RU2439819C1 - Способ и устройство формирования сигналов квадратурной амплитудной манипуляции - Google Patents

Способ и устройство формирования сигналов квадратурной амплитудной манипуляции Download PDF

Info

Publication number
RU2439819C1
RU2439819C1 RU2010147951/08A RU2010147951A RU2439819C1 RU 2439819 C1 RU2439819 C1 RU 2439819C1 RU 2010147951/08 A RU2010147951/08 A RU 2010147951/08A RU 2010147951 A RU2010147951 A RU 2010147951A RU 2439819 C1 RU2439819 C1 RU 2439819C1
Authority
RU
Russia
Prior art keywords
switch
input
output
phase
voltage
Prior art date
Application number
RU2010147951/08A
Other languages
English (en)
Inventor
Александр Викторович Аверьянов (RU)
Александр Викторович Аверьянов
Вадим Игоревич Бобровский (RU)
Вадим Игоревич Бобровский
Сергей Викторович Дворников (RU)
Сергей Викторович Дворников
Владимир Францевич Лапицкий (RU)
Владимир Францевич Лапицкий
Павел Николаевич Телков (RU)
Павел Николаевич Телков
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Военная академия связи имени С.М. Буденного" Министерства обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Военная академия связи имени С.М. Буденного" Министерства обороны Российской Федерации filed Critical Государственное образовательное учреждение высшего профессионального образования "Военная академия связи имени С.М. Буденного" Министерства обороны Российской Федерации
Priority to RU2010147951/08A priority Critical patent/RU2439819C1/ru
Application granted granted Critical
Publication of RU2439819C1 publication Critical patent/RU2439819C1/ru

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

Изобретение относится к радиотехнике, в частности к способам и устройствам формирования сигналов квадратурной амплитудной манипуляции, применяемым на линиях многоканальной цифровой связи, а также может быть использовано в области цифрового радиовещания и цифрового телевидения. Достигаемый технический результат - снижение величины пикфактора формируемых сигналов с квадратурной амплитудной манипуляцией, что позволяет повысить помехоустойчивость при приеме сигналов. В способе из предварительно генерируемого синусоидального сигнала формируют синфазную и квадратурную составляющие, которые манипулируют четырьмя информационными битами, причем фазы синфазной и квадратурной составляющих изменяют на 180° при значениях соответственно первого и второго информационных битов r1=r2=1, манипуляцию синфазной и квадратурной составляющих третьим г3 и четвертым r4 информационными битами осуществляют на основе формирования четырех уровней напряжения для каждой из составляющих путем умножения манипулированных информационными битами r1 и r2 синфазной и квадратурной составляющих на предварительно заданные соответствующие коэффициенты a, b и с, выбирают по одному уровню для каждой составляющей. После манипуляции синфазную и квадратурную составляющие суммируют. 2 н. и 2 з.п. ф-лы, 3 ил.

Description

Изобретение относится к радиотехнике, в частности к способам и устройствам формирования сигналов квадратурной амплитудной манипуляции, применяемым на линиях многоканальной цифровой связи, а также может быть использовано в области цифрового радиовещания и цифрового телевидения.
Известен способ формирования сигналов с квадратурной фазовой модуляцией, также называемых авторами сигналами двойной фазовой телеграфии (авт. св. СССР 692109, кл. H04L 27/20, 1979), заключающийся в том, что расщепляют несущее колебание на синфазное и квадратурное колебания, сдвинутые один относительно другого по фазе на 90°, сдвигают поступающие от двух источников сообщения, манипулирующие последовательности двоичных видеосигналов на половину длительности символа одну относительно другой, производят манипуляцию синфазного и квадратурного колебаний по фазе на 180° манипулирующими последовательностями двоичных видеосигналов, производят балансную модуляцию синфазного и квадратурного двоично-манипулированных колебаний, сдвинутыми один относительно другого по фазе на 90° синфазным и квадратурным гармоническими сигналами с частотой, равной половине частоты следования символов, так, что огибающие полученных колебаний равны нулю в начале и конце каждого символа, и суммируют полученные колебания.
Недостатком известного способа формирования сигналов с КФМ является высокий уровень внеполосных излучений при передаче формируемых радиосигналов, что обусловлено наличием разрывов первой производной формируемых сигналов на границах символов, а также относительно низкая помехоустойчивость, что является следствием ее относительно высокого пикфактора.
Также известен способ формирований с квадратурной фазовой модуляцией (Патент РФ №2205518, МПК 7 H04L 27/20, 2001 г.), в котором расщепляют несущее колебание на синфазную и квадратурную составляющие, формируют синфазный и квадратурный гармонические сигналы путем деления частоты синфазной и квадратурной составляющей в (4k+1) раз, где k - целое, сдвигают манипулирующие видеосигналы на половину длительности символа так, что фазы синфазного и квадратурного гармонических сигналов совпадают с фазами соответственной синфазной и квадратурной составляющих в начале и конце каждого символа, фазы синфазной и квадратурной составляющих изменяют на 180°, производят балансную модуляцию синфазной и квадратурной двоично-манипулированных составляющих синфазным и квадратурным гармоническими сигналами и суммируют полученные составляющие.
Недостатком данного способа является относительно низкая помехоустойчивость, что является следствием ее относительно высокого пикфактора.
Известно устройство формирования сигналов двукратной фазовой телеграфии ДФТ (авт. св. СССР 692109, кл. H04L 27/20, 1979), включающее в себя источник сообщения, подключенный к первому входу первого манипулятора, выход которого подключен к первому входу первого балансового модулятора, выход которого подключен к первому входу сумматора, выход которого является выходом устройства, второй вход которого подключен к выходу второго балансового модулятора, вход которого подключен к выходу второго манипулятора, первый вход которого подключен к выходу блока задержки, вход которого подключен к выходу второго источника сообщений, а второй вход второго манипулятора подключен к выходу фазовращателя, вход которого объединен с входом первого манипулятора.
Недостатком данного устройства является высокий уровень внеполосных излучений при передаче формируемых радиосигналов, что обусловлено наличием разрывов первой производной формируемых сигналов на границах символов, а также относительно низкая помехоустойчивость, что является следствием ее относительно высокого пикфактора.
Известно устройство для управления передачей данных по радиоканалу (Патент РФ №2205518, МПК 7 H04L 27/20, 2001 г.), содержащее источник сообщения, подключенный к первому входу первого синхронизатора, выход которого подключен к первому входу первого фазового манипулятора, выход которого подключен к первому входу первого балансового модулятора, выход которого подключен к первому входу сумматора, выход которого является выходом устройства, второй вход которого подключен к выходу второго фазового манипулятора, вход которого подключен ко входу второго фазовращателя, вход которого объединен и подключен ко входу второго делителя напряжения и входу первого фазового манипулятора, выход второго делителя подключен ко входу первого делителя напряжения и первого балансного модулятора, выход второго фазовращателя подключен ко второму входу второго фазового манипулятора, выход второго источника сообщений подключен ко второму входу второго синхронизатора.
Недостатком данного устройства является относительно низкая помехоустойчивость, что является следствием ее относительно высокого пикфактора.
Наиболее близким по технической сущности и выполняемым функциям к заявляемому является способ формирования сигналов квадратурной амплитудной модуляции (Патент РФ №2365050, МПК H04L 27/06, 2008 г.), который состоит из двух параллельно работающих каналов, в одном из которых производят фазоамплитудную манипуляцию сигнала sin ωt (канал I), во втором фазоамплитудную манипуляцию сигнала cos ωt (канал Q). Указанные сигналы формируют от общего задающего генератора, причем сигнал cos ωt получают путем сдвига фазы сигнала sin ωt на 90° с помощью фазовращателя (0°/90°). Манипуляцию фаз сигналов в каналах I и Q производят с помощью коммутаторов, на первый вход которых подают сигнал без сдвига фазы, а на второй вход - сигналы со сдвигом по фазе на 180° с выходов фазовращателей. Управление коммутаторами производится кодовыми комбинациями Ik и Qk, подаваемыми на информационные входы фазоамплитудных манипуляторов. В результате такой модуляции векторы сигналов I и Q будут принимать фиксированные фазовые положения. При такой совокупности описанных элементов и связей достигается увеличение пропускной способности по радиоканалу за счет снижения потерь помехоустойчивости на основе изменения величины оптимального коэффициента модуляции (коэффициента делителя напряжения) в зависимости от получаемого по обратному каналу соотношения сигнал-шум на входе приемного устройства как с разбиением, так и без разбиения общего переносимого потока бит на подпотоки по приоритетности в условиях помех.
Однако способу-прототипу присущ недостаток, связанный с относительно большой величиной пикфактора формируемой сигнальной конструкции, что снижает помехоустойчивость ее приема.
Наиболее близким по технической сущности и выполняемым функциям к заявляемому устройству является устройство формирования сигналов квадратурной амплитудной модуляции (Патент РФ №2365050, МПК H04L 27/06, 2008 г.). Устройство формирования сигналов квадратурной амплитудной модуляции содержит общий задающий генератор, первый, второй, третий фазовращатель, первый, второй, третий, четвертый коммутатор, сумматор, первый, второй управляемый делитель напряжения, вычислитель отношений, делитель напряжения на два. Входы первого, второго фазовращателя и первый вход первого коммутатора и выход общего задающего генератора соединены. Выход первого фазовращателя подключен ко входу третьего фазовращателя и к первому входу второго коммутатора. Выход третьего фазовращателя соединен со вторым входом второго коммутатора. Первый выход второго коммутатора соединен с первым входом четвертого коммутатора. Второй выход второго коммутатора соединен с первым входом второго управляемого делителя напряжения. Выход второго управляемого делителя напряжения подключен ко второму входу четвертого коммутатора. Выход четвертого коммутатора соединен со вторым входом сумматора. Выход второго фазовращателя соединен со вторым входом первого коммутатора. Первый выход первого коммутатора соединен с первым входом третьего коммутатора. Второй выход первого коммутатора подключен к первому входу первого управляемого делителя напряжения. Выход первого управляемого делителя напряжения подключен с первым входом третьего коммутатора. Выход третьего коммутатора соединен с первым входом сумматора. Вход делителя напряжения на два соединен с демодулятором приемника. Выход делителя напряжения на два подключен ко входу вычислителя отношения. Выход вычислителя отношения соединен со вторыми входами управляемых делителей напряжения. Выход информационного канала первого бита (Ik) соединен с третьим входом первого коммутатора. Выход информационного канала второго бита (Ek) соединен с третьим входом третьего коммутатора. Выход информационного канала третьего бита (Qk) подключен к третьему входу второго коммутатора. Выход информационного канала четвертого бита (Dk) соединен с третьим входом четвертого коммутатора. Выход сумматора является выходом устройства.
Недостатком устройства является относительно высокий уровень пикфактора формируемой сигнальной конструкции, что приводит к снижению помехоустойчивости ее приема.
Целью заявляемых технических решений является снижение величины пикфактора формируемой сигнальной конструкции квадратурной амплитудной манипуляции, что повысит помехоустойчивость приема сигнальной конструкции.
В заявляемом способе поставленная цель достигается тем, что в известном способе формирования сигналов квадратурной амплитудной манипуляции, заключающегося в том, что генерируют синусоидальный сигнал, из которого формируют исходные значения напряжения синфазной
Figure 00000001
и квадратурной
Figure 00000002
составляющих, которые манипулируют в зависимости от значений первого r1, второго r2, третьего r3 и четвертого r4 информационных битов, причем фазы синфазной и квадратурной составляющих изменяют на 180° при значениях соответственно первого и второго информационных битов r1=r2=1, после чего манипулированные синфазную и квадратурную составляющие суммируют, дополнительно для манипулированных синфазной
Figure 00000003
и квадратурной
Figure 00000004
составляющих формируют по четыре уровня напряжения путем умножения их манипулированных информационными битами r1 и r2 значений
Figure 00000005
и
Figure 00000006
, на предварительно заданные соответствующие коэффициенты a, b и с. Таким образом, для синфазной составляющей получают
Figure 00000007
,
Figure 00000008
;
Figure 00000009
;
Figure 00000010
. Для квадратурной составляющей -
Figure 00000011
,
Figure 00000012
;
Figure 00000013
;
Figure 00000014
. Затем из полученных четырех уровней напряжения синфазной составляющей и четырех уровней напряжения квадратурной составляющей в зависимости от значений третьего r3 и четвертого r4 информационных битов выбирают по одному уровню напряжения
Figure 00000015
и
Figure 00000016
соответственно для синфазной и квадратурной составляющих. Один из четырех уровней напряжения для синфазной
Figure 00000015
и квадратурной
Figure 00000017
составляющих в зависимости от значений третьего r3 и четвертого r4 информационных битов выбирают из условий:
Figure 00000018
Figure 00000019
Figure 00000020
Figure 00000021
Коэффициенты а, b и с выбирают соответственно в пределах: а≥1;
Figure 00000022
;
Figure 00000023
, причем выбранные значения данных коэффициентов должны удовлетворять одновременно условиям:
Figure 00000024
;
Figure 00000025
; a 2+b2≤2.
Новая совокупность существенных признаков позволяет достичь указанного технического результата за счет формирования двух дополнительных уровней напряжения синфазной и квадратурной составляющих сигнала квадратурной амплитудной манипуляции, а также предложенного правила выбора одного из четырех сформированных уровней напряжения упомянутых синфазной и квадратурной составляющих без уменьшения евклидовых расстояний между сигнальными точками1. (1 Евклидовым расстоянием называют расстояние между двумя точками линейного пространства сигналов с введенным аксиоматически скалярным произведением двух его элементов (см. Общая теория связи. Д.Л.Бураченко, Г.Д.Заварин, Н.И.Клюев и др. - ВАС, 1970, 412 с. Стр.81-82.)).
В заявляемом устройстве формирования сигналов квадратурной амплитудной манипуляции поставленная цель достигается тем, что в известном устройстве формирования сигналов квадратурной амплитудной манипуляции, содержащем задающий генератор, выход которого подключен ко входам первого, второго фазовращателей и к первому входу первого коммутатора, второй вход которого подключен к выходу второго фазовращателя, первый выход первого коммутатора подключен к первому входу третьего коммутатора, второй вход которого подключен к выходу первого делителя напряжения, вход которого подключен ко второму выходу первого коммутатора, выход третьего коммутатора подключен к первому входу сумматора, второй вход которого подключен к выходу четвертого коммутатора, второй вход которого подключен к выходу четвертого делителя напряжения, вход которого подключен к второму выходу второго коммутатора, первый выход которого подключен к первому входу четвертого коммутатора, первый и второй входы второго коммутатора подключены соответственно к первому выходу первого фазовращателя и выходу третьего фазовращателя, вход которого подключен ко второму выходу первого фазовращателя, причем первый и второй коммутаторы снабжены цифровыми входами соответственно первого и второго информационных битов, а третий и четвертый коммутаторы снабжены входами третьего и четвертого информационных битов, а выход сумматора является выходом устройства, дополнительно введены второй, третий, пятый и шестой делители напряжения. Входы пятого и шестого делителей напряжения объединены и подключены к второму выходу второго коммутатора. Входы второго и третьего делителей напряжения объединены и подключены к второму выходу первого коммутатора. Выходы второго и третьего делителей напряжения подключены соответственно к третьему и четвертому входам третьего коммутатора. Выходы пятого и шестого делителей напряжения подключены соответственно к третьему и четвертому входам четвертого коммутатора, причем вход третьего информационного бита третьего коммутатора соединен с входом третьего информационного бита четвертого коммутатора, вход четвертого информационного бита которого соединен с входом четвертого информационного бита третьего коммутатора.
Благодаря новой совокупности существенных признаков в заявляемом способе и устройстве его реализующем за счет формирования трех новых уровней напряжения синфазной и квадратурной составляющих сигнала квадратурной амплитудной манипуляции, реализованного на основе первого - шестого делителей напряжения, а также предложенного правила выбора одного из четырех сформированных уровней напряжения синфазной и квадратурной составляющих, реализованных на основе второго и третьего коммутаторов, снижается величина пикфактора формируемой сигнальной конструкции квадратурной амплитудной манипуляции, что повышает помехоустойчивость приема сигнальной конструкции.
Заявляемые технические решение поясняются чертежами, на которых:
- на фиг.1 показана электрическая схема устройства формирования сигналов квадратурной амплитудной манипуляции;
- на фиг.2 показано исходное расположение сигнальных точек, соответствующее известному способу формирования сигнальной конструкции квадратурной амплитудной манипуляции и их смещение при применении заявляемого способа;
- на фиг.3 показана сигнальная конструкция, сформированная при применении заявляемого способа.
Реализация заявляемого способа поясняется следующим образом.
Генерируют синусоидальный сигнал, из которого формируют исходные значения напряжения синфазной
Figure 00000001
и квадратурной
Figure 00000002
составляющих, причем при формировании синфазной составляющей
Figure 00000001
синусоидальный сигнал оставляют без изменения. Квадратурную составляющую
Figure 00000002
формируют путем изменения фазы исходного синусоидального сигнала на 90° с помощью фазовращателя на 90°. Вектора синфазной
Figure 00000001
и квадратурной
Figure 00000002
составляющих представлены на фиг.2. На фиг.2, а также на фиг.3 изображено векторное представление исходных и результирующих сигналов при формировании квадратурно-амплитудно манипулированной (КАМ) сигнальной конструкции в двумерном пространстве сигналов, образованном осями I и Q. На данных осях отложены вектора синфазной
Figure 00000002
и квадратурной
Figure 00000002
составляющих. Точками на фиг.2 показаны положения сигнальных точек исходной КАМ конструкции. Пунктирными окружностями на фиг.2, а также точками на фиг.3 обозначены положения сигнальных точек КАМ конструкции, формируемой в соответствии с предлагаемым способом. На фиг.2 и фиг.3 возле каждой сигнальной точки показан ее манипуляционный код, представленный в двоичной системе счисления, причем порядок следования битов слева направо соответствует номерам информационных битов, манипулирующих синфазную
Figure 00000001
и квадратурную
Figure 00000002
составляющие, т.е. первый бит слева является первым информационным битом, второй - вторым информационным битом и т.д.. Учитывая изложенные в заявляемом способе особенности манипуляционного кодирования, манипуляционный код, представленный на фиг.2 и фиг.3, является кодом Грея. Сигнальные конструкции с манипуляционным кодом Грея, как известно, отличаются повышенной помехоустойчивостью относительно конструкций при натуральном манипуляционном кодировании. Стрелочками с треугольными указателями показываются направления перемещения сигнальных точек в сигнальной конструкции при применении заявляемого способа относительно исходных их положений, соответствующих способу прототипу. Стрелочками с заостренными указателями обозначены вектора сигнальных точек, ссылки на которые имеются в приложениях 1 и 2. Начало и конец каждого такого вектора обозначены большими латинскими буквами.
Манипуляция синфазной
Figure 00000001
и квадратурной
Figure 00000002
составляющих осуществляется в соответствии со значениями первого r1 и второго r2 информационных битов следующим образом. Манипуляция
Figure 00000001
происходит в соответствии со значением r1, а манипуляция
Figure 00000002
происходит в соответствии со значением r2. В случае r1=0 (r2=0), фазу синфазной (квадратурной) составляющей оставляют без изменений, т.е. и
Figure 00000026
Figure 00000027
, в случае r1=1 (r2=1), фазу синфазной (квадратурной) составляющей изменяют на 180°, т.е. и
Figure 00000028
Figure 00000029
. При этом могут быть использованы фазовращатели на 180°.
Затем для манипулированных битами r1 и r2 синфазной
Figure 00000030
и квадратурной
Figure 00000031
составляющих формируют по четыре уровня напряжения путем умножения их значений
Figure 00000030
и
Figure 00000031
, на предварительно заданные соответствующие коэффициенты a, b и с:
Figure 00000007
,
Figure 00000008
;
Figure 00000009
;
Figure 00000010
и
Figure 00000011
,
Figure 00000012
;
Figure 00000013
;
Figure 00000014
.
На фиг.3 показаны примеры расположения векторов уровней напряжений
Figure 00000032
, учитывая, что
Figure 00000033
;
Figure 00000034
;
Figure 00000035
и,
Figure 00000036
;
Figure 00000037
;
Figure 00000038
.
Значения коэффициентов a, b и с выбирают в пределах, обоснование которых приведено в приложении 1, которое выполнено исходя из следующего условия формирования сигнальной конструкции. Данным условием является перемещение сигнальных точек без уменьшения евклидовых расстояний между ними (см. фиг.2). При его выполнении в случае снижения значения величины пикфактора сигнальной конструкции энергия сигнала на входе приемного устройства будет увеличена, следовательно, помехоустойчивость приема сигнальной конструкции повысится.
После формирования упомянутых выше уровней напряжения синфазную
Figure 00000001
и квадратурную
Figure 00000002
составляющие манипулируют в зависимости от значений третьего r3 и четвертого r4 информационных битов следующим образом. Данная манипуляция заключается в выборе одного из четырех уровней напряжения для синфазной
Figure 00000039
и квадратурной
Figure 00000040
составляющих в зависимости от значений третьего r3 и четвертого r4 информационных битов исходя из условий:
Figure 00000018
Figure 00000019
Figure 00000020
Figure 00000021
Данный выбор по одному уровню напряжения
Figure 00000041
и
Figure 00000042
соответственно для синфазной и квадратурной составляющих может быть реализован на основе мультиплексоров, описанных в журнале «Схемотехника» №5. - М.: Скимен, май 2001. - С.29-30, рис.5.
Далее манипулированные синфазную
Figure 00000001
и квадратурную
Figure 00000002
составляющие суммируют путем их аддитивного объединения. Суммирование может быть реализовано на основе суммирующего усилителя (см. Достал И. Операционные усилители. - М.: Мир, 1982. - С.184-185, рис.6.7).
В приложении 2 приведено сравнение значений пикфакторов сигнальных конструкций квадратурной амплитудной манипуляции, формируемых при использовании известного и заявляемого способов, из которого видно, что, применяя заявляемый способ, величина пикфактора относительно известной уменьшается. Таким образом, цель заявляемых технических решений достигнута.
Устройство формирования сигналов квадратурной амплитудной манипуляции содержит задающий генератор 1, выход которого подключен ко входам первого 2, второго 3 фазовращателей и к первому входу первого коммутатора 5. Второй вход коммутатора 5 подключен к выходу второго фазовращателя 3. Первый выход первого коммутатора 5 подключен к первому входу третьего коммутатора 7. Второй вход третьего коммутатора 7 подключен к выходу первого делителя напряжения 9, вход которого подключен ко второму выходу первого коммутатора 5. Выход третьего коммутатора 7 подключен к первому входу сумматора 15, второй вход которого подключен к выходу четвертого коммутатора 8. Второй вход четвертого коммутатора 8 подключен к выходу четвертого делителя напряжения 12, вход которого подключен к второму выходу второго коммутатора 6. Первый выход второго коммутатора 6 подключен к первому входу четвертого коммутатора 8. Первый и второй входы второго коммутатора 6 подключены соответственно к выходам первого фазовращателя 2 и третьего фазовращателя 4, вход которого подключен к выходу первого фазовращателя 2. Первый 5, второй 6, третий 7 и четвертый коммутаторы 8 снабжены цифровыми входами соответственно первого, второго, третьего и четвертого информационных битов, а выход сумматора 15 является выходом устройства. В заявляемое устройство дополнительно введены второй 10, третий 11, пятый 13 и шестой 14 делители напряжения. Входы второго 10 и третьего 11 делителей напряжения объединены и подключены к второму выходу первого коммутатора 5. Выходы второго 10 и третьего 11 делителей напряжения подключены соответственно к третьему и четвертому входам третьего коммутатора 7. Выходы пятого 13 и шестого 14 делителей напряжения подключены соответственно к третьему и четвертому входам четвертого коммутатора 8. Цифровой вход третьего информационного бита третьего коммутатора 7 соединен с цифровым входом третьего информационного бита четвертого коммутатора 8. Цифровой вход четвертого информационного бита четвертого коммутатора 8 соединен с цифровым входом четвертого информационного бита третьего коммутатора 7.
В заявленном устройстве назначение его структурных элементов следующее.
Общий задающий генератор 1 предназначен для генерации напряжения синусоидальной формы. В качестве общего задающего генератора 1 может быть использована схема мостового генератора синусоидальных сигналов (генератор Вина), (см. Достал И. Операционные усилители. - М., Мир, 1982. - С.200-201, рис.6.27).
Первый фазовращатель 2 предназначен для сдвига фазы синусоидального сигнала на 90°. Реализация первого фазовращателя 2 известна (см. Достал И. Операционные усилители. - М., Мир, 1982. - С.196, рис.6.20).
Второй фазовращатель 3 и третий фазовращатель 4 предназначены для сдвига фазы синусоидального сигнала на 180°. В качестве второго фазовращателя 3 и третьего фазовращателя 4 может быть использована схема инвертора напряжения (см. Достал И. Операционные усилители. - М., Мир, 1982. - С.182-184, рис.6.6).
Первый коммутатор 5 и второй коммутатор 6 выполняют функцию коммутации, каждый из которых предназначен для подключения одновременно на первый и второй параллельно соединенные выходы коммутатора одного из двух аналоговых сигналов, поступающих на первый и второй его аналоговые входы в зависимости от значения управляющего сигнала, поступающего на цифровой информационный вход. Для первого коммутатора 5 и второго коммутатора 6 управляющими сигналами являются соответственно информационные биты r1 и r2, причем, если управляющий сигнал равен «0», то на параллельно соединенные выходы коммутируется аналоговый сигнал, поступающий на первый вход коммутатора, если управляющий сигнал равен «1», то на выходы коммутируется аналоговый сигнал, поступающий на второй вход коммутатора. В качестве первого коммутатора 5 и второго коммутатора 6 может быть использована схема аналогового мультиплексора (см. Схемотехника №5. - М.: Скимен, май 2001. - С.29-30, рис.5. Указанные на рис.5 входы «Uвх2» и «Uвх3,», а также «А1 (С3Р)» не задействуются, выход мультиплексора распараллеливается на два выхода).
Третий коммутатор 7 и четвертый коммутатор 8 выполняют функцию коммутации, каждый из которых предназначен для подключения на выход коммутатора одного из четырех аналоговых сигналов, поступающих на первый, второй, третий и четвертый аналоговые входы в зависимости от значения двух управляющих сигналов, поступающих на первый и второй цифровые информационные входы. Для третьего коммутатора 7 и четвертого коммутатора 8 управляющими сигналами являются соответственно информационные биты r3 и r4. Подключение на выход коммутатора аналоговых сигналов, поступающих на его входы, в зависимости от управляющих сигналов происходит следующим образом:
в случае подачи на первый и второй цифровые информационные входы соответственно r3=0; r4=0, на выход коммутатора подключается аналоговый сигнал, поступающий с первого входа коммутатора;
в случае r3=0; r4=1 - на выход подключается аналоговый сигнал с второго входа коммутатора;
в случае r3=1; r4=0 - на выход подключается аналоговый сигнал с третьего входа коммутатора;
в случае r3=1; r4=1 - на выход подключается аналоговый сигнал с четвертого входа коммутатора.
В качестве третьего коммутатора 7 и четвертого коммутатора 8 может быть использована схема аналогового мультиплексора (см. Схемотехника №5. - М.: Скимен, май 2001. - С.29-30, рис.5).
Каждый из делителей напряжения 9-14 предназначен для деления напряжения аналогового сигнала, поступающего на его вход. Делитель напряжения 9 и делитель напряжения 12 производят деление поступающего на их вход напряжения, при котором выходное значение напряжения пропорционально входному при коэффициенте пропорциональности, равном а. Делитель напряжения 10 и делитель напряжения 13 производят деление поступающего на их вход напряжения, при котором выходное значение напряжения пропорционально входному с коэффициентом пропорциональности b. Делитель напряжения 11 и делитель напряжения 14 производят деление поступающего на их вход напряжения, при котором выходное значение напряжения пропорционально входному с коэффициентом пропорциональности с. Коэффициенты a, b и с выбирают соответственно в пределах: а≥1;
Figure 00000043
;
Figure 00000044
, причем выбранные значения данных коэффициентов должны удовлетворять одновременно условиям:
Figure 00000024
;
Figure 00000025
; a 2+b2≤2. В качестве делителя напряжения может быть использована схема перекрытого Т-образного амплитудного корректора (см. Белецкий А.Ф. Теория линейных электрических цепей. - М.: Радио и связь, 1986. - С.524-525, рис.22.6).
Сумматор 15 предназначен для аддитивного объединения аналоговых сигналов, поступающих на первый и второй его входы. В качестве сумматора 15 может быть использована схема суммирующего усилителя (см. Достал И. Операционные усилители. - М.: Мир, 1982. - С.184-185, рис.6.7).
Заявляемое устройство работает следующим образом. Общий задающий генератор 1 генерирует синусоидальный сигнал, тем самым формируя исходное значение напряжения синфазной составляющей
Figure 00000001
. Синусоидальный сигнал с выхода общего задающего генератора 1 подается на вход первого 2 фазовращателя. Первый фазовращатель 2 изменяет фазу сигнала на 90°, таким образом, формируя исходное значение напряжения квадратурной составляющей
Figure 00000002
. Далее синфазная
Figure 00000001
и квадратурная
Figure 00000002
составляющие поступают на первые входы первого 5 и второго 6 коммутаторов, а также на входы второго 3 и третьего 4 фазовращателей, которые изменяют фазы соответственно синфазной
Figure 00000001
и квадратурной
Figure 00000045
составляющих на 180°. С выходов второго 3 и третьего 4 фазовращателей сдвинутые по фазе на 180° синфазная и квадратурная составляющие поступают на вторые входы первого 5 и второго 6 коммутаторов. В зависимости от значений первого r1 и второго r2 информационных битов, поступающих на цифровые входы информационных битов первого 5 и второго 6 коммутаторов, последние подключают на свои параллельно соединенные первый и второй выходы аналоговый сигнал, поступающий с их первого или второго входа, т.е. манипулируют сигнал в зависимости от значений первого r1 и второго r2 информационных битов. Данная манипуляция синфазной
Figure 00000001
и квадратурной
Figure 00000002
составляющих с помощью первого 5 и второго 6 коммутаторов производится следующим образом. Если на цифровой вход первого информационного бита поступает r1=0 (r2=0), то на выходы первого 5 (второго 6) коммутатора подключается аналоговый сигнал с первого входа коммутатора, в противном случае, т.е. при поступлении r1=1 (r2=1), на выходы первого 5 (второго 6) коммутатора подключается аналоговый сигнал с второго входа коммутатора. Обозначим сигналы с выходов первого 5 и второго 6 коммутаторов соответственно через
Figure 00000030
и
Figure 00000031
. Тогда, в случае r1=0 (r2=0), фаза синфазной (квадратурной) составляющей на выходах первого 5 (второго 6) коммутатора остается без изменений, т.е.
Figure 00000046
Figure 00000047
, в случае r1=1 (r2=1), фаза синфазной (квадратурной) составляющей изменяется на 180°, т.е.
Figure 00000048
Figure 00000049
.
Далее синфазная
Figure 00000030
и квадратурная и
Figure 00000031
составляющие, манипулированные соответственно информационными битами r1 и r2, поступают параллельно на первые входы третьего 7 и четвертого 8 коммутаторов (соответственно с первых выходов первого 5 и второго 6 коммутаторов), а также на входы первого 9, второго 10, третьего 11 и четвертого 12, пятого 13, шестого 14 делителей напряжения (соответственно с вторых выходов первого 5 и второго 6 коммутаторов). Каждый из делителей напряжения 9-14 изменяет амплитуду напряжения аналогового сигнала, поступающего на его вход следующим образом. Делитель напряжения 9 и делитель напряжения 12 производят деление поступающего на их вход напряжения, при котором выходное значение напряжения увеличивается пропорционально входному при коэффициенте пропорциональности, равном а. Делитель напряжения 10 и делитель напряжения 13 производят деление поступающего на их вход напряжения, при котором выходное значение напряжения увеличивается пропорционально входному с коэффициентом пропорциональности b. Делитель напряжения 11 и делитель напряжения 14 производят деление поступающего на их вход напряжения, при котором выходное значение напряжения увеличивается пропорционально входному с коэффициентом пропорциональности с. Коэффициенты а, b и с выбирают соответственно в пределах: а≥1;
Figure 00000043
;
Figure 00000044
, причем выбранные значения данных коэффициентов должны удовлетворять одновременно условиям:
Figure 00000024
;
Figure 00000025
; a 2+b2≤2. Обоснование пределов изменения напряжения и условий, которым должны удовлетворять выбранные значения коэффициентов а, b и с, приведено в приложении 1.
Таким образом, на первые входы третьего 7 и четвертого 8 коммутаторов поступают соответственно сигналы с уровнем
Figure 00000050
и
Figure 00000051
, а на выходах первого 9, второго 10, третьего 11 и четвертого 12, пятого 13, шестого 14 делителей напряжения формируются напряжения соответственно:
Figure 00000052
,
Figure 00000053
;
Figure 00000054
и
Figure 00000055
;
Figure 00000056
;
Figure 00000057
, поступающие на вторые, третьи, четвертые входы соответственно третьего 7 и четвертого 8 коммутаторов.
Третий 7 и четвертый 8 коммутаторы коммутируют на свои выходы один из четырех аналоговых сигналов, поступающих на первый, второй, третий и четвертый аналоговые входы в зависимости от значения двух управляющих сигналов, поступающих на первый и второй цифровые информационные входы. Для третьего коммутатора 7 и четвертого коммутатора 8 управляющими сигналами являются соответственно информационные биты r3, и r4. Подключение на выход коммутатора аналоговых сигналов, поступающих на его входы, в зависимости от управляющих сигналов происходит следующим образом:
в случае подачи на первый и второй цифровые информационные входы соответственно r3=0; r4=0, на выход коммутатора подключается аналоговый сигнал, поступающий с первого входа коммутатора;
в случае r3=0; r4=1 - на выход подключается аналоговый сигнал с второго входа коммутатора;
в случае r3=1; r4=0 - на выход подключается аналоговый сигнал с третьего входа коммутатора;
в случае r3=1; r4=1 - на выход подключается аналоговый сигнал с четвертого входа коммутатора.
Таким образом, синфазная
Figure 00000030
и квадратурная
Figure 00000031
составляющие манипулируются информационными битами r3 и r4. Данная манипуляция заключается в выборе одного из четырех уровней напряжения для синфазной
Figure 00000058
и квадратурной
Figure 00000059
составляющих в зависимости от значений третьего r3 и четвертого r4 информационных битов исходя из условий:
Figure 00000018
Figure 00000019
Figure 00000020
Figure 00000021
Далее манипулированные синфазная
Figure 00000058
и квадратурная
Figure 00000059
составляющие, поступающие с выходов соответственно третьего 7 и четвертого 8 коммутаторов на первый и второй входы сумматора 15, суммируются путем их аддитивного объединения в сумматоре 15, выход которого является выходом заявляемого устройства.
Приложение 1
Обоснование пределов изменения коэффициентов a, b и с
Учитывая, что при предлагаемом способе расположение сигнальных точек симметрично относительно осей абсцисс OQ и ординат QI (см. фиг.2 и фиг.3), обоснование пределов изменения коэффициентов а, b и с достаточно произвести, используя одну из четвертей декартовой системы координат с осями, соответствующими квадратурным составляющим.
Введем следующие обозначения, показанные на фиг.2 и фиг.3.
Figure 00000001
,
Figure 00000002
- вектора исходных значении напряжении синфазной и квадратурной составляющих;
Figure 00000060
,
Figure 00000061
- составляющие вектора сигнальной точки (СТ), соответствующего значению напряжения, образованного путем суммы векторов синфазной и квадратурной составляющих, умноженных на коэффициент а.
Figure 00000062
,
Figure 00000063
- составляющие вектора СТ, соответствующего значению напряжения, образованного путем суммы векторов синфазной и квадратурной составляющих, умноженных на коэффициент b.
Figure 00000064
,
Figure 00000065
- составляющие вектора СТ, соответствующего значению напряжения, образованного путем суммы векторов синфазной и квадратурной составляющих, умноженных на коэффициент с.
Пусть
Figure 00000066
- амплитуда (длина) векторов напряжений; k - евклидово расстояние между сигнальными точками сигнальной конструкции; формируемой при использовании способа-прототипа; d=|ОА| - длина вектора результирующего напряжения, образованного суммой векторов
Figure 00000001
и
Figure 00000067
(см. фиг.2).
Тогда
Figure 00000068
Figure 00000069
.
Выразим значения длин векторов
Figure 00000070
,
Figure 00000071
,
Figure 00000072
,
Figure 00000073
,
Figure 00000074
и
Figure 00000075
через исходные напряжения и коэффициенты a, b и с (см. фиг.3):
Figure 00000076
Определим пределы изменения коэффициентов а, b и с, учитывая, что евклидовы расстояния между сигнальными точками не должны уменьшаться. Исходя из (1) и (2)
Figure 00000077
Figure 00000078
Объединяя (4) и (5) по отношению к с, получим
Figure 00000079
Кроме этого очевидно, что для того, чтобы евклидовы расстояния между сигнальными точками не уменьшались, необходимо выполнение следующих условий (см. фиг.2):
Figure 00000080
Преобразуем |АС|≥k, выразив |АС| и k через коэффициенты а и b.
Figure 00000081
Figure 00000082
Figure 00000083
Учитывая, что
Figure 00000084
Figure 00000085
Таким образом, подставляя |ОС|, d, sinβ и cosα в (8), учитывая (1), получим
Figure 00000086
Так как |АС|≥0 и k>0, то из (7) следует, что
Figure 00000087
Преобразуем |ВС|≥k, выразив |ВС| и k через коэффициенты а и с.
Figure 00000088
;
Учитывая, что Uc=Uисхc, а также (1), (9) и (12), получим
Figure 00000089
Так как |BC|≥0 и k≥0, то
Figure 00000090
Так как передатчик имеет конечную мощность, то
Figure 00000091
Таким образом, объединяя (14), (16) и (17) и учитывая (4)-(6), получим:
Figure 00000092
причем значения данных коэффициентов должны одновременно удовлетворять следующим условиям:
Figure 00000093
Приложение 2
Сравнение значений пикфакторов сигнальных конструкций квадратурной амплитудной манипуляции, формируемых при использовании известного и заявляемого способов
Сравнение значений пикфакторов произведем для двух КАМ сигнальных конструкций. В качестве первой выберем сигнальную конструкцию, получаемую при использовании способа-прототипа, показанной точками на фиг.2. Второй КАМ сигнальной конструкцией будет конструкция, формируемая в соответствии с предлагаемым способом и показанная точками на фиг.3. При этом значения коэффициентов a, b и с, удовлетворяющие неравенствам (18) и (19), выберем такими, что евклидовы расстояния между сигнальными точками будут максимальными, что равносильно выполнению двух следующих условий.
1. Сигнальные точки внешней и внутренней окружностей сигнальной конструкции при применении заявляемого способа должны быть равномерно расположены на данных окружностях (см. фиг.3).
2. Минимальное расстояние d1 между сигнальными точками внутренней и внешней окружностями должно быть равно минимальному расстоянию d2 между сигнальными точками внутренней окружности при их равномерном расположении, т.е. d1=d2 (см. фиг.3).
Вычислим коэффициенты а, b и с. Для выполнения первого условия необходимо, чтобы углы между прямыми, проведенными через сигнальные точки внешнего радиуса и началом координат, были равны между собой, т.е. были равными
Figure 00000094
. Второе условие будет выполнено в случае:
Figure 00000095
При равномерном расположении СТ на внешней окружности справедливо (см. фиг.2):
Figure 00000096
С другой стороны можно записать:
Figure 00000097
Используя (22), определим b:
Figure 00000098
Исходя из определения пикфактор определяется как отношение пиковой амплитуды Uп сигнальной конструкции к ее средней амплитуде Ucp:
Figure 00000099
Пиковые амплитуды Uп сигнальных конструкций при заявляемом способе и способе-прототипе одинаковы и не должны превышать:
Figure 00000100
Средняя амплитуда
Figure 00000101
сигнальной конструкции, получаемой при использовании способа-прототипа, может быть рассчитана следующим образом.
Figure 00000102
Средняя амплитуда
Figure 00000103
сигнальной конструкции, соответствующая заявляемому способу при учете (20), (22) и (23), определяется как
Figure 00000104
Подставляя (25) и (26) в (23), вычислим значения пикфакторов сигнальных конструкций при заявляемом способе П' и способе-прототипе П'':
Figure 00000105
Figure 00000106
Сравнивая (27) с (28), видно, что при формировании сигнальной конструкции без уменьшения евклидовых расстояний между сигнальными точкам, применяя заявляемый способ, пикфактор П'' меньше пикфактора П', соответствующего способу-прототипу.
Таким образом, цель заявляемых технических решений достигнута.

Claims (4)

1. Способ формирования сигналов квадратурной амплитудной манипуляции, заключающийся в том, что генерируют синусоидальный сигнал, из которого формируют исходные значения напряжения синфазной
Figure 00000107
и квадратурной
Figure 00000108
составляющих, которые манипулируют в зависимости от значений первого r1, второго r2, третьего r3 и четвертого r4 информационных битов, причем фазы синфазной и квадратурной составляющих изменяют на 180° при значениях соответственно первого и второго информационных битов r1=r2=1, после чего манипулированные синфазную и квадратурную составляющие суммируют, отличающийся тем, что дополнительно для манипулированных синфазной
Figure 00000109
и квадратурной
Figure 00000110
составляющих формируют по четыре уровня напряжения путем умножения их значений
Figure 00000111
и
Figure 00000112
на предварительно заданные соответствующие коэффициенты a, b и с,
Figure 00000113
, и
Figure 00000114
;
Figure 00000115
;
Figure 00000116
и
Figure 00000117
,
Figure 00000118
;
Figure 00000119
;
Figure 00000120
, затем из полученных четырех уровней напряжения синфазной составляющей и четырех уровней напряжения квадратурной составляющей в зависимости от значений третьего r3 и четвертого r4 информационных битов выбирают по одному уровню напряжения
Figure 00000121
и
Figure 00000122
соответственно для синфазной и квадратурной составляющих, после чего их суммируют.
2. Способ по п.1, отличающийся тем, что коэффициенты a, b и с выбирают соответственно в пределах: а≥1;
Figure 00000123
;
Figure 00000124
, причем выбранные значения данных коэффициентов должны удовлетворять одновременно условиям:
Figure 00000125
;
Figure 00000126
; a 2+b2≤2.
3. Способ по п.1, отличающийся тем, что один из четырех уровней напряжения для синфазной
Figure 00000127
и квадратурной
Figure 00000128
составляющих в зависимости от значений третьего r3 и четвертого r4 информационных битов выбирают из условий:
Figure 00000129
Figure 00000130

Figure 00000131
Figure 00000132
4. Устройство формирования сигналов квадратурной амплитудной манипуляции, содержащее задающий генератор, выход которого подключен ко входам первого, второго фазовращателей и к первому входу первого коммутатора, второй вход которого подключен к выходу второго фазовращателя, первый выход первого коммутатора подключен к первому входу третьего коммутатора, второй вход которого подключен к выходу первого делителя напряжения, вход которого подключен ко второму выходу первого коммутатора, выход третьего коммутатора подключен к первому входу сумматора, второй вход которого подключен к выходу четвертого коммутатора, второй вход которого подключен к выходу четвертого делителя напряжения, вход которого подключен к второму выходу второго коммутатора, первый выход которого подключен к первому входу четвертого коммутатора, первый и второй входы второго коммутатора подключены соответственно к выходам первого фазовращателя и третьего фазовращателя, вход которого подключен к выходу первого фазовращателя, причем первый и второй коммутаторы снабжены цифровыми входами соответственно первого и второго информационных битов, а третий и четвертый коммутаторы снабжены цифровыми входами третьего и четвертого информационных битов, а выход сумматора является выходом устройства, отличающееся тем, что дополнительно введены второй, третий, пятый и шестой делители напряжения, входы второго и третьего делителей напряжения объединены и подключены к второму выходу первого коммутатора, входы пятого и шестого делителей напряжений объединены и подключены к второму выходу второго коммутатора, выходы второго и третьего делителей напряжения подключены соответственно к третьему и четвертому входам третьего коммутатора, выходы пятого и шестого делителей напряжения подключены соответственно к третьему и четвертому входам четвертого коммутатора, причем цифровой вход третьего информационного бита третьего коммутатора соединен с цифровым входом третьего информационного бита четвертого коммутатора, цифровой вход четвертого информационного бита которого соединен с цифровым входом четвертого информационного бита третьего коммутатора.
RU2010147951/08A 2010-11-24 2010-11-24 Способ и устройство формирования сигналов квадратурной амплитудной манипуляции RU2439819C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010147951/08A RU2439819C1 (ru) 2010-11-24 2010-11-24 Способ и устройство формирования сигналов квадратурной амплитудной манипуляции

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010147951/08A RU2439819C1 (ru) 2010-11-24 2010-11-24 Способ и устройство формирования сигналов квадратурной амплитудной манипуляции

Publications (1)

Publication Number Publication Date
RU2439819C1 true RU2439819C1 (ru) 2012-01-10

Family

ID=45784357

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010147951/08A RU2439819C1 (ru) 2010-11-24 2010-11-24 Способ и устройство формирования сигналов квадратурной амплитудной манипуляции

Country Status (1)

Country Link
RU (1) RU2439819C1 (ru)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2486681C1 (ru) * 2012-06-05 2013-06-27 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Способ и устройство формирования сигналов квадратурной амплитудной манипуляции
RU2522300C1 (ru) * 2013-01-11 2014-07-10 Государственное казенное образовательное учреждение высшего профессионального образования Академия Федеральной службы охраны Российской Федерации (Академия ФСО России) Способ манипуляционного кодирования
RU2526760C1 (ru) * 2013-05-14 2014-08-27 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Способ формирования сигналов квадратурной амплитудной манипуляции
RU2528390C1 (ru) * 2013-07-30 2014-09-20 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Способ формирования сигналов квадратурной амплитудной манипуляции
RU2541200C1 (ru) * 2013-12-03 2015-02-10 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Способ формирования сигналов квадратурной амплитудной манипуляции
RU2541502C1 (ru) * 2013-09-12 2015-02-20 Открытое акционерное общество "Научно-исследовательский институт телевидения" Способ формирования сигналов квадратурной амплитудной манипуляции
RU2544802C1 (ru) * 2014-03-11 2015-03-20 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Устройство формирования сигналов квадратурной амплитудной манипуляции
RU2546304C1 (ru) * 2014-01-24 2015-04-10 Закрытое акционерное общество "Проектно-конструкторское бюро "РИО" Устройство формирования сигналов квадратурной амплитудной манипуляции
RU2547626C1 (ru) * 2014-02-10 2015-04-10 Закрытое акционерное общество "Проектно-конструкторское бюро "РИО" Устройство формирования сигналов квадратурной амплитудной манипуляции
RU2554531C1 (ru) * 2014-04-07 2015-06-27 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Рязанское высшее воздушно-десантное комадное училище (военный институт)" имени генерала армии В.Ф. Маргелова МО РФ Устройство формирования сигналов квадратурной амплитудной модуляции
RU2562257C1 (ru) * 2014-02-24 2015-09-10 Закрытое акционерное общество ЗАО "ПРОЕКТНО-КОНСТРУКТОРСКОЕ БЮРО "РИО" Способ формирования сигналов квадратурной амплитудной манипуляции
RU2568315C1 (ru) * 2014-11-20 2015-11-20 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Устройство формирования сигналов квадратурной амплитудной манипуляции
RU2688135C1 (ru) * 2018-05-15 2019-05-20 федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия связи имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Устройство формирования сигналов с многопозиционной манипуляцией

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2486681C1 (ru) * 2012-06-05 2013-06-27 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Способ и устройство формирования сигналов квадратурной амплитудной манипуляции
RU2522300C1 (ru) * 2013-01-11 2014-07-10 Государственное казенное образовательное учреждение высшего профессионального образования Академия Федеральной службы охраны Российской Федерации (Академия ФСО России) Способ манипуляционного кодирования
RU2526760C1 (ru) * 2013-05-14 2014-08-27 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Способ формирования сигналов квадратурной амплитудной манипуляции
RU2528390C1 (ru) * 2013-07-30 2014-09-20 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Способ формирования сигналов квадратурной амплитудной манипуляции
RU2541502C1 (ru) * 2013-09-12 2015-02-20 Открытое акционерное общество "Научно-исследовательский институт телевидения" Способ формирования сигналов квадратурной амплитудной манипуляции
RU2541200C1 (ru) * 2013-12-03 2015-02-10 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Способ формирования сигналов квадратурной амплитудной манипуляции
RU2546304C1 (ru) * 2014-01-24 2015-04-10 Закрытое акционерное общество "Проектно-конструкторское бюро "РИО" Устройство формирования сигналов квадратурной амплитудной манипуляции
RU2547626C1 (ru) * 2014-02-10 2015-04-10 Закрытое акционерное общество "Проектно-конструкторское бюро "РИО" Устройство формирования сигналов квадратурной амплитудной манипуляции
RU2562257C1 (ru) * 2014-02-24 2015-09-10 Закрытое акционерное общество ЗАО "ПРОЕКТНО-КОНСТРУКТОРСКОЕ БЮРО "РИО" Способ формирования сигналов квадратурной амплитудной манипуляции
RU2544802C1 (ru) * 2014-03-11 2015-03-20 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Устройство формирования сигналов квадратурной амплитудной манипуляции
RU2554531C1 (ru) * 2014-04-07 2015-06-27 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Рязанское высшее воздушно-десантное комадное училище (военный институт)" имени генерала армии В.Ф. Маргелова МО РФ Устройство формирования сигналов квадратурной амплитудной модуляции
RU2568315C1 (ru) * 2014-11-20 2015-11-20 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Устройство формирования сигналов квадратурной амплитудной манипуляции
RU2688135C1 (ru) * 2018-05-15 2019-05-20 федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия связи имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Устройство формирования сигналов с многопозиционной манипуляцией

Similar Documents

Publication Publication Date Title
RU2439819C1 (ru) Способ и устройство формирования сигналов квадратурной амплитудной манипуляции
RU2486681C1 (ru) Способ и устройство формирования сигналов квадратурной амплитудной манипуляции
JPH0621991A (ja) 変調器
US20200144993A1 (en) Low-loss vector modulator based phase shifter
CN102143110A (zh) 数字调制器和与之相关联的数模转换技术
KR100599148B1 (ko) D급 증폭기를 제어하는 시스템
EP2469739A1 (en) A digital modulation method and device, especially an optical digital modulation method and device
JP5485283B2 (ja) 位相・振幅変調器
CN102594750A (zh) 产生中波段调制信号的方法
WO2015061617A1 (en) Cartesian digital power amplifier using coordinate rotation
RU2568315C1 (ru) Устройство формирования сигналов квадратурной амплитудной манипуляции
CN105556910A (zh) 使用脉宽调制的开关模式高线性度发射机
RU165173U1 (ru) Устройство формирования сигналов с четырехпозиционной квадратурной манипуляцией
Birla et al. A novel QPSK modulator
US9042486B2 (en) Sideband suppression in angle modulated signals
Katkar et al. Realization of cordic algorithm in DDS: Novel Approch towards Digital Modulators in MATLAB and VHDL
US11438201B2 (en) Millimeter wave transmitter
RU2526760C1 (ru) Способ формирования сигналов квадратурной амплитудной манипуляции
RU2550521C1 (ru) Способ формирования сигналов квадратурной амплитудной манипуляции
RU2438241C2 (ru) Формирователь радиосигналов с цифровым линеаризатором
RU92272U1 (ru) Система передачи цифровых сигналов
RU2544802C1 (ru) Устройство формирования сигналов квадратурной амплитудной манипуляции
US10044383B2 (en) Sinewave generation from multi-phase signals
RU2801873C1 (ru) Способ формирования шумоподобных сигналов
JP5221480B2 (ja) 直交変調器、および送信装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20121125