RU2438998C1 - Способ нейтрализации кислых сульфатсодержащих сточных вод и устройство для его осуществления - Google Patents

Способ нейтрализации кислых сульфатсодержащих сточных вод и устройство для его осуществления Download PDF

Info

Publication number
RU2438998C1
RU2438998C1 RU2010116055/05A RU2010116055A RU2438998C1 RU 2438998 C1 RU2438998 C1 RU 2438998C1 RU 2010116055/05 A RU2010116055/05 A RU 2010116055/05A RU 2010116055 A RU2010116055 A RU 2010116055A RU 2438998 C1 RU2438998 C1 RU 2438998C1
Authority
RU
Russia
Prior art keywords
neutralization
stage
hydroxides
flocculant
carried out
Prior art date
Application number
RU2010116055/05A
Other languages
English (en)
Other versions
RU2010116055A (ru
Inventor
Владимир Дмитриевич Назаров (RU)
Владимир Дмитриевич Назаров
Максим Владимирович Назаров (RU)
Максим Владимирович Назаров
Айрат Муратович Сафаров (RU)
Айрат Муратович Сафаров
Валентина Исаевна Сафарова (RU)
Валентина Исаевна Сафарова
Галина Фатыховна Шайдуллина (RU)
Галина Фатыховна Шайдуллина
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" filed Critical Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет"
Priority to RU2010116055/05A priority Critical patent/RU2438998C1/ru
Publication of RU2010116055A publication Critical patent/RU2010116055A/ru
Application granted granted Critical
Publication of RU2438998C1 publication Critical patent/RU2438998C1/ru

Links

Images

Abstract

Изобретение может быть использовано для нейтрализации подотвальных вод горнодобывающих предприятий. Для осуществления способа кислые сульфатсодержащие сточные воды нейтрализуют известковым молоком и осаждают образовавшиеся взвешенные частицы в присутствии анионного флокулянта. Нейтрализацию сточных вод проводят в несколько ступеней. Очищенную воду подвергают доочистке фильтрованием в зернистых материалах и очистке в биологических прудах. Осадки гидроксидов металлов, полученные на разных стадиях, размещают в отдельных секциях шламовых площадок. Устройство содержит последовательно соединенные гидроциклон (1), отстойник первой ступени (2) с реагентным хозяйством дозирования известкового молока (9) и системой рециркуляции осадка (19), n-ное количество идентичных отстойников (3-6) с реагентным хозяйством дозирования известкового молока (9) и флокулянта (11), где n равно количеству селективно извлекаемых металлов, шламовые площадки для обезвоживания гипса (15) и для селективного обезвоживания гидроксидов металлов (17), фильтр с зернистой загрузкой (7) с системой обратной промывки, содержащей промывной насос (13) и отстойник промывной воды (14), биологические пруды (8) с отстойной зоной и секциями доочистки с высшей водной растительностью. Изобретения обеспечивают увеличение скорости осаждения гипса, селективное осаждение гидроксидов металлов, повышение качества очищенных вод, позволяющее их сброс в водные объекты. 2 н. и 1 з.п. ф-лы, 2 табл., 3 ил.

Description

Изобретение относится к области нейтрализации кислых производственных сточных вод, в частности, к способам нейтрализации подотвальных вод горнодобывающих предприятий.
Известно, что для нейтрализации сточных вод, содержащих сульфат-ионы, применяют любой щелочной реагент, но чаще всего известь, известковое молоко, карбонаты кальция и магния.
Образующийся в результате нейтрализации сульфат кальция (гипс) кристаллизуется из разбавленных растворов в виде CaSO4·2Н2О. Растворимость этой соли в воде при температуре 0-40°С колеблется от 1,76 до 2,11 г/л. Существенным недостатком метода нейтрализации известью является образование пересыщенного раствора гипса, выделение которого может продолжаться несколько суток /Яковлев С.В., Карелин Я.А., Ласков Ю.М., Воронов Ю.В. Очистка производственных сточных вод. - М: Стройиздат, 1985. - 335 с. (см. с.104)/, а также большой объем осадка, представляющий собой взвесь коллоидных частиц. Осадок чрезвычайно трудно уплотняется и обезвоживается.
Известен способ очистки сточных вод, предусматривающий совместное применение щелочных реагентов и флокулянтов. Использование этого метода объясняется не только относительно высокой скоростью образования осадка, но и, в отличие от коагулянтов, отсутствием засоления обрабатываемой воды, поскольку весь флокулянт извлекается с осадком. Кроме того, простой и надежный седиментационный метод требует подбора флокулянта, наиболее подходящего для данного типа сточных вод /Аксенов В.И., Ладыгичев М.Г., Ничкова И.И. и др. водное хозяйство промышленных предприятий. Справочное издание. Книга 1. - М.: Теплотехник, 2005. - 640 с. (см. с.322-323)/.
Наиболее близким к заявляемому способу по технической сути и достигаемому результату является способ очистки сточных вод, при котором кислые сульфатсодержащие сточные воды нейтрализуют известковым молоком и осаждают образовавшиеся взвешенные частицы в присутствии флокулянта. Нейтрализацию проводят 5%-ным известковым молоком до pH 9,4-9,5, затем вводят анионный флокулянт в концентрации 5-8 мг/л и пиритные отвальные хвосты горнообогатительного производства в концентрации 2,5-10 г/л, после чего перемешивают и отстаивают. В качестве флокулянта предпочтительно использовать анионный флокулянт Floerger AN 905 SH/, используемые пиритные отвальные хвосты должны содержать в предпочтительном варианте ~38% Fe и ~36% S. Изобретение обеспечивает нейтрализацию сульфатсодержащих вод, применение которой уменьшает объем осадка, что упрощает дальнейший процесс обезвоживания и утилизации осадка /Патент на изобретение №2355647, МПК C02F 1/66, опуб. 20.05.2009. Бюл. №14/.
Недостатком является невысокая скорость осаждения взвешенных веществ, получение в осадке смеси гипса с гидроксидами металлов, что затрудняет утилизацию полученного шлама.
Наиболее близким к заявляемому устройству по технической сути является станция нейтрализации сточных вод, состоящая из отстойника с осадкоуплотнителем, вакуум-фильтром, шламовыми площадками и реагентным хозяйством, включающим склад реагентов, растворные баки и дозаторы реагента. В качестве реагента применяется 5%-ное известковое молоко /Яковлев С.В., Карелин Я.А., Ласков Ю.М., Воронов Ю.В. Очистка производственных сточных вод. - М: Стройиздат, 1985. - 335 с. (см. с.106)/.
Недостатками устройства являются большие габариты отстойных сооружений, невысокий эффект очистки сточных вод от сульфатов и тяжелых металлов.
Задачей изобретения является увеличение скорости осаждения гипса, селективное осаждение гидроксидов металлов, повышение качества очищенных вод, позволяющее их сброс в водные объекты.
Для осуществления способа кислые сульфатсодержащие сточные воды нейтрализуют известковым молоком и осаждают образовавшиеся взвешенные частицы в присутствии анионного флокулянта в концентрации 5-8 мг/л. Нейтрализацию сточных вод проводят в несколько ступеней, при этом на первой ступени нейтрализацию проводят до pH 4,5-5,0 и осаждение проводят в отстойнике без применения флокулянта, а образовавшийся осадок, содержащий гипс и гидроксиды трехвалентного железа, частично за счет рециркуляции возвращают в отстойник, на второй ступени нейтрализацию проводят до pH 6,0-7,0 и осаждают гидроксиды двухвалентной меди в присутствии анионного флокулянта, на третьей ступени нейтрализацию проводят до pH 7,2-8,0 и осаждают гидроксиды двухвалентного цинка в присутствии анионного флокулянта, на четвертой ступени нейтрализацию проводят до pH 8,5-9,2 и осаждают гидроксиды двухвалентного железа в присутствии анионного флокулянта, на пятой ступени нейтрализацию проводят до pH 9,5-10,5 и осаждают гидроксиды двухвалентного марганца в присутствии анионного флокулянта, причем осадки двухвалентных металлов размещают индивидуально в отдельных секциях шламовых площадок, а очищенную воду подвергают доочистке фильтрованием в зернистых материалах и очистке в биологических прудах. Осадок, содержащий гипс и гидроксиды трехвалентного железа, образованный на первой ступени нейтрализации, возвращают за счет рециркуляции на 20-30 об.% в отстойник. Устройство нейтрализации кислых сульфатсодержащих сточных вод, включающее отстойник, реагентное хозяйство и шламовые площадки, согласно изобретению содержит последовательно соединенные гидроциклон, отстойник первой ступени с реагентным хозяйством дозирования известкового молока и системой рециркуляции осадка, n-ное количество идентичных отстойников с реагентным хозяйством дозирования известкового молока и флокулянта, где n равно количеству селективно извлекаемых металлов, фильтр с зернистой загрузкой с системой обратной промывки, биологические пруды с отстойной зоной, переливными кромками и секциями доочистки с высшей водной растительностью, причем осадок из гидроциклона, отстойника первой ступени, отстойной зоны биологических прудов и отстойника промывных вод поступает на шламовые площадки для обезвоживания гипса, а осадок из остальных (n-1) отстойников поступает на секционированные шламовые площадки для селективного обезвоживания гидроксидов металлов.
На фиг.1 показана технологическая схема нейтрализации кислых сульфатсодержащих сточных вод, на фиг.2 - диаграмма с результатами определения диапазона значений pH, в пределах которых гидроксиды тяжелых металлов нерастворимы и выпадают в осадок, на фиг.3 - график зависимости скорости осветления воды от значения pH, достигнутого за счет нейтрализации известковым молоком.
Технологическая схема (фиг.1) включает последовательно соединенные гидроциклон 1, отстойники 2-6, фильтр 7 и биологический пруд 8 с отстойной зоной, переливными кромками и секциями доочистки с высшей водной растительностью. В трубопровод перед отстойниками 2-6 дозируется 5%-ное известковое молоко от реагентного хозяйства 9 с насосами-дозаторами 10, а перед отстойниками 3-6 дозируется анионный флокулянт Floerger AN 905 SH или его аналог от реагентного хозяйства 11 с насосами-дозаторами 12.
Фильтр с зернистой загрузкой 7 оборудован системой обратной промывки, включающей промывной насос 13 и отстойник промывной воды 14.
Осадок из гидроциклона 1, отстойника 2, биологических прудов 8, отстойника промывных вод 14 подается на шламовые площадки 15 для обезвоживания, в основном, гипса. Дренажная вода с площадок 15 удаляется насосом 16 в «голову» сооружения. Осадок из отстойников 3-6 подается на шламовые площадки 17, которые разделены на секции по числу отстойников для обезвоживания гидроксидов двухвалентных металлов. Дренажная вода с площадок 17 удаляется насосом 18 в «голову» сооружения. Рециркуляция осадка в отстойнике 2 осуществляется насосом 19.
Способ нейтрализации кислых сульфатсодержащих сточных вод осуществляется следующим образом. Сточные воды подаются в гидроциклон 1 для удаления взвешенных веществ. Далее воду нейтрализуют известковым молоком до значения pH 4,5-5,0 от реагентного хозяйства 9 с насосом-дозатором 10. Нейтрализация происходит в трубопроводе и камере хлопьеобразования, встроенной в отстойник 2. При указанном значении pH происходит образование высокодисперсных частиц гипса (CaSO4) и нерастворимого гидроксида Fе(ОН)3, который является коагулянтом. Остальные тяжелые металлы не образуют нерастворимые частицы, что сказывается положительно на процессе осаждения гипса. Избыточный осадок удаляется на шламовые площадки 15 для обезвоживания, а 20-30 об.% осадка насосом 19 возвращается в отстойник 2, выполняя роль центров кристаллизации для пересыщенного по сульфат-ионам раствора, существенно увеличивая скорость осаждения гипса. Осадок из шламонакопителя 15 может быть утилизирован в качестве строительного материала.
Далее сточные воды поступают на дальнейшую очистку от тяжелых металлов в отстойниках 3-6. Отстойники идентичны, перед отстойниками в трубопровод дозируется известковое молоко с целью повышения pH от реагентного хозяйства 9 с помощью насосов-дозаторов 10 и флокулянт от реагентного хозяйства 11 с помощью насосов-дозаторов 12. Значение pH выбирается таким образом, чтобы можно было селективно осаждать гидроксиды металлов. Теоретически рассчитанные и экспериментально подтвержденные значения pH начала и конца осаждения гидроксидов металлов, находящихся в сточных водах горно-обогатительных комбинатов, приведены на диаграмме (фиг.2). Количество отстойников должно соответствовать количеству металлов, которое желательно выделить селективно. Из фиг.2 следует, что для осаждения Сu(ОН)2 необходимо поддерживать pH в диапазоне 6,0-7,0 в отстойнике 3, для осаждения Zn(OH)2 - в диапазоне 7,2-8,0 в отстойнике 4, для осаждения Fe(OH)2 - в диапазоне 8,5-9,2 в отстойнике 5, для осаждения Mn(OH)2 - в диапазоне 9,5-10,5 в отстойнике 6. Извлеченные гидроксиды металлов подают в шламонакопитель 17 в изолированные друг от друга секции. Извлеченные металлы имеют определенную стоимость, являются сырьем для металлургической промышленности.
Доочистка сточных вод осуществляется с помощью классического метода - фильтрованием в зернистой загрузке в фильтре 7. Для достижения предельно допустимых концентраций в сбрасываемых в водные объекты очищенных сточных вод необходимо применить биологические пруды 8, в которых происходит самоочищение водоема за счет биологических процессов. Для интенсификации предусмотрена принудительная аэрация воды (не показана) и аэрация за счет сброса воды через водосливы. Пруды выполнены многосекционными, в последних секциях для извлечения остаточных концентраций металлов использована высшая водная растительность (рогоз, тростник, осока).
Пример 1. Производили очистку смеси шахтных и подотвальных вод Учалинского горно-обогатительного комбината нейтрализацией известковым молоком при разных значениях pH. Результаты представлены на фиг.3. Из приведенных графиков следует, что максимальная скорость осаждения гипса достигается при pH 4,5-5,0.
Пример 2. Проводили опыты по извлечению тяжелых металлов высшей водной растительностью. Результаты опытов приведены в таблице 1.
Таблица 1
Вид растения Содержание тяжелых металлов, мг/кг сухой массы
Fe Сu Zn Mn
Тростник 37,8 2,4 23,0 45,0
Рогоз 32,8 2,0 36,7 70,7
Осока 216,0 38,5 394,0 89,6
Из исследованных растений предпочтение следует отдать осоке, извлекающей большее количество тяжелых металлов за вегетационный период.
Пример 3. Проводили опыты по определению влияния рециркуляции осадка на скорость осаждения высокодисперсных частиц гипса в отстойнике. Опыты проводили на смеси шахтных и подотвальных вод Учалинского горно-обогатительного комбината нейтрализацией при значении pH 4,5. Определили время, в течение которого доля осветленной воды достигает 90%. Результаты приведены в таблице 2.
Таблица 2.
Степень рециркуляции осадка
0 10 20 30 40
Время, мин 120 46 30 29 29
На основании полученных результатов следует, что оптимальным значением является степень рециркуляции осадка 20-30%, дальнейшее увеличение степени рециркуляции не дает эффекта.

Claims (3)

1. Способ нейтрализации кислых сульфатсодержащих сточных вод, включающий нейтрализацию известковым молоком и осаждение образовавшихся взвешенных частиц в присутствии анионного флокулянта, отличающийся тем, что нейтрализацию проводят в несколько ступеней, при этом на первой ступени нейтрализацию проводят до pH 4,5-5,0 и осаждение проводят в отстойнике без применения флокулянта, а образовавшийся осадок, содержащий гипс и гидроксиды трехвалентного железа, частично за счет рециркуляции возвращают в отстойник, на второй ступени нейтрализацию проводят до pH 6,0-7,0 и осаждают гидроксиды двухвалентной меди в присутствии анионного флокулянта, на третьей ступени нейтрализацию проводят до pH 7,2-8,0 и осаждают гидроксиды двухвалентного цинка в присутствии анионного флокулянта, на четвертой ступени нейтрализацию проводят до pH 8,5-9,2 и осаждают гидроксиды двухвалентного железа в присутствии анионного флокулянта, на пятой ступени нейтрализацию проводят до pH 9,5-10,5 и осаждают гидроксиды двухвалентного марганца в присутствии анионного флокулянта, причем осадки двухвалентных металлов размещают индивидуально в отдельных секциях шламовых площадок, а очищенную воду подвергают доочистке фильтрованием в зернистых материалах и очистке в биологических прудах.
2. Способ по п.1, отличающийся тем, что осадок, содержащий гипс и гидроксиды трехвалентного железа, образованный на первой ступени нейтрализации, возвращают за счет рециркуляции на 20-30 об.% в отстойник.
3. Устройство нейтрализации кислых сульфатсодержащих сточных вод, включающее отстойник, реагентное хозяйство и шламовые площадки, отличающееся тем, что содержит последовательно соединенные гидроциклон, отстойник первой ступени с реагентным хозяйством дозирования известкового молока и системой рециркуляции осадка, n-е количество идентичных отстойников с реагентным хозяйством дозирования известкового молока и флокулянта, где n равно количеству селективно извлекаемых металлов, фильтр с зернистой загрузкой с системой обратной промывки, биологические пруды с отстойной зоной, переливными кромками и секциями доочистки с высшей водной растительностью, причем осадок из гидроциклона, отстойника первой ступени, отстойной зоны биологических прудов и отстойника промывных вод поступает на шламовые площадки для обезвоживания гипса, а осадок из остальных (n-1) отстойников поступает на секционированные шламовые площадки для селективного обезвоживания гидроксидов металлов.
RU2010116055/05A 2010-04-22 2010-04-22 Способ нейтрализации кислых сульфатсодержащих сточных вод и устройство для его осуществления RU2438998C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010116055/05A RU2438998C1 (ru) 2010-04-22 2010-04-22 Способ нейтрализации кислых сульфатсодержащих сточных вод и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010116055/05A RU2438998C1 (ru) 2010-04-22 2010-04-22 Способ нейтрализации кислых сульфатсодержащих сточных вод и устройство для его осуществления

Publications (2)

Publication Number Publication Date
RU2010116055A RU2010116055A (ru) 2011-10-27
RU2438998C1 true RU2438998C1 (ru) 2012-01-10

Family

ID=44997828

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010116055/05A RU2438998C1 (ru) 2010-04-22 2010-04-22 Способ нейтрализации кислых сульфатсодержащих сточных вод и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2438998C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2691052C1 (ru) * 2018-12-19 2019-06-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный энергетический университет" (ФГБОУ ВО "КГЭУ") Способ очистки высокоминерализованных кислых сточных вод водоподготовительной установки от сульфатов

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110746003A (zh) * 2019-11-27 2020-02-04 南通汇佰川工程技术有限公司 便捷集成式喷漆废水处理及回用系统与方法
CN114057315A (zh) * 2020-07-29 2022-02-18 山东浪潮华光光电子股份有限公司 一种砷化镓研磨冷却水循环使用设备及其使用方法
CN115259326A (zh) * 2022-09-05 2022-11-01 西安交通大学 一种诱导形成珊瑚礁状絮体强化污染物去除的网格絮凝池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
СМИРНОВ Ю.Ю. и др. Подбор флокулянтов для интенсификации процесса осаждения шлама на станции нейтрализации сточных вод горнообогатительного комбината. - Водоочистка. Водоподготовка. Водоснабжение, 2008, №9, с.с.28-31. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2691052C1 (ru) * 2018-12-19 2019-06-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный энергетический университет" (ФГБОУ ВО "КГЭУ") Способ очистки высокоминерализованных кислых сточных вод водоподготовительной установки от сульфатов

Also Published As

Publication number Publication date
RU2010116055A (ru) 2011-10-27

Similar Documents

Publication Publication Date Title
CN110668540B (zh) 一种高盐废水沉淀除盐循环利用工艺
FI126285B (en) Process for removing sulfate, calcium and / or other soluble metals from wastewater
CN101628763B (zh) 污酸污水处理装置及处理工艺
CN109437482A (zh) 一种制药行业原料药生产有机废水的高效处理系统及其处理方法
CN103347823A (zh) 具有再循环的自废含水流中的硫酸盐去除
CN101805084A (zh) 矿山含硫矿物、As、Pb、Cd废水的处理工艺
CN101830585A (zh) 酸性矿井水处理系统
CN105502730B (zh) 一种混合型化肥生产废水物化处理方法
CN103304104A (zh) 天然气气田开发污水零排放的新型工艺
CN103693770A (zh) 用于湿法烟气脱硫废水的净化装置及其使用方法
CN104118956A (zh) 一种污水处理的方法
RU2438998C1 (ru) Способ нейтрализации кислых сульфатсодержащих сточных вод и устройство для его осуществления
CN103951114A (zh) 一种重金属废水三级处理与深度净化回用工艺
CN105036408A (zh) 含高浓度活性硅废水的处理方法
JP2009072769A (ja) 汚水処理システム
CN203922951U (zh) 一种含氟废水处理系统
CN104973717A (zh) 一种含盐废水深度处理方法
RU2593877C2 (ru) Способ очистки сточной жидкости от фосфатов и сульфатов
CN101209884B (zh) 一般工业废水综合处理零排放及回用的方法和装置
RU2757113C1 (ru) Установка для обработки фильтрата полигона твердых коммунальных отходов
CN204434393U (zh) 一种废水处理系统
RU110738U1 (ru) Установка для глубокой очистки сточных вод от ионов тяжелых металлов и анионов
CN205933543U (zh) 一种高钙、高镁废水的生化处理装置
JP2009056346A (ja) 汚濁泥水処理システム
RU2708310C1 (ru) Способ удаления фосфора из сточных вод внутриплощадочной канализации канализационных очистных сооружений

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130423