440243C1 (ru) Способ визуализации работы экструдера
CN111539111A (zh) 一种超高层建筑混凝土泵送性能测控系统
JP2021076395A (ja) 診断装置
Stavropoulos et al. Design and Implementation of a Digital Twin Platform for AM processes
Rehbein et al. 3D-visualization of ultrasonic NDT data using mixed reality
Vidhya et al. An effective evaluation of SONARS using arduino and display on processing IDE
CN110715953B (zh) 一种基于机器学习的薄膜材料导热性能测试系统及方法
CN117541717A (zh) 一种球磨机数字孪生体的建模方法
KR101514879B1 (ko) 제조설비 시뮬레이션 시스템 및 방법
JP4834988B2 (ja) 連続系プロセス制御方法および連続系プロセス制御システム
KR101309900B1 (ko) 설비 해석 및 제어 알고리즘 검증 기능을 구비한 철강산업용 가상설비 시스템 및 그의 구동 방법
Zhao et al. Artificial intelligence powered real-time quality monitoring for additive manufacturing in construction
KR20140089276A (ko) 제조설비 시뮬레이션 시스템
Steen et al. Flow quality surveys in the settling chamber of the NASA Glenn icing research tunnel (2011 tests)